1
|
Sule R, Hu P, Shoffler C, Petucci C, Wilkins BJ, Rychik J, Pei L. Comprehensive Multiomic Analysis Reveals Metabolic Reprogramming Underlying Human Fontan-Associated Liver Disease. J Am Heart Assoc 2025; 14:e039201. [PMID: 40055870 DOI: 10.1161/jaha.124.039201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/24/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND The Fontan operation is the current standard of care for single-ventricle congenital heart disease. Almost all patients with Fontan operation develop liver fibrosis at a young age, known as Fontan-associated liver disease (FALD). The pathogenesis and mechanisms underlying FALD remain little understood, and there are no effective therapies. We aimed to present a comprehensive multiomic analysis of human FALD, revealing the fundamental biology and pathogenesis of FALD. METHODS AND RESULTS We recently generated a single-cell transcriptomic and epigenomic atlas of human FALD using single-nucleus multiomic RNA sequencing and assay for transposase-accessible chromatin using sequencing, which uncovered substantial metabolic reprogramming. Here, we applied liquid chromatography-mass spectrometry-based untargeted metabolomics to unveil the metabolomic landscape of human FALD, using liver samples/biopsies from age- and sex-matched donors and patients with FALD (n=12 per group). Results were integrated with liver single-nucleus multiomic RNA sequencing and assay for transposase-accessible chromatin using sequencing and serum metabolomics data to present a comprehensive multiomic atlas of FALD.We discovered significant metabolic abnormalities in livers of adolescent patients with Fontan circulation, particularly amino acid metabolism, peroxisomal fatty acid oxidation, cytochrome P450 system, glycolysis, tricarboxylic acid cycle, ketone body metabolism, and bile acid metabolism. Integrated analyses with liver single-nucleus multiomic RNA sequencing and assay for transposase-accessible chromatin using sequencing results unveiled potential underlying mechanisms of these metabolic changes. Comparison with serum metabolomics data indicate that liver metabolic reprogramming contributes to circulatory metabolomic changes in FALD. Furthermore, comparison with metabolomics data of human metabolic dysfunction-associated fatty liver disease and metabolic dysfunction-associated steatohepatitis highlighted dysregulated amino acid metabolism as a common metabolic abnormality. CONCLUSIONS Our comprehensive multiomic analyses reveal new insights into the fundamental biology and pathogenesis mechanisms of human FALD.
Collapse
Affiliation(s)
- Rasheed Sule
- Center for Mitochondrial and Epigenomic Medicine Children's Hospital of Philadelphia Philadelphia PA USA
- Cardiovascular Institute, Children's Hospital of Philadelphia Philadelphia PA USA
- Department of Pathology and Laboratory Medicine Children's Hospital of Philadelphia Philadelphia PA USA
| | - Po Hu
- Center for Mitochondrial and Epigenomic Medicine Children's Hospital of Philadelphia Philadelphia PA USA
- Cardiovascular Institute, Children's Hospital of Philadelphia Philadelphia PA USA
- Department of Pathology and Laboratory Medicine Children's Hospital of Philadelphia Philadelphia PA USA
- Department of Pathology and Laboratory Medicine Perelman School of Medicine, University of Pennsylvania Philadelphia PA USA
| | - Clarissa Shoffler
- Cardiovascular Institute, Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Christopher Petucci
- Cardiovascular Institute, Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Benjamin J Wilkins
- Department of Pathology and Laboratory Medicine Children's Hospital of Philadelphia Philadelphia PA USA
| | - Jack Rychik
- Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA USA
| | - Liming Pei
- Center for Mitochondrial and Epigenomic Medicine Children's Hospital of Philadelphia Philadelphia PA USA
- Cardiovascular Institute, Children's Hospital of Philadelphia Philadelphia PA USA
- Department of Pathology and Laboratory Medicine Children's Hospital of Philadelphia Philadelphia PA USA
- Cardiovascular Institute, Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
- Department of Pathology and Laboratory Medicine Perelman School of Medicine, University of Pennsylvania Philadelphia PA USA
| |
Collapse
|
2
|
Luo YQ, Zhang CY, Nong XZ, Gao Y, Wang L, Ji G, Wu T. Metabolomics in cirrhosis: Recent advances and opportunities. Clin Chim Acta 2024; 557:117886. [PMID: 38556135 DOI: 10.1016/j.cca.2024.117886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Liver cirrhosis (LC) represents a significant hepatic disorder that persistently commands the attention of the scientific community, especially concerning its pathogenesis and therapeutic approaches. Metabolomics, the comprehensive profiling of an organism's metabolome, has been increasingly applied in the research of cirrhosis over the past decade. This review summarizes the recent advancements and applications of metabolomics within the context of LC research, in recent five years. It highlights the role of metabolomics in the diagnosis of LC, the assessment of prognostic markers, and the evaluation of therapeutic outcomes. The discussion focuses on the potential and challenges of metabolomics in LC research, including the evolution of analytical technologies, advancements in bioinformatics, and the challenges impeding clinical implementation. Additionally, the review anticipates the forthcoming developments in metabolomics related to LC research, with the objective of facilitating innovative approaches for early detection and intervention in LC.
Collapse
Affiliation(s)
- Yan-Qun Luo
- Department of Hepatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cai-Yun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xia-Zhen Nong
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Gao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lei Wang
- Department of Hepatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Herranz JM, López-Pascual A, Clavería-Cabello A, Uriarte I, Latasa MU, Irigaray-Miramon A, Adán-Villaescusa E, Castelló-Uribe B, Sangro B, Arechederra M, Berasain C, Avila MA, Fernández-Barrena MG. Comprehensive analysis of epigenetic and epitranscriptomic genes' expression in human NAFLD. J Physiol Biochem 2023; 79:901-924. [PMID: 37620598 PMCID: PMC10636027 DOI: 10.1007/s13105-023-00976-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifactorial condition with a complex etiology. Its incidence is increasing globally in parallel with the obesity epidemic, and it is now considered the most common liver disease in Western countries. The precise mechanisms underlying the development and progression of NAFLD are complex and still poorly understood. The dysregulation of epigenetic and epitranscriptomic mechanisms is increasingly recognized to play pathogenic roles in multiple conditions, including chronic liver diseases. Here, we have performed a comprehensive analysis of the expression of epigenetic and epitranscriptomic genes in a total of 903 liver tissue samples corresponding to patients with normal liver, obese patients, and patients with non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH), advancing stages in NAFLD progression. We integrated ten transcriptomic datasets in an unbiased manner, enabling their robust analysis and comparison. We describe the complete landscape of epigenetic and epitranscriptomic genes' expression along the course of the disease. We identify signatures of genes significantly dysregulated in association with disease progression, particularly with liver fibrosis development. Most of these epigenetic and epitranscriptomic effectors have not been previously described in human NAFLD, and their altered expression may have pathogenic implications. We also performed a comprehensive analysis of the expression of enzymes involved in the metabolism of the substrates and cofactors of epigenetic and epitranscriptomic effectors. This study provides novel information on NAFLD pathogenesis and may also guide the identification of drug targets to treat this condition and its progression towards hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jose M Herranz
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Amaya López-Pascual
- Hepatology Unit, CCUN, Navarra University Clinic, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Alex Clavería-Cabello
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - M Ujúe Latasa
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Ainara Irigaray-Miramon
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Elena Adán-Villaescusa
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Borja Castelló-Uribe
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Bruno Sangro
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Hepatology Unit, CCUN, Navarra University Clinic, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - María Arechederra
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Carmen Berasain
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Matías A Avila
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Maite G Fernández-Barrena
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain.
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.
| |
Collapse
|
4
|
Wu W, Kaicen W, Bian X, Yang L, Ding S, Li Y, Li S, Zhuge A, Li L. Akkermansia muciniphila alleviates high-fat-diet-related metabolic-associated fatty liver disease by modulating gut microbiota and bile acids. Microb Biotechnol 2023; 16:1924-1939. [PMID: 37377410 PMCID: PMC10527187 DOI: 10.1111/1751-7915.14293] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
It has been reported that Akkermansia muciniphila improves host metabolism and reduces inflammation; however, its potential effects on bile acid metabolism and metabolic patterns in metabolic-associated fatty liver disease (MAFLD) are unknown. In this study, we have analysed C57BL/6 mice under three feeding conditions: (i) a low-fat diet group (LP), (ii) a high-fat diet group (HP) and (iii) a high-fat diet group supplemented with A. muciniphila (HA). The results found that A. muciniphila administration relieved weight gain, hepatic steatosis and liver injury induced by the high-fat diet. A. muciniphila altered the gut microbiota with a decrease in Alistipes, Lactobacilli, Tyzzerella, Butyricimonas and Blautia, and an enrichment of Ruminiclostridium, Osclibacter, Allobaculum, Anaeroplasma and Rikenella. The gut microbiota changes correlated significantly with bile acids. Meanwhile, A. muciniphila also improved glucose tolerance, gut barriers and adipokines dysbiosis. Akkermansia muciniphila regulated the intestinal FXR-FGF15 axis and reshaped the construction of bile acids, with reduced secondary bile acids in the caecum and liver, including DCA and LCA. These findings provide new insights into the relationships between probiotics, microflora and metabolic disorders, highlighting the potential role of A. muciniphila in the management of MAFLD.
Collapse
Affiliation(s)
- Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Wang Kaicen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Xiaoyuan Bian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Liya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Shi Ding
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Shengjie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Aoxiang Zhuge
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandongChina
| |
Collapse
|
5
|
Mengr A, Strnadová V, Strnad Š, Vrkoslav V, Pelantová H, Kuzma M, Comptdaer T, Železná B, Kuneš J, Galas MC, Pačesová A, Maletínská L. Feeding High-Fat Diet Accelerates Development of Peripheral and Central Insulin Resistance and Inflammation and Worsens AD-like Pathology in APP/PS1 Mice. Nutrients 2023; 15:3690. [PMID: 37686722 PMCID: PMC10490051 DOI: 10.3390/nu15173690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive brain disorder characterized by extracellular amyloid-β (Aβ) plaques, intracellular neurofibrillary tangles formed by hyperphosphorylated Tau protein and neuroinflammation. Previous research has shown that obesity and type 2 diabetes mellitus, underlined by insulin resistance (IR), are risk factors for neurodegenerative disorders. In this study, obesity-induced peripheral and central IR and inflammation were studied in relation to AD-like pathology in the brains and periphery of APP/PS1 mice, a model of Aβ pathology, fed a high-fat diet (HFD). APP/PS1 mice and their wild-type controls fed either a standard diet or HFD were characterized at the ages of 3, 6 and 10 months by metabolic parameters related to obesity via mass spectroscopy, nuclear magnetic resonance, immunoblotting and immunohistochemistry to quantify how obesity affected AD pathology. The HFD induced substantial peripheral IR leading to central IR. APP/PS1-fed HFD mice had more pronounced IR, glucose intolerance and liver steatosis than their WT controls. The HFD worsened Aβ pathology in the hippocampi of APP/PS1 mice and significantly supported both peripheral and central inflammation. This study reveals a deleterious effect of obesity-related mild peripheral inflammation and prediabetes on the development of Aβ and Tau pathology and neuroinflammation in APP/PS1 mice.
