1
|
Yaker L, Saliba J, Scott LPC, Sood AK, Gujral P, Orozco-Alonso E, Yan X, Yeh A, Blank V. NFE2L3 regulates inflammation and oxidative stress-related genes in the colon. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119987. [PMID: 40360021 DOI: 10.1016/j.bbamcr.2025.119987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 04/04/2025] [Accepted: 05/07/2025] [Indexed: 05/15/2025]
Abstract
The molecular mechanisms leading to inflammatory bowel disease (IBD) are only partially understood. We investigated the role of the transcription factor NFE2L3 in a mouse model of colitis by inducing inflammation using dextran sodium sulfate (DSS). We confirmed the presence of inflammation by histological analysis and elevated levels of the inflammation marker lipocalin-2 (LCN2) in the stool. We found that Lcn2 transcript levels are significantly less elevated in Nfe2l3-/- mice than wild type mice. We further showed a reduction of Nfe2l3 mRNA, in wildtype mice upon DSS treatment. We cross referenced ENCODE ChIP data of NFE2L3 binding partners MAFF and MAFK with known IBD and DSS