Collapse
Affiliation(s)
- Anna Mengr
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6, 166 10 Prague, Czech Republic; (A.M.); (V.S.); (Š.S.); (V.V.); (B.Ž.); (J.K.)
| | - Veronika Strnadová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6, 166 10 Prague, Czech Republic; (A.M.); (V.S.); (Š.S.); (V.V.); (B.Ž.); (J.K.)
| | - Štěpán Strnad
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6, 166 10 Prague, Czech Republic; (A.M.); (V.S.); (Š.S.); (V.V.); (B.Ž.); (J.K.)
| | - Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6, 166 10 Prague, Czech Republic; (A.M.); (V.S.); (Š.S.); (V.V.); (B.Ž.); (J.K.)
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 142 20 Prague, Czech Republic; (H.P.); (M.K.)
| | - Marek Kuzma
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 142 20 Prague, Czech Republic; (H.P.); (M.K.)
| | - Thomas Comptdaer
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog-Lille Neuroscience & Cognition, F-59000 Lille, France; (T.C.); (M.-C.G.)
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6, 166 10 Prague, Czech Republic; (A.M.); (V.S.); (Š.S.); (V.V.); (B.Ž.); (J.K.)
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6, 166 10 Prague, Czech Republic; (A.M.); (V.S.); (Š.S.); (V.V.); (B.Ž.); (J.K.)
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 142 20 Prague, Czech Republic
| | - Marie-Christine Galas
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog-Lille Neuroscience & Cognition, F-59000 Lille, France; (T.C.); (M.-C.G.)
| | - Andrea Pačesová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6, 166 10 Prague, Czech Republic; (A.M.); (V.S.); (Š.S.); (V.V.); (B.Ž.); (J.K.)
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6, 166 10 Prague, Czech Republic; (A.M.); (V.S.); (Š.S.); (V.V.); (B.Ž.); (J.K.)
| |
Collapse
|
6
|
Xu YF, Hao YX, Ma L, Zhang MH, Niu XX, Li Y, Zhang YY, Liu TT, Han M, Yuan XX, Wan G, Xing HC. Difference and clinical value of metabolites in plasma and feces of patients with alcohol-related liver cirrhosis. World J Gastroenterol 2023; 29:3534-3547. [PMID: 37389241 PMCID: PMC10303510 DOI: 10.3748/wjg.v29.i22.3534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/15/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Alterations in plasma and intestinal metabolites contribute to the pathogenesis and progression of alcohol-related liver cirrhosis (ALC). AIM To explore the common and different metabolites in the plasma and feces of patients with ALC and evaluate their clinical implications. METHODS According to the inclusion and exclusion criteria, 27 patients with ALC and 24 healthy controls (HCs) were selected, and plasma and feces samples were collected. Liver function, blood routine, and other indicators were detected with automatic biochemical and blood routine analyzers. Liquid chromatography-mass spectrometry was used to detect the plasma and feces metabolites of the two groups and the metabolomics of plasma and feces. Also, the correlation between metabolites and clinical features was analyzed. RESULTS More than 300 common metabolites were identified in the plasma and feces of patients with ALC. Pathway analysis showed that these metabolites are enriched in bile acid and amino acid metabolic pathways. Compared to HCs, patients with ALC had a higher level of glycocholic acid (GCA) and taurocholic acid (TCA) in plasma and a lower level of deoxycholic acid (DCA) in the feces, while L-threonine, L-phenylalanine, and L-tyrosine increased simultaneously in plasma and feces. GCA, TCA, L-methionine, L-phenylalanine, and L-tyrosine in plasma were positively correlated with total bilirubin (TBil), prothrombin time (PT), and maddrey discriminant function score (MDF) and negatively correlated with cholinesterase (CHE) and albumin (ALB). The DCA in feces was negatively correlated with TBil, MDF, and PT and positively correlated with CHE and ALB. Moreover, we established a P/S BA ratio of plasma primary bile acid (GCA and TCA) to fecal secondary bile acid (DCA), which was relevant to TBil, PT, and MDF score. CONCLUSION The enrichment of GCA, TCA, L-phenylalanine, L-tyrosine, and L-methionine in the plasma of patients with ALC and the reduction of DCA in feces were related to the severity of ALC. These metabolites may be used as indicators to evaluate the progression of alcohol-related liver cirrhosis.
Collapse
Affiliation(s)
- Yi-Fan Xu
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yan-Xu Hao
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Lei Ma
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Meng-Han Zhang
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xuan-Xuan Niu
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yan Li
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yuan-Yuan Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ting-Ting Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ming Han
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xiao-Xue Yuan
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Gang Wan
- Department of Statistic, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Hui-Chun Xing
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Peking University Ditan Teaching Hospital, Beijing 100015, China
| |
Collapse
|
7
|
Chen L, Yang P, Hu L, Yang L, Chu H, Hou X. Modulating phenylalanine metabolism by L. acidophilus alleviates alcohol-related liver disease through enhancing intestinal barrier function. Cell Biosci 2023; 13:24. [PMID: 36739426 PMCID: PMC9899391 DOI: 10.1186/s13578-023-00974-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/27/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Impaired metabolic functions of gut microbiota have been demonstrated in alcohol-related liver disease (ALD), but little is known about changes in phenylalanine metabolism. METHODS Bacterial genomics and fecal metabolomics analysis were used to recognize the changes of phenylalanine metabolism and its relationship with intestinal flora. Intestinal barrier function was detected by intestinal alkaline phosphatase (IAP) activity, levels of tight junction protein expression, colonic inflammation and levels of serum LPS. Lactobacillus acidophilus was chosen to correct phenylalanine metabolism of ALD mice by redundancy analysis and Pearson correlation analysis. RESULTS Using 16S rRNA sequencing and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) methods, we identified elevated levels of phenylalanine and its' metabolites in the gut of alcohol-fed mice compared to control mice and were negatively correlated with the abundance of Lactobacillus, which mainly metabolized phenylalanine. The intestinal phenylalanine level was positively correlated with the colon inflammatory factors TNF-α and IL-6, and negatively correlated with ZO-1 and Occludin. While intestinal alkaline phosphatase (IAP) activity was negatively correlated with the colon inflammatory factors TNF-α, IL-6 and MCP-1, and positively correlated with ZO-1 and Occludin. Increased phenylalanine inhibited IAP activity, blocked LPS dephosphorylation, increased colonic inflammation and bacterial translocation. Phenylalanine supplementation aggravated alcohol-induced liver injury and intestinal barrier dysfunction. Among the 37 Lactobacillus species, the abundance of Lactobacillus acidophilus was most significantly decreased in ALD mice. Supplementation with L. acidophilus recovered phenylalanine metabolism and protected mice from alcohol-induced steatohepatitis. CONCLUSIONS Recovery of phenylalanine metabolism through the oral supplementation of L. acidophilus boosted intestinal barrier integrity and ameliorated experimental ALD.
Collapse
Affiliation(s)
- Liuying Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Pengcheng Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Lilin Hu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
8
|
Barboza TK, Susta L, zur Linden A, Gardhouse S, Beaufrère H. Association of plasma metabolites and diagnostic imaging findings with hepatic lipidosis in bearded dragons (Pogona vitticeps) and effects of gemfibrozil therapy. PLoS One 2023; 18:e0274060. [PMID: 36735707 PMCID: PMC9897564 DOI: 10.1371/journal.pone.0274060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 08/21/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES To evaluate the association between plasma metabolites, biochemical analytes, diagnostic imaging findings, and the histologic diagnosis of hepatic lipidosis in bearded dragons. To assess the effects of gemfibrozil therapy on hepatic lipid accumulation and associated diagnostic tests. ANIMALS Fourteen bearded dragons (Pogona vitticeps) with varying severity of hepatic lipid accumulation (with and without hepatic lipidosis) were included. PROCEDURES Animals underwent coelomic ultrasound, computed tomography (CT) scans, and coelioscopic hepatic biopsies. Clinical pathology tests included lipidologic tests, hepatic biomarkers, and mass spectrometry-based metabolomics. Animals were medicated with gemfibrozil 6mg/kg orally once a day for 2 months in a randomized blinded clinical trial prior to repeating previous diagnostic testing. RESULTS Hounsfield units on CT were negatively associated with increased hepatic vacuolation, while ultrasound and gross evaluation of the liver were not reliable. Beta-hydroxybutyric-acid (BHBA) concentrations were significantly associated with hepatic lipidosis. Metabolomics and lipidomics data found BHBA and succinic acid to be potential biomarkers for diagnosing hepatic lipidosis in bearded dragons. Succinic acid concentrations were significantly lower in the gemfibrozil treatment group. There was a tendency for improvement in the biomarkers and reduced hepatic fat in bearded dragons with hepatic lipidosis when treated with gemfibrozil, though the improvement was not statistically significant. CONCLUSIONS These findings provide information on the antemortem assessment of hepatic lipidosis in bearded dragons and paves the way for further research in diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Trinita K. Barboza
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Leonardo Susta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Alex zur Linden
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Sara Gardhouse
- Health Sciences Center, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Hugues Beaufrère
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
9
|
Pukale DD, Lazarenko D, Aryal SR, Khabaz F, Shriver LP, Leipzig ND. Osmotic Contribution of Synthesized Betaine by Choline Dehydrogenase Using In Vivo and In Vitro Models of Post-traumatic Syringomyelia. Cell Mol Bioeng 2023; 16:41-54. [PMID: 36660584 PMCID: PMC9842837 DOI: 10.1007/s12195-022-00749-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/27/2022] [Indexed: 11/28/2022] Open
Abstract
Introduction Syringomyelia (SM) is a debilitating spinal cord disorder in which a cyst, or syrinx, forms in the spinal cord parenchyma due to congenital and acquired causes. Over time syrinxes expand and elongate, which leads to compressing the neural tissues and a mild to severe range of symptoms. In prior omics studies, significant upregulation of betaine and its synthesis enzyme choline dehydrogenase (CHDH) were reported during syrinx formation/expansion in SM injured spinal cords, but the role of betaine regulation in SM etiology remains unclear. Considering betaine's known osmoprotectant role in biological systems, along with antioxidant and methyl donor activities, this study aimed to better understand osmotic contributions of synthesized betaine by CHDH in response to SM injuries in the spinal cord. Methods A post-traumatic SM (PTSM) rat model and in vitro cellular models using rat astrocytes and HepG2 liver cells were utilized to investigate the role of betaine synthesis by CHDH. Additionally, the osmotic contributions of betaine were evaluated using a combination of experimental as well as simulation approaches. Results In the PTSM injured spinal cord CHDH expression was observed in cells surrounding syrinxes. We next found that rat astrocytes and HepG2 cells were capable of synthesizing betaine via CHDH under osmotic stress in vitro to maintain osmoregulation. Finally, our experimental and simulation approaches showed that betaine was capable of directly increasing meaningful osmotic pressure. Conclusions The findings from this study demonstrate new evidence that CHDH activity in the spinal cord provides locally synthesized betaine for osmoregulation in SM pathophysiology. Supplementary Information The online version of this article contains supplementary material available 10.1007/s12195-022-00749-5.
Collapse
Affiliation(s)
- Dipak D. Pukale
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, OH 44325 USA
| | - Daria Lazarenko
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325 USA
| | - Siddhartha R. Aryal
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325 USA
| | - Fardin Khabaz
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, OH 44325 USA
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325 USA
| | - Leah P. Shriver
- Department of Chemistry, Washington University, Saint Louis, MO 63130 USA
- Department of Medicine, Washington University, Saint Louis, MO 63130 USA
- Center for Metabolomics and Isotope Tracing, Washington University, Saint Louis, MO 63130 USA
| | - Nic D. Leipzig
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, OH 44325 USA
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325 USA
| |
Collapse
|
10
|
Wu T, Wang M, Ning F, Zhou S, Hu X, Xin H, Reilly S, Zhang X. Emerging role for branched-chain amino acids metabolism in fibrosis. Pharmacol Res 2023; 187:106604. [PMID: 36503000 DOI: 10.1016/j.phrs.2022.106604] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Fibrosis is a common pathological feature of organ diseases resulting from excessive production of extracellular matrix, which accounts for significant morbidity and mortality. However, there is currently no effective treatment targeting fibrogenesis. Recently, metabolic alterations are increasingly considered as essential factors underlying fibrogenesis, and especially research on metabolic regulation of amino acids is flourishing. Among them, branched-chain amino acids (BCAAs) are the most abundant essential amino acids, including leucine, isoleucine and valine, which play significant roles in the substance and energy metabolism and their regulation. Dysregulation of BCAAs metabolism has been proven to contribute to numerous diseases. In this review, we summarize the metabolic regulation of fibrosis and the changes in BCAAs metabolism secondary to fibrosis. We also review the effects and mechanisms of the BCAAs intervention, and its therapeutic targeting in hepatic, renal and cardiac fibrosis, with a focus on the fibrosis in liver and associated hepatocellular carcinoma.
Collapse
Affiliation(s)
- Tiangang Wu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mengling Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Fengling Ning
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shilin Zhou
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xuetao Hu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China; Shanghai Zhangjiang Institute of Medical Innovation, Shanghai 201204, China.
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
11
|
Saborano R, Shepherd E, Günther UL, Lalor PF. Tracer-Based Metabolic Analysis by NMR in Intact Perfused Human Liver Tissue. Methods Mol Biol 2023; 2675:167-180. [PMID: 37258763 DOI: 10.1007/978-1-0716-3247-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Human metabolic liver disease is dramatically increasing globally and presents an urgent clinical unmet need. Rodent models of non-alcoholic fatty liver disease (NAFLD) are available, but they fail to fully recreate the metabolic and cellular features of human disease. Thus, it is imperative to understand the metabolic interplay in human cells in the context of disease. We have applied nuclear magnetic resonance (NMR) spectroscopy approaches to enable the detection of numerous metabolites in human cells and within intact tissue in a single measurement. In this chapter, we describe the challenges of using isolated human hepatocytes vs perfused human liver tissue for metabolic tracer experiments and how experimental parameters can be refined to interrogate signals from intact tissue and cells.
Collapse
Affiliation(s)
- Raquel Saborano
- Centre for Liver and Gastroenterology Research, and NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK
| | - Emma Shepherd
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Ulrich L Günther
- Institute for Chemistry and Metabolomics, University of Luebeck, Luebeck, Germany
| | - Patricia F Lalor
- Centre for Liver and Gastroenterology Research, and NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK.
| |
Collapse
|
12
|
Abulikemu A, Zhao X, Xu H, Li Y, Ma R, Yao Q, Wang J, Sun Z, Li Y, Guo C. Silica nanoparticles aggravated the metabolic associated fatty liver disease through disturbed amino acid and lipid metabolisms-mediated oxidative stress. Redox Biol 2022; 59:102569. [PMID: 36512914 PMCID: PMC9763688 DOI: 10.1016/j.redox.2022.102569] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The metabolic associated fatty liver disease (MAFLD) is a public health challenge, leading to a global increase in chronic liver disease. The respiratory exposure of silica nanoparticles (SiNPs) has revealed to induce hepatotoxicity. However, its role in the pathogenesis and progression of MAFLD was severely under-studied. In this context, the hepatic impacts of SiNPs were investigated in vivo and in vitro through using ApoE-/- mice and free fatty acid (FFA)-treated L02 hepatocytes. Histopathological examinations and biochemical analysis showed SiNPs exposure via intratracheal instillation aggravated hepatic steatosis, lipid vacuolation, inflammatory infiltration and even collagen deposition in ApoE-/- mice, companied with increased hepatic ALT, AST and LDH levels. The enhanced fatty acid synthesis and inhibited fatty acid β-oxidation and lipid efflux may account for the increased hepatic TC/TG by SiNPs. Consistently, SiNPs induced lipid deposition and elevated TC in FFA-treated L02 cells. Further, the activation of hepatic oxidative stress was detected in vivo and in vitro, as evidenced by ROS accumulation, elevated MDA, declined GSH/GSSG and down-regulated Nrf2 signaling. Endoplasmic reticulum (ER) stress was also triggered in response to SiNPs-induced lipid accumulation, as reflecting by the remarkable ER expansion and increased BIP expression. More importantly, an UPLC-MS-based metabolomics analysis revealed that SiNPs disturbed the hepatic metabolic profile in ApoE-/- mice, prominently on amino acids and lipid metabolisms. In particular, the identified differential metabolites were strongly correlated to the activation of oxidative stress and ensuing hepatic TC/TG accumulation and liver injuries, contributing to the progression of liver diseases. Taken together, our study showed SiNPs promoted hepatic steatosis and liver damage, resulting in the aggravation of MAFLD progression. More importantly, the disturbed amino acids and lipid metabolisms-mediated oxidative stress was a key contributor to this phenomenon from a metabolic perspective.
Collapse
Affiliation(s)
- Alimire Abulikemu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xinying Zhao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China,Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Hailin Xu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China,Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Ru Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Qing Yao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China,Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ji Wang
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China,Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China,Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
13
|
MacCannell AD, Roberts LD. Metabokines in the regulation of systemic energy metabolism. Curr Opin Pharmacol 2022; 67:102286. [PMID: 36137304 DOI: 10.1016/j.coph.2022.102286] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/05/2022] [Accepted: 08/01/2022] [Indexed: 01/25/2023]
Abstract
Metabolism consists of life-sustaining chemical reactions involving metabolites. Historically, metabolites were defined as the intermediates or end products of metabolism and considered to be passive participants changed by metabolic processes. However, recent research has redefined how we view metabolism. There is emerging evidence of metabolites which function to mediate cellular signalling and interorgan crosstalk, regulating local metabolism and systemic physiology. These bioactive metabolite signals have been termed metabokines. Metabokines regulate diverse energy metabolism pathways across multiple tissues, including fatty acid β-oxidation, mitochondrial oxidative phosphorylation, lipolysis, glycolysis and gluconeogenesis. There is increasing impetus to uncover novel metabokine signalling axes to better understand how these may be perturbed in metabolic diseases and determine their utility as therapeutic targets.
Collapse
Affiliation(s)
- Amanda Dv MacCannell
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Lee D Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
14
|
Hughey CC, Puchalska P, Crawford PA. Integrating the contributions of mitochondrial oxidative metabolism to lipotoxicity and inflammation in NAFLD pathogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159209. [DOI: 10.1016/j.bbalip.2022.159209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/25/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
|
15
|
Robinson EJ, Taddeo MC, Chu X, Shi W, Wood C, Still C, Rovnyak VG, Rovnyak D. Aqueous Metabolite Trends for the Progression of Nonalcoholic Fatty Liver Disease in Female Bariatric Surgery Patients by Targeted 1H-NMR Metabolomics. Metabolites 2021; 11:metabo11110737. [PMID: 34822395 PMCID: PMC8619318 DOI: 10.3390/metabo11110737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/14/2023] Open
Abstract
Determining biomarkers and better characterizing the biochemical progression of nonalcoholic fatty liver disease (NAFLD) remains a clinical challenge. A targeted 1H-NMR study of serum, combined with clinical variables, detected and localized biomarkers to stages of NAFLD in morbidly obese females. Pre-surgery serum samples from 100 middle-aged, morbidly obese female subjects, grouped on gold-standard liver wedge biopsies (non-NAFLD; steatosis; and fibrosis) were collected, extracted, and analyzed in aqueous (D2O) buffer (1H, 600 MHz). Profiled concentrations were subjected to exploratory statistical analysis. Metabolites varying significantly between the non-NAFLD and steatosis groups included the ketone bodies 3-hydroxybutyrate (↓; p = 0.035) and acetone (↓; p = 0.012), and also alanine (↑; p = 0.004) and a putative pyruvate signal (↑; p = 0.003). In contrast, the steatosis and fibrosis groups were characterized by 2-hydroxyisovalerate (↑; p = 0.023), betaine (↓; p = 0.008), hypoxanthine (↓; p = 0.003), taurine (↓; p = 0.001), 2-hydroxybutyrate (↑; p = 0.045), 3-hydroxyisobutyrate (↑; p = 0.046), and increasing medium chain fatty acids. Exploratory classification models with and without clinical variables exhibited overall success rates ca. 75–85%. In the study conditions, inhibition of fatty acid oxidation and disruption of the hepatic urea cycle are supported as early features of NAFLD that continue in fibrosis. In fibrosis, markers support inflammation, hepatocyte damage, and decreased liver function. Complementarity of NMR concentrations and clinical information in classification models is shown. A broader hypothesis that standard-of-care sera can yield metabolomic information is supported.
Collapse
Affiliation(s)
- Emma J. Robinson
- Department of Chemistry, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, USA; (E.J.R.); (M.C.T.)
| | - Matthew C. Taddeo
- Department of Chemistry, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, USA; (E.J.R.); (M.C.T.)
| | - Xin Chu
- The Obesity Institute, Geisinger, Danville, PA 17822, USA; (X.C.); (W.S.); (C.W.); (C.S.)
| | - Weixing Shi
- The Obesity Institute, Geisinger, Danville, PA 17822, USA; (X.C.); (W.S.); (C.W.); (C.S.)
| | - Craig Wood
- The Obesity Institute, Geisinger, Danville, PA 17822, USA; (X.C.); (W.S.); (C.W.); (C.S.)
| | - Christopher Still
- The Obesity Institute, Geisinger, Danville, PA 17822, USA; (X.C.); (W.S.); (C.W.); (C.S.)
| | | | - David Rovnyak
- Department of Chemistry, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, USA; (E.J.R.); (M.C.T.)
- Correspondence:
| |
Collapse
|
16
|
Pukale DD, Farrag M, Gudneppanavar R, Baumann HJ, Konopka M, Shriver LP, Leipzig ND. Osmoregulatory Role of Betaine and Betaine/γ-Aminobutyric Acid Transporter 1 in Post-Traumatic Syringomyelia. ACS Chem Neurosci 2021; 12:3567-3578. [PMID: 34550670 DOI: 10.1021/acschemneuro.1c00056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Syringomyelia (SM) is primarily characterized by the formation of a fluid-filled cyst that forms in the parenchyma of the spinal cord following injury or other pathology. Recent omics studies in animal models have identified dysregulation of solute carriers, channels, transporters, and small molecules associated with osmolyte regulation during syrinx formation/expansion in the spinal cord. However, their connections to syringomyelia etiology are poorly understood. In this study, the biological functions of the potent osmolyte betaine and its associated solute carrier betaine/γ-aminobutyric acid (GABA) transporter 1 (BGT1) were studied in SM. First, a rat post-traumatic SM model was used to demonstrate that the BGT1 was primarily expressed in astrocytes in the vicinity of syrinxes. In an in vitro system, we found that astrocytes uptake betaine through BGT1 to regulate cell size under hypertonic conditions. Treatment with BGT1 inhibitors, especially NNC 05-2090, demonstrated midhigh micromolar range potency in vitro that reversed the osmoprotective effects of betaine. Finally, the specificity of these BGT1 inhibitors in the CNS was demonstrated in vivo, suggesting feasibility for targeting betaine transport in SM. In summary, these data provide an enhanced understanding of the role of betaine and its associated solute carrier BGT1 in cell osmoregulation and implicates the active role of betaine and BGT1 in syringomyelia progression.
Collapse
Affiliation(s)
- Dipak D. Pukale
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Mahmoud Farrag
- Integrated Biosciences Program, University of Akron, Akron, Ohio 44325, United States
| | | | - Hannah J. Baumann
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
| | - Michael Konopka
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
| | - Leah P. Shriver
- Integrated Biosciences Program, University of Akron, Akron, Ohio 44325, United States
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
| | - Nic D. Leipzig
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, Ohio 44325, United States
- Integrated Biosciences Program, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
17
|
Biliotti E, Giampaoli O, Sciubba F, Marini F, Tomassini A, Palazzo D, Capuani G, Esvan R, Spaziante M, Taliani G, Miccheli A. Urinary metabolomics of HCV patients with severe liver fibrosis before and during the sustained virologic response achieved by direct acting antiviral treatment. Biomed Pharmacother 2021; 143:112217. [PMID: 34560544 DOI: 10.1016/j.biopha.2021.112217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) infection induces a long-term inflammatory response and oxidative-stress in the liver microenvironment, leading to hepatic fibrosis and metabolic alterations. Direct-acting-antiviral-agents (DAAs) induce HCV-clearance, even though liver damage is only partially restored. In this context, understanding the impact of viral-eradication on liver metabolic activities could allow optimizing the metabolic care of the patient. The present prospective longitudinal study aims at characterizing the urinary metabolic profile of HCV-induced severe liver fibrosis and the metabolic changes induced by DAAs and HCV-clearance by nuclear magnetic resonance-based metabolomics. The urinary metabolic profile of 23 HCV males with severe liver fibrosis and 20 age-matched healthy-controls was analyzed by NMR-based-metabolomics before starting DAAs, at the end-of-therapy, after one and three months of follow-up. The urinary metabolic profile of patients with severe liver fibrosis was associated to pseudouridine, hypoxanthine, methylguanidine and dimethylamine, highlighting a profile related to oxidative damage, and to tyrosine and glutamine, related to a decreased breakdown of aromatic aminoacids and ammonia detoxification, respectively. 1-methylnicotinamide, a catabolic intermediate of nicotinamide-adenine-dinucleotide, was significantly increased in HCV-patients and restored after HCV-clearance, probably due to the reduced hepatic inflammation. 3-hydroxy-3-methylbutyrate, an intermediate of leucine-catabolism which was permanently restored after HCV-clearance, suggested an improvement of skeletal muscle protein synthesis. Finally, 3-hydroxyisobutyrate and 2,3-dihydroxy-2-methylbutyrate, intermediates of valine-catabolism, glycine and choline increased temporarily during therapy, resulting as potential biomarkers of DAAs systemic effects.
Collapse
Affiliation(s)
- Elisa Biliotti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ottavia Giampaoli
- Department of Chemistry, Sapienza University of Rome, Rome, Italy; NMR-based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Fabio Sciubba
- Department of Chemistry, Sapienza University of Rome, Rome, Italy; NMR-based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Federico Marini
- Department of Chemistry, Sapienza University of Rome, Rome, Italy; NMR-based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Alberta Tomassini
- Department of Chemistry, Sapienza University of Rome, Rome, Italy; NMR-based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Donatella Palazzo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giorgio Capuani
- Department of Chemistry, Sapienza University of Rome, Rome, Italy; NMR-based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Rozenn Esvan
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Martina Spaziante
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Gloria Taliani
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Alfredo Miccheli
- NMR-based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy; Department of Environmental Biology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
18
|
Fernández-Veledo S, Ceperuelo-Mallafré V, Vendrell J. Rethinking succinate: an unexpected hormone-like metabolite in energy homeostasis. Trends Endocrinol Metab 2021; 32:680-692. [PMID: 34301438 DOI: 10.1016/j.tem.2021.06.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023]
Abstract
There has been an explosion of interest in the signaling capacity of energy metabolites. A prime example is the Krebs cycle substrate succinate, an archetypal respiratory substrate with functions beyond energy production as an intracellular and extracellular signaling molecule. Long associated with inflammation, emerging evidence supports a key role for succinate in metabolic processes relating to energy management. As the natural ligand for SUCNR1, a G protein-coupled receptor, succinate is akin to hormones and likely functions as a reporter of metabolism and stress. In this review, we reconcile new and old observations to outline a regulatory role for succinate in metabolic homeostasis. We highlight the importance of the succinate-SUCNR1 axis in metabolic diseases as an integrator of macrophage immune response, and we discuss new metabolic functions recently ascribed to succinate in specific tissues. Because circulating succinate has emerged as a promising biomarker in chronic metabolic diseases, a better understanding of the physiopathological role of the succinate-SUCNR1 axis in metabolism might open new avenues for clinical use in patients with obesity or diabetes.
Collapse
Affiliation(s)
- Sonia Fernández-Veledo
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| | - Victòria Ceperuelo-Mallafré
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine and Surgery, University Rovira I Virgili, Tarragona, Spain
| | - Joan Vendrell
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine and Surgery, University Rovira I Virgili, Tarragona, Spain
| |
Collapse
|
19
|
Staňková P, Kučera O, Peterová E, Elkalaf M, Rychtrmoc D, Melek J, Podhola M, Zubáňová V, Červinková Z. Western Diet Decreases the Liver Mitochondrial Oxidative Flux of Succinate: Insight from a Murine NAFLD Model. Int J Mol Sci 2021; 22:6908. [PMID: 34199098 PMCID: PMC8268937 DOI: 10.3390/ijms22136908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria play an essential role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Previously, we found that succinate-activated respiration was the most affected mitochondrial parameter in mice with mild NAFLD. In this study, we focused on the role of succinate dehydrogenase (SDH) in NAFLD pathogenesis. To induce the progression of NAFLD to nonalcoholic steatohepatitis (NASH), C57BL/6J mice were fed a Western-style diet (WD) or control diet for 30 weeks. NAFLD severity was evaluated histologically and the expression of selected proteins and genes was assessed. Mitochondrial respiration was measured by high-resolution respirometry. Liver redox status was assessed using glutathione, malondialdehyde, and mitochondrial production of reactive oxygen species (ROS). Metabolomic analysis was performed by GC/MS. WD consumption for 30 weeks led to reduced succinate-activated respiration. We also observed decreased SDH activity, decreased expression of the SDH activator sirtuin 3, decreased gene expression of SDH subunits, and increased levels of hepatic succinate, an important signaling molecule. Succinate receptor 1 (SUCNR1) gene and protein expression were reduced in the livers of WD-fed mice. We did not observe signs of oxidative damage compared to the control group. The changes observed in WD-fed mice appear to be adaptive to prevent mitochondrial respiratory chain overload and massive ROS production.
Collapse
Affiliation(s)
- Pavla Staňková
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (E.P.); (M.E.); (D.R.); (J.M.); (V.Z.); (Z.Č.)
| | - Otto Kučera
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (E.P.); (M.E.); (D.R.); (J.M.); (V.Z.); (Z.Č.)
| | - Eva Peterová
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (E.P.); (M.E.); (D.R.); (J.M.); (V.Z.); (Z.Č.)
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic
| | - Moustafa Elkalaf
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (E.P.); (M.E.); (D.R.); (J.M.); (V.Z.); (Z.Č.)
- Department of Pathophysiology, Third Faculty of Medicine, Charles University Prague, Ruská 87, 100 00 Prague, Czech Republic
| | - David Rychtrmoc
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (E.P.); (M.E.); (D.R.); (J.M.); (V.Z.); (Z.Č.)
| | - Jan Melek
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (E.P.); (M.E.); (D.R.); (J.M.); (V.Z.); (Z.Č.)
| | - Miroslav Podhola
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic;
| | - Veronika Zubáňová
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (E.P.); (M.E.); (D.R.); (J.M.); (V.Z.); (Z.Č.)
- Department of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic
| | - Zuzana Červinková
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (E.P.); (M.E.); (D.R.); (J.M.); (V.Z.); (Z.Č.)
| |
Collapse
|
20
|
Bezborodkina NN, Okovityi SV, Kudryavtsev BN. Postprandial Glycogen Content Is Increased in the Hepatocytes of Human and Rat Cirrhotic Liver. Cells 2021; 10:cells10050976. [PMID: 33919385 PMCID: PMC8143336 DOI: 10.3390/cells10050976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/25/2022] Open
Abstract
Chronic hepatitises of various etiologies are widespread liver diseases in humans. Their final stage, liver cirrhosis (LC), is considered to be one of the main causes of hepatocellular carcinoma (HCC). About 80-90% of all HCC cases develop in LC patients, which suggests that cirrhotic conditions play a crucial role in the process of hepatocarcinogenesis. Carbohydrate metabolism in LC undergoes profound disturbances characterized by altered glycogen metabolism. Unfortunately, data on the glycogen content in LC are few and contradictory. In this study, the material was obtained from liver biopsies of patients with LC of viral and alcohol etiology and from the liver tissue of rats with CCl4-induced LC. The activity of glycogen phosphorylase (GP), glycogen synthase (GS), and glucose-6-phosphatase (G6Pase) was investigated in human and rat liver tissue by biochemical methods. Total glycogen and its labile and stable fractions were measured in isolated individual hepatocytes, using the cytofluorometry technique of PAS reaction in situ. The development of LC in human and rat liver was accompanied by an increase in fibrous tissue (20- and 8.8-fold), an increase in the dry mass of hepatocytes (by 25.6% and 23.7%), and a decrease in the number of hepatocytes (by 50% and 28%), respectively. The rearrangement of the liver parenchyma was combined with changes in glycogen metabolism. The present study showed a significant increase in the glycogen content in the hepatocytes of the human and the rat cirrhotic liver, by 255% and 210%, respectively. An increased glycogen content in cells of the cirrhotic liver can be explained by a decrease in glycogenolysis due to a decreased activity of G6Pase and GP.
Collapse
Affiliation(s)
- Natalia N. Bezborodkina
- Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, 199034 St. Petersburg, Russia
- Correspondence: or
| | - Sergey V. Okovityi
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical Pharmaceutical University, 197022 St. Petersburg, Russia;
| | - Boris N. Kudryavtsev
- Scientific-Clinical Centre, Pavlov First Saint Petersburg State Medical University, L’va Tolstogo str. 6-8, 197022 St. Petersburg, Russia;
| |
Collapse
|
21
|
Sheriff L, Khan RS, Saborano R, Wilkin R, Luu NT, Gunther UL, Hubscher SG, Newsome PN, Lalor PF. Alcoholic hepatitis and metabolic disturbance in female mice: a more tractable model than Nrf2-/- animals. Dis Model Mech 2020; 13:dmm046383. [PMID: 33067186 PMCID: PMC7790192 DOI: 10.1242/dmm.046383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022] Open
Abstract
Alcoholic hepatitis (AH) is the dramatic acute presentation of alcoholic liver disease, with a 15% mortality rate within 28 days in severe cases. Research into AH has been hampered by the lack of effective and reproducible murine models that can be operated under different regulatory frameworks internationally. The liquid Lieber-deCarli (LdC) diet has been used as a means of ad libitum delivery of alcohol but without any additional insult, and is associated with relatively mild liver injury. The transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) protects against oxidative stress, and mice deficient in this molecule are suggested to be more sensitive to alcohol-induced injury. We have established a novel model of AH in mice and compared the nature of liver injury in C57/BL6 wild-type (WT) versus Nrf2-/- mice. Our data showed that both WT and Nrf2-/- mice demonstrate robust weight loss, and an increase in serum transaminase, steatosis and hepatic inflammation when exposed to diet and ethanol. This is accompanied by an increase in peripheral blood and hepatic myeloid cell populations, fibrogenic response and compensatory hepatocyte regeneration. We also noted characteristic disturbances in hepatic carbohydrate and lipid metabolism. Importantly, use of Nrf2-/- mice did not increase hepatic injury responses in our hands, and female WT mice exhibited a more-reproducible response. Thus, we have demonstrated that this simple murine model of AH can be used to induce an injury that recreates many of the key human features of AH - without the need for challenging surgical procedures to administer ethanol. This will be valuable for understanding of the pathogenesis of AH, for testing new therapeutic treatments or devising metabolic approaches to manage patients whilst in medical care.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Lozan Sheriff
- Centre for Liver and Gastroenterology Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
- Birmingham National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Reenam S Khan
- Centre for Liver and Gastroenterology Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
- Birmingham National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Raquel Saborano
- Centre for Liver and Gastroenterology Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
- Birmingham National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Richard Wilkin
- Centre for Liver and Gastroenterology Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
- Birmingham National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Nguyet-Thin Luu
- Centre for Liver and Gastroenterology Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
- Birmingham National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Ulrich L Gunther
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Institute of Chemistry and Metabolomics, University of Lübeck, 23562 Lübeck, Germany
| | - Stefan G Hubscher
- Centre for Liver and Gastroenterology Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
- Birmingham National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
- Liver Unit, University Hospitals Birmingham, Birmingham B15 2TH, UK
- Department of Cellular Pathology, University Hospitals Birmingham, Birmingham B15 2TH, UK
| | - Philip N Newsome
- Centre for Liver and Gastroenterology Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
- Birmingham National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Patricia F Lalor
- Centre for Liver and Gastroenterology Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
- Birmingham National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
22
|
Lu Y, Shao M, Xiang H, Zheng P, Wu T, Ji G. Integrative transcriptomics and metabolomics explore the mechanism of kaempferol on improving nonalcoholic steatohepatitis. Food Funct 2020; 11:10058-10069. [PMID: 33135718 DOI: 10.1039/d0fo02123g] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Kaempferol has been confirmed to be effective in improving metabolic diseases such as diabetes and obesity. However, its effect and mechanism in nonalcoholic steatohepatitis (NASH) are unclear. We aim to confirm whether kaempferol could improve NASH and find the corresponding differential genes and metabolites. Transcriptomics combined with metabolomics was used to investigate the alterations in genes and metabolites expression after kaempferol treatment in mice with high-fat-diet-induced NASH. The results showed that kaempferol reduced the level of alanine transaminase (ALT), low-density lipoprotein cholesterol (LDL-C), and total cholesterol (TC) in serum and triglyceride (TG), lipid droplets, and inflammatory cell infiltration in liver. Further, 277 differentially expressed genes (DEGs) were identified through liver transcriptomics and the five most obvious DEGs were found to be CYP2b9, Cyp4a12b, Mup17, Mup7, and Mup16, which revealed that HFD induced fatty acid degradation, ribosome, and glyoxylic acid and dicarboxylic acid metabolism. Nine serum metabolites (methylcysteine, l-tryptophan, adrenic acid, d-2-hydroxyglutaric acid, tartaric acid, p-cresol sulfate, l-alanine, l-tryosine, and glutaconic acid) and 3 liver differential metabolites (gallic acid, γ-lindenic acid, and l-phenylalanine) were also identified, while the pathways were mainly involved in phenylalanine, tyrosine, and tryptophan biosynthesis; and phenylalanine metabolism. Integrating transcriptomics and metabolomics analyses indicated that kaempferol possesses the ability to improve NASH associated with energy metabolism, lipid metabolism, oxidative stress, and inflammation-related pathways. This study provides a powerful means of multiomics data integration and reveals the potent therapy and biomarkers for kaempferol.
Collapse
Affiliation(s)
- Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | | | | | | | | | | |
Collapse
|
23
|
Tang J, Xiong K, Zhang T, Han Han. Application of Metabolomics in Diagnosis and Treatment of Chronic Liver Diseases. Crit Rev Anal Chem 2020; 52:906-916. [PMID: 33146026 DOI: 10.1080/10408347.2020.1842172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic liver disease represents stepwise destruction of the liver parenchyma after chronic liver injury, which is often difficult to be diagnosed accurately. Thus, the development of specific biomarkers of chronic liver disease is important. Metabolomics is a powerful tool for biomarker exploration, which enables the exploration of disease pathogenesis or drug action mechanisms at the global metabolic level. The metabolomics workflow generally includes collection, preparation, and analysis of samples, and data processing and bioinformatics. A metabolomics study can simultaneously detect the dysfunctions in the glucose, lipid, amino-acid, and nucleotide metabolisms. Hence, it facilitates the obtaining of a better understanding of the pathogenesis of chronic liver disease and its diagnosis. Many effective drugs could reverse the change of comprehensive biochemical phenotypes induced by chronic liver disease. They can even potentially restore the normal metabolic signatures of patients. Increasingly more researchers have begun to apply metabolomics technologies to diagnose chronic liver disease and investigate the mechanism of action of effective drugs or the variations in drug responses. We are convinced that deepening the understanding of the metabolic alterations could extend their use as powerful biomarkers, promoting the more effective clinical diagnosis and treatment of chronic liver disease in the future.
Collapse
Affiliation(s)
- Jie Tang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Xiong
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Han Han
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
Gonçalves da Silva EF, Costa BP, Nassr MT, de Souza Basso B, Bastos MS, Antunes GL, Reghelin CK, Rosa Garcia MC, Schneider Levorse VG, Carlessi LP, Antunes Fernandes KH, Richter Schmitz CR, Haute GV, Luft C, Santarém E, Barbé-Tuana FM, Donadio MVF, Basso LA, Machado P, Rodrigues de Oliveira J. Therapeutic effect of uridine phosphorylase 1 (UPP1) inhibitor on liver fibrosis in vitro and in vivo. Eur J Pharmacol 2020; 890:173670. [PMID: 33098831 DOI: 10.1016/j.ejphar.2020.173670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Potassium 5-cyano-4-methyl-6-oxo-1,6-dihydropyridine-2-olate (CPBMF65) is a potent inhibitor of the uridine phosphorylase 1 (UPP1) enzyme. Its non-ionized analog has already demonstrated biological properties by reducing adverse effects caused by the chemotherapeutic 5-fluorouracil (5-FU). In addition, it has been demonstrated that uridine inhibits inflammation and fibrosis in bleomycin lung injury, decreasing collagen production. The purpose of this study was to investigate the in vitro and in vivo effects of CPBMF65 on activated hepatic stellate cells (HSC) and on carbon tetrachloride-induced liver fibrosis in mice. After incubation with CPBMF65, decreased cell proliferation and phenotype reversion were observed in vitro. In addition, CPBMF65 promoted a protective effect on tetrachloride-induced liver fibrosis in mice, demonstrated by its antifibrotic and anti-inflammatory actions. The results of the present study indicate that the UPP1 inhibitor (CPBMF65) may have potential as a novel therapeutic agent for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Elisa Feller Gonçalves da Silva
- Laboratório de Pesquisa Em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil.
| | - Bruna Pasqualotto Costa
- Laboratório de Pesquisa Em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Marcella Tornquist Nassr
- Laboratório de Pesquisa Em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Bruno de Souza Basso
- Laboratório de Pesquisa Em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Matheus Scherer Bastos
- Laboratório de Pesquisa Em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Géssica Luana Antunes
- Laboratório de Pesquisa Em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Camille Kirinus Reghelin
- Laboratório de Pesquisa Em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Maria Claudia Rosa Garcia
- Laboratório de Pesquisa Em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Vitor Giancarlo Schneider Levorse
- Laboratório de Pesquisa Em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Leonardo Pfeiff Carlessi
- Laboratório de Pesquisa Em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Krist Helen Antunes Fernandes
- Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Carine Raquel Richter Schmitz
- Programa de Pós-Graduação Em Biologia Celular: Bioquímica, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Gabriela Viegas Haute
- Laboratório de Pesquisa Em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Carolina Luft
- Laboratório de Pesquisa Em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Eliane Santarém
- Laboratório de Biotecnologia Vegetal, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Florencia María Barbé-Tuana
- Laboratório de Imunobiologia, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Márcio Vinícius Fagundes Donadio
- Laboratório de Pesquisa Em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Luiz Augusto Basso
- Centro de Pesquisas Em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), TecnoPuc, Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Pablo Machado
- Centro de Pesquisas Em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), TecnoPuc, Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratório de Pesquisa Em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| |
Collapse
|
25
|
Kärkkäinen O, Klåvus A, Voutilainen A, Virtanen J, Lehtonen M, Auriola S, Kauhanen J, Rysä J. Changes in Circulating Metabolome Precede Alcohol-Related Diseases in Middle-Aged Men: A Prospective Population-Based Study With a 30-Year Follow-Up. Alcohol Clin Exp Res 2020; 44:2457-2467. [PMID: 33067815 DOI: 10.1111/acer.14485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/16/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Heavy alcohol use has been associated with altered circulating metabolome. We investigated whether changes in the circulating metabolome precede incident diagnoses of alcohol-related diseases. METHODS This is a prospective population-based cohort study where the participants were 42- to 60-year-old males at baseline (years 1984 to 1989). Subjects who received a diagnosis for an alcohol-related disease during the follow-up were defined as cases (n = 92, mean follow-up of 13.6 years before diagnosis). Diagnoses were obtained through linkage with national health registries. We used 2 control groups: controls who self-reported similar levels of alcohol use as compared to cases at baseline (alcohol-controls, n = 92), and controls who self-reported only light drinking at baseline (control-controls, n = 90). A nontargeted metabolomics analysis of baseline serum samples was performed. RESULTS There were significant differences between the study groups in the baseline serum levels of 64 metabolites: in amino acids (e.g., glutamine [FDR-corrected q-value = 0.0012]), glycerophospholipids (e.g., lysophosphatidylcholine 16:1 [q = 0.0008]), steroids (e.g., cortisone [q = 0.00001]), and fatty acids (e.g., palmitoleic acid [q = 0.0031]). The main finding was that after controlling for baseline levels of self-reported alcohol use and the biomarker of alcohol use, gamma-glutamyl transferase, and when compared to both alcohol-control and control-control group, the alcohol-case group had lower serum levels of asparagine (Cohen's d = -0.48 [95% CI -0.78 to -0.19] and d = -0.49 [-0.78 to -0.19], respectively) and serotonin (d = -0.45 [-0.74 to -0.15], and d = -0.46 [-0.75 to -0.16], respectively), with no difference between the two control groups (asparagine d = 0.00 [-0.29 to 0.29] and serotonin d = -0.01 [-0.30 to 0.29]). CONCLUSIONS Changes in the circulating metabolome, especially lower serum levels of asparagine and serotonin, are associated with later diagnoses of alcohol-related diseases, even after adjustment for the baseline level of alcohol use.
Collapse
Affiliation(s)
- Olli Kärkkäinen
- From the, School of Pharmacy, (OK, ML, SA, JR), University of Eastern Finland, Kuopio, Finland
| | - Anton Klåvus
- Institute of Public Health and Clinical Nutrition, (AK, AV, JV, JK), University of Eastern Finland, Kuopio, Finland
| | - Ari Voutilainen
- Institute of Public Health and Clinical Nutrition, (AK, AV, JV, JK), University of Eastern Finland, Kuopio, Finland
| | - Jyrki Virtanen
- Institute of Public Health and Clinical Nutrition, (AK, AV, JV, JK), University of Eastern Finland, Kuopio, Finland
| | - Marko Lehtonen
- From the, School of Pharmacy, (OK, ML, SA, JR), University of Eastern Finland, Kuopio, Finland
| | - Seppo Auriola
- From the, School of Pharmacy, (OK, ML, SA, JR), University of Eastern Finland, Kuopio, Finland
| | - Jussi Kauhanen
- Institute of Public Health and Clinical Nutrition, (AK, AV, JV, JK), University of Eastern Finland, Kuopio, Finland
| | - Jaana Rysä
- From the, School of Pharmacy, (OK, ML, SA, JR), University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
26
|
Sougiannis AT, VanderVeen BN, Cranford TL, Enos RT, Velazquez KT, McDonald S, Bader JE, Chatzistamou I, Fan D, Murphy EA. Impact of weight loss and partial weight regain on immune cell and inflammatory markers in adipose tissue in male mice. J Appl Physiol (1985) 2020; 129:909-919. [PMID: 32853106 DOI: 10.1152/japplphysiol.00356.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Weight fluctuations are common among individuals with obesity and are associated with increased morbidity. We examined adipose tissue immune and inflammatory markers in mice following weight loss and partial weight regain. Male C57BL/6 mice were randomized into four groups (n = 8-10/group): low-fat diet for 32 wk (LFD), high-fat diet for 32 wk (HFD), LFD for 28 wk and then changed to a HFD for 4 wk (LFD→H), and HFD for 21 wk and then changed to LFD for 7 wk and then changed to HFD for 4 wk (HFD→L→H). LFD→H and HFD→L→H mice did not differ in body weight, fat mass, or fat percentage; however, these parameters were greater than in LFD (P < 0.05) but lower than in HFD (P < 0.05). HFD→L→H mice had smaller adipocytes than HFD and LFD→H (P < 0.05) but not LFD mice. Expressions of CD11c and CD8a genes were elevated in epididymal fat of HFD→L→H compared with LFD→H and LFD (P < 0.05)mice. However, CD11c was lower in HFD→L→H than in HFD mice (P < 0.05), but there was no difference in CD8a between these groups. TNFα and IFNγ expressions were increased in HFD→L→H compared with LFD and LFD→H mice (P < 0.05), although HFD→L→H had lower expression of these cytokines than HFD (P < 0.05). IL-1β was greater in HFD→L→H compared with LFD (P < 0.05) but was not different from LFD→H or HFD mice. Monocyte chemoattractant protein-1 was lower (P < 0.05) in HFD→L→H than in LFD→H. These data reinforce the importance of maintaining a body weight in the range that is recommended for optimal health to reduce immune and inflammatory perturbations associated with obesity.NEW & NOTEWORTHY We examined the immune and inflammatory status of adipose tissue in mice after they underwent weight loss followed by partial weight regain. We show an increase in selected immune cells and inflammatory mediators, in high-fat diet-fed mice that had prior exposure to a high-fat diet. Although weight fluctuations appear to exacerbate immune cell abundance and inflammation in adipose tissue, severity is less than in mice that were exposed to sustained high-fat diet feedings.
Collapse
Affiliation(s)
- Alexander T Sougiannis
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Brandon N VanderVeen
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Taryn L Cranford
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Reilly T Enos
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Kandy T Velazquez
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Sierra McDonald
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Jackie E Bader
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - E Angela Murphy
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
27
|
Liu XJ, Xie L, Du K, Liu C, Zhang NP, Gu CJ, Wang Y, Abdelmalek MF, Dong WY, Liu XP, Niu C, Yang C, Diehl AM, Wu J. Succinate-GPR-91 receptor signalling is responsible for nonalcoholic steatohepatitis-associated fibrosis: Effects of DHA supplementation. Liver Int 2020; 40:830-843. [PMID: 31903720 PMCID: PMC9990138 DOI: 10.1111/liv.14370] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/02/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Treatment of non-alcoholic steatohepatitis (NASH) is challenging, because suppressing fibrotic progression has not been achieved consistently by drug candidates currently in clinical trials. The aim of this study was to investigate the molecular interplays underlying NASH-associated fibrosis in a mouse NASH model and human specimens. METHODS Mice were divided into 4 groups: Controls; NASH (high fat/Calorie diet plus high fructose and glucose in drinking water, HFCD-HF/G) for 16 weeks; HFCD-HF/G plus docosahexaenoic acid (DHA) for 16 or 8 weeks. RESULTS Along with NASH progression, fibrotic deposition was documented in HFCD-HF/G-fed mice. Liver succinate content was significantly increased along with decreased expression of succinate dehydrogenase-A (SDH-A) in these mice; whereas, GPR-91 receptor expression was much enhanced in histology compared to control mice, and co-localized histologically with hepatic stellate cells (HSCs). Succinate content was increased in fatty acid-overloaded primary hepatocytes with significant oxidant stress and lipotoxicity. Exposure to succinate led to up-regulation of GPR-91 receptor in primary and immortalized HSCs. In contrast, suppression of GPR-91 receptor expression abolished succinate stimulatory role in GPR-91 expression and extracellular matrix production in HSCs. All these changes were minimized or abrogated by DHA supplementation in vivo or in vitro. Moreover, GPR-91 receptor expression correlates with severity of fibrosis in human NASH biopsy specimens. CONCLUSION Succinate accumulation in steatotoic hepatocytes may result in HSC activation through GPR-91 receptor signalling in NASH progression, and the cross-talk between hepatocytes and HSC through GPR-91 signalling is most likely to be the molecular basis of fibrogenesis in NASH.
Collapse
Affiliation(s)
- Xue-Jing Liu
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Li Xie
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kuo Du
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Chang Liu
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ning-Ping Zhang
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China.,Dept. of Gastroenterology & Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen-Jian Gu
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ying Wang
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Manal F Abdelmalek
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Wen-Yue Dong
- Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes of Biologic Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Science, Beijing, China
| | - Xiu-Ping Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chen Niu
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chen Yang
- Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes of Biologic Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jian Wu
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China.,Dept. of Gastroenterology & Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Guo C, Shangguan Y, Zhang M, Ruan Y, Xue G, Ma J, Yang J, Qiu L. Rosmarinic acid alleviates ethanol-induced lipid accumulation by repressing fatty acid biosynthesis. Food Funct 2020; 11:2094-2106. [PMID: 32129352 DOI: 10.1039/c9fo02357g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Recent studies have demonstrated that rosmarinic acid is a valuable natural product for treatment of alcoholic liver disease. However, the mechanisms whereby rosmarinic acid improves alcoholic liver disease remain unclear. Here we performed experiments using a non-transformed mouse hepatocyte cell line (AML12). Oil-red O staining demonstrated that rosmarinic acid reduced ethanol-induced lipid accumulation. It was shown that rosmarinic acid prevented ethanol-induced elevation of the malondialdehyde level. We also found that rosmarinic acid inhibited ethanol-induced mRNA expression of tumor necrosis factor-α and interleukin 6. Metabolomics analysis revealed that rosmarinic acid ameliorated ethanol-induced fatty acid biosynthesis in the cytoplasm. In addition, palmitic acid was a candidate biomarker in cells exposed to ethanol or ethanol plus rosmarinic acid. Rosmarinic acid prevented the ethanol-induced increase in sorbitol that is a component of the polyol pathway. Moreover, we confirmed that rosmarinic acid attenuated ethanol-induced mRNA expression of fatty acid synthase, probably by modulating the AMPK/SREBP-1c pathway. Furthermore, rosmarinic acid prevented the ethanol-induced decrease in eight metabolites that are involved in mitochondrial metabolism, including glycine and succinic acid which are the components of carnitine synthesis. These results provide a crucial insight into the molecular mechanism of rosmarinic acid in alleviating ethanol-induced injury.
Collapse
Affiliation(s)
- Chang Guo
- School of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Droździk M, Szeląg-Pieniek S, Grzegółkowska J, Łapczuk-Romańska J, Post M, Domagała P, Miętkiewski J, Oswald S, Kurzawski M. Monocarboxylate Transporter 1 (MCT1) in Liver Pathology. Int J Mol Sci 2020; 21:ijms21051606. [PMID: 32111097 PMCID: PMC7084425 DOI: 10.3390/ijms21051606] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/25/2022] Open
Abstract
Membrane monocarboxylate transporter 1 (SLC16A1/MCT1) plays an important role in hepatocyte homeostasis, as well as drug handling. However, there is no available information about the impact of liver pathology on the transporter levels and function. The study was aimed to quantify SLC16A1 mRNA (qRT-PCR) and MCT1 protein abundance (liquid chromatography–tandem mass spectrometry (LC¬¬–MS/MS)) in the livers of patients diagnosed, according to the standard clinical criteria, with hepatitis C, primary biliary cirrhosis, primary sclerosing hepatitis, alcoholic liver disease (ALD), and autoimmune hepatitis. The stage of liver dysfunction was classified according to Child–Pugh score. Downregulation of SLC16A1/MCT1 levels was observed in all liver pathology states, significantly for ALD. The progression of liver dysfunction, from Child–Pugh class A to C, involved the gradual decline in SLC16A1 mRNA and MCT1 protein abundance, reaching a clinically significant decrease in class C livers. Reduced levels of MCT1 were associated with significant intracellular lactate accumulation. The MCT1 transcript and protein did not demonstrate significant correlations regardless of the liver pathology analyzed, as well as the disease stage, suggesting posttranscriptional regulation, and several microRNAs were found as potential regulators of MCT1 abundance. MCT1 membrane immunolocalization without cytoplasmic retention was observed in all studied liver pathologies. Overall, the study demonstrates that SLC16A1/MCT1 is involved in liver pathology, especially in ALD.
Collapse
Affiliation(s)
- Marek Droździk
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland; (S.S.-P.); (J.G.); (J.Ł.-R.); (M.K.)
- Correspondence: ; Tel.: +48-91-466-1589
| | - Sylwia Szeląg-Pieniek
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland; (S.S.-P.); (J.G.); (J.Ł.-R.); (M.K.)
| | - Justyna Grzegółkowska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland; (S.S.-P.); (J.G.); (J.Ł.-R.); (M.K.)
| | - Joanna Łapczuk-Romańska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland; (S.S.-P.); (J.G.); (J.Ł.-R.); (M.K.)
| | - Mariola Post
- Department of General and Transplantation Surgery, County Hospital, 71-455 Szczecin, Poland;
| | - Pawel Domagała
- Department of Pathology, Pomeranian Medical University, 71-242 Szczecin, Poland;
| | - Janusz Miętkiewski
- Department of Pathology, Marie-Curie County Hospital, 71-455 Szczecin, Poland
| | - Stefan Oswald
- Department of Clinical Pharmacology, University Medicine of Greifswald, 17489 Greifswald, Germany;
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18051 Rostock, Germany
| | - Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland; (S.S.-P.); (J.G.); (J.Ł.-R.); (M.K.)
| |
Collapse
|
30
|
Staňková P, Kučera O, Peterová E, Lotková H, Maseko TE, Nožičková K, Červinková Z. Adaptation of Mitochondrial Substrate Flux in a Mouse Model of Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:1101. [PMID: 32046101 PMCID: PMC7036817 DOI: 10.3390/ijms21031101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/02/2020] [Accepted: 02/05/2020] [Indexed: 12/30/2022] Open
Abstract
Maladaptation of mitochondrial oxidative flux seems to be a considerable feature of nonalcoholic fatty liver disease (NAFLD). The aim of this work was to induce NAFLD in mice fed a Western-style diet (WD) and to evaluate liver mitochondrial functions. Experiments were performed on male C57BL/6J mice fed with a control diet or a WD for 24 weeks. Histological changes in liver and adipose tissue as well as hepatic expression of fibrotic and inflammatory genes and proteins were evaluated. The mitochondrial respiration was assessed by high-resolution respirometry. Oxidative stress was evaluated by measuring lipoperoxidation, glutathione, and reactive oxygen species level. Feeding mice a WD induced adipose tissue inflammation and massive liver steatosis accompanied by mild inflammation and fibrosis. We found decreased succinate-activated mitochondrial respiration and decreased succinate dehydrogenase (SDH) activity in the mice fed a WD. The oxidative flux with other substrates was not affected. We observed increased ketogenic capacity, but no impact on the capacity for fatty acid oxidation. We did not confirm the presence of oxidative stress. Mitochondria in this stage of the disease are adapted to increased substrate flux. However, inhibition of SDH can lead to the accumulation of succinate, an important signaling molecule associated with inflammation, fibrosis, and carcinogenesis.
Collapse
Affiliation(s)
- Pavla Staňková
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (H.L.); (T.E.M.); (K.N.); (Z.Č.)
| | - Otto Kučera
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (H.L.); (T.E.M.); (K.N.); (Z.Č.)
| | - Eva Peterová
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic;
| | - Halka Lotková
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (H.L.); (T.E.M.); (K.N.); (Z.Č.)
| | - Tumisang Edward Maseko
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (H.L.); (T.E.M.); (K.N.); (Z.Č.)
| | - Kateřina Nožičková
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (H.L.); (T.E.M.); (K.N.); (Z.Č.)
| | - Zuzana Červinková
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (H.L.); (T.E.M.); (K.N.); (Z.Č.)
| |
Collapse
|
31
|
Beyoğlu D, Idle JR. Metabolomic and Lipidomic Biomarkers for Premalignant Liver Disease Diagnosis and Therapy. Metabolites 2020; 10:E50. [PMID: 32012846 PMCID: PMC7074571 DOI: 10.3390/metabo10020050] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, there has been a plethora of attempts to discover biomarkers that are more reliable than α-fetoprotein for the early prediction and prognosis of hepatocellular carcinoma (HCC). Efforts have involved such fields as genomics, transcriptomics, epigenetics, microRNA, exosomes, proteomics, glycoproteomics, and metabolomics. HCC arises against a background of inflammation, steatosis, and cirrhosis, due mainly to hepatic insults caused by alcohol abuse, hepatitis B and C virus infection, adiposity, and diabetes. Metabolomics offers an opportunity, without recourse to liver biopsy, to discover biomarkers for premalignant liver disease, thereby alerting the potential of impending HCC. We have reviewed metabolomic studies in alcoholic liver disease (ALD), cholestasis, fibrosis, cirrhosis, nonalcoholic fatty liver (NAFL), and nonalcoholic steatohepatitis (NASH). Specificity was our major criterion in proposing clinical evaluation of indole-3-lactic acid, phenyllactic acid, N-lauroylglycine, decatrienoate, N-acetyltaurine for ALD, urinary sulfated bile acids for cholestasis, cervonoyl ethanolamide for fibrosis, 16α-hydroxyestrone for cirrhosis, and the pattern of acyl carnitines for NAFL and NASH. These examples derive from a large body of published metabolomic observations in various liver diseases in adults, adolescents, and children, together with animal models. Many other options have been tabulated. Metabolomic biomarkers for premalignant liver disease may help reduce the incidence of HCC.
Collapse
Affiliation(s)
| | - Jeffrey R. Idle
- Arthur G. Zupko’s Division of Systems Pharmacology and Pharmacogenomics, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, 75 Dekalb Avenue, Brooklyn, NY 11201, USA;
| |
Collapse
|
32
|
Amiel A, Tremblay-Franco M, Gautier R, Ducheix S, Montagner A, Polizzi A, Debrauwer L, Guillou H, Bertrand-Michel J, Canlet C. Proton NMR Enables the Absolute Quantification of Aqueous Metabolites and Lipid Classes in Unique Mouse Liver Samples. Metabolites 2019; 10:metabo10010009. [PMID: 31877749 PMCID: PMC7023327 DOI: 10.3390/metabo10010009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatic metabolites provide valuable information on the physiological state of an organism, and thus, they are monitored in many clinical situations. Typically, monitoring requires several analyses for each class of targeted metabolite, which is time consuming. The present study aimed to evaluate a proton nuclear magnetic resonance (1H-NMR) method for obtaining quantitative measurements of aqueous and lipidic metabolites. We optimized the extraction protocol, the standard samples, and the organic solvents for the absolute quantification of lipid species. To validate the method, we analyzed metabolic profiles in livers of mice fed three different diets. We compared our results with values obtained with conventional methods and found strong correlations. The 1H-NMR protocol enabled the absolute quantification of 29 aqueous metabolites and eight lipid classes. Results showed that mice fed a diet enriched in saturated fatty acids had higher levels of triglycerides, cholesterol ester, monounsaturated fatty acids, lactate, 3-hydroxy-butyrate, and alanine and lower levels of glucose, compared to mice fed a control diet. In conclusion, proton NMR provided a rapid overview of the main lipid classes (triglycerides, cholesterol, phospholipids, fatty acids) and the most abundant aqueous metabolites in liver.
Collapse
Affiliation(s)
- Aurélien Amiel
- Toxalim-Research Centre in Food Toxicology, Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University, F-31027 Toulouse, France; (A.A.); (M.T.-F.); (R.G.); (S.D.); (A.M.); (A.P.); (L.D.); (H.G.)
- Metatoul-AXIOM platform, National Infrastructure for Metabolomics and Fluxomics, MetaboHUB, Toxalim, INRAE UMR 1331, F-31027 Toulouse, France
| | - Marie Tremblay-Franco
- Toxalim-Research Centre in Food Toxicology, Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University, F-31027 Toulouse, France; (A.A.); (M.T.-F.); (R.G.); (S.D.); (A.M.); (A.P.); (L.D.); (H.G.)
- Metatoul-AXIOM platform, National Infrastructure for Metabolomics and Fluxomics, MetaboHUB, Toxalim, INRAE UMR 1331, F-31027 Toulouse, France
| | - Roselyne Gautier
- Toxalim-Research Centre in Food Toxicology, Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University, F-31027 Toulouse, France; (A.A.); (M.T.-F.); (R.G.); (S.D.); (A.M.); (A.P.); (L.D.); (H.G.)
- Metatoul-AXIOM platform, National Infrastructure for Metabolomics and Fluxomics, MetaboHUB, Toxalim, INRAE UMR 1331, F-31027 Toulouse, France
| | - Simon Ducheix
- Toxalim-Research Centre in Food Toxicology, Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University, F-31027 Toulouse, France; (A.A.); (M.T.-F.); (R.G.); (S.D.); (A.M.); (A.P.); (L.D.); (H.G.)
| | - Alexandra Montagner
- Toxalim-Research Centre in Food Toxicology, Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University, F-31027 Toulouse, France; (A.A.); (M.T.-F.); (R.G.); (S.D.); (A.M.); (A.P.); (L.D.); (H.G.)
| | - Arnaud Polizzi
- Toxalim-Research Centre in Food Toxicology, Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University, F-31027 Toulouse, France; (A.A.); (M.T.-F.); (R.G.); (S.D.); (A.M.); (A.P.); (L.D.); (H.G.)
| | - Laurent Debrauwer
- Toxalim-Research Centre in Food Toxicology, Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University, F-31027 Toulouse, France; (A.A.); (M.T.-F.); (R.G.); (S.D.); (A.M.); (A.P.); (L.D.); (H.G.)
- Metatoul-AXIOM platform, National Infrastructure for Metabolomics and Fluxomics, MetaboHUB, Toxalim, INRAE UMR 1331, F-31027 Toulouse, France
| | - Hervé Guillou
- Toxalim-Research Centre in Food Toxicology, Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University, F-31027 Toulouse, France; (A.A.); (M.T.-F.); (R.G.); (S.D.); (A.M.); (A.P.); (L.D.); (H.G.)
| | | | - Cécile Canlet
- Toxalim-Research Centre in Food Toxicology, Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University, F-31027 Toulouse, France; (A.A.); (M.T.-F.); (R.G.); (S.D.); (A.M.); (A.P.); (L.D.); (H.G.)
- Metatoul-AXIOM platform, National Infrastructure for Metabolomics and Fluxomics, MetaboHUB, Toxalim, INRAE UMR 1331, F-31027 Toulouse, France
- Correspondence:
| |
Collapse
|
33
|
Voutilainen T, Kärkkäinen O. Changes in the Human Metabolome Associated With Alcohol Use: A Review. Alcohol Alcohol 2019; 54:225-234. [PMID: 31087088 DOI: 10.1093/alcalc/agz030] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 12/28/2022] Open
Abstract
AIMS The metabolome refers to the functional status of the cell, organ or the whole body. Metabolomic methods measure the metabolome (metabolite profile) which can be used to examine disease progression and treatment responses. Here, our aim was to review metabolomics studies examining effects of alcohol use in humans. METHODS We performed a literature search using PubMed and Web of Science for reports on changes in the human metabolite profile associated with alcohol use; we found a total of 23 articles published before end of 2018. RESULTS Most studies had investigated plasma, serum or urine samples; only four studies had examined other sample types (liver, faeces and broncho-alveolar lavage fluid). Levels of 51 metabolites were altered in two or more of the reviewed studies. Alcohol use was associated with changes in the levels of lipids and amino acids. In general, levels of fatty acids, phosphatidylcholine diacyls and steroid metabolites tended to increase, whereas those of phosphatidylcholine acyl-alkyls and hydroxysphingomyelins declined. Common alterations in circulatory levels of amino acids included decreased levels of glutamine, and increased levels of tyrosine and alanine. CONCLUSIONS More studies, especially with a longitudinal study design, or using more varied sample materials (e.g. organs or saliva), are needed to clarify alcohol-induced diseases and alterations at a target organ level. Hopefully, this will lead to the discovery of new treatments, improved recognition of individuals at high risk and identification of those subjects who would benefit most from certain treatments.
Collapse
Affiliation(s)
- Taija Voutilainen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, Kuopio, Finland
| | - Olli Kärkkäinen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, Kuopio, Finland
| |
Collapse
|
34
|
Metabolic Signature of Hepatic Fibrosis: From Individual Pathways to Systems Biology. Cells 2019; 8:cells8111423. [PMID: 31726658 PMCID: PMC6912636 DOI: 10.3390/cells8111423] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatic fibrosis is a major cause of morbidity and mortality worldwide, as it ultimately leads to cirrhosis, which is estimated to affect up to 2% of the global population. Hepatic fibrosis is confirmed by liver biopsy, and the erroneous nature of this technique necessitates the search for noninvasive alternatives. However, current biomarker algorithms for hepatic fibrosis have many limitations. Given that the liver is the largest organ and a major metabolic hub in the body, probing the metabolic signature of hepatic fibrosis holds promise for the discovery of new markers and therapeutic targets. Regarding individual metabolic pathways, accumulating evidence shows that hepatic fibrosis leads to alterations in carbohydrate metabolism, as aerobic glycolysis is aggravated in activated hepatic stellate cells (HSCs) and the whole fibrotic liver; in amino acid metabolism, as Fischer’s ratio (branched-chain amino acids/aromatic amino acids) decreases in patients with hepatic fibrosis; and in lipid metabolism, as HSCs lose vitamin A-containing lipid droplets during transdifferentiation, and cirrhotic patients have decreased serum lipids. The current review also summarizes recent findings of metabolic alterations relevant to hepatic fibrosis based on systems biology approaches, including transcriptomics, proteomics, and metabolomics in vitro, in animal models and in humans.
Collapse
|
35
|
Chu H, Duan Y, Yang L, Schnabl B. Small metabolites, possible big changes: a microbiota-centered view of non-alcoholic fatty liver disease. Gut 2019; 68:359-370. [PMID: 30171065 DOI: 10.1136/gutjnl-2018-316307] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022]
Abstract
The spectrum of non-alcoholic fatty liver disease (NAFLD) ranges from simple hepatic steatosis, commonly associated with obesity, to non-alcoholic steatohepatitis, which can progress to fibrosis, cirrhosis and hepatocellular carcinoma. NAFLD pathophysiology involves environmental, genetic and metabolic factors, as well as changes in the intestinal microbiota and their products. Dysfunction of the intestinal barrier can contribute to NAFLD development and progression. Although there are technical limitations in assessing intestinal permeability in humans and the number of patients in these studies is rather small, fewer than half of the patients have increased intestinal permeability and translocation of bacterial products. Microbe-derived metabolites and the signalling pathways they affect might play more important roles in development of NAFLD. We review the microbial metabolites that contribute to the development of NAFLD, such as trimethylamine, bile acids, short-chain fatty acids and ethanol. We discuss the mechanisms by which metabolites produced by microbes might affect disease progression and/or serve as therapeutic targets or biomarkers for NAFLD.
Collapse
Affiliation(s)
- Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Medicine, University of California San Diego, San Diego, California, USA
| | - Yi Duan
- Department of Medicine, University of California San Diego, San Diego, California, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, San Diego, California, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
36
|
Cuykx M, Claes L, Rodrigues RM, Vanhaecke T, Covaci A. Metabolomics profiling of steatosis progression in HepaRG ® cells using sodium valproate. Toxicol Lett 2018; 286:22-30. [PMID: 29355688 DOI: 10.1016/j.toxlet.2017.12.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/12/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023]
Abstract
Non-alcoholic Fatty Liver Disease (NAFLD) is a frequently encountered Drug-Induced Liver Injury (DILI). Although this stage of the disease is reversible, it can lead to irreversible damage provoked by non-alcoholic steatohepatitis (NASH), fibrosis and cirrhosis. Therefore, the assessment of NAFLD is a paramount objective in toxicological screenings of new drug candidates. In this study, a metabolomic fingerprint of NAFLD induced in HepaRG® cells at four dosing schemes by a reference toxicant, sodium valproate (NaVPA), was obtained using liquid-liquid extraction followed by liquid chromatography and accurate mass-mass spectrometry (LC-AM/MS). The combination of a strict design of experiment with a robust detection method, applied on sodium valproate, validated the possibilities of untargeted metabolomics in hepatic toxicological research. Distinctive patterns between exposed and control cells were consistently observed, multivariate analyses selected up to 200 features of interest, revealing hallmark NAFLD-biomarkers, such as diacylglycerol and triglyceride accumulation and carnitine deficiency. Initial toxic responses show increased levels of S-adenosylmethionine and mono-acetylspermidine in combination with only a moderate increase in triglycerides. New specific markers of toxicity have been observed, such as spermidines, creatine, and acetylcholine. The described design of experiment provides a valuable metabolomics platform for mechanistic research of toxicological hazards and identified new markers for steatotic progression.
Collapse
Affiliation(s)
- Matthias Cuykx
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Leen Claes
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Robim M Rodrigues
- Research group In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium
| | - Tamara Vanhaecke
- Research group In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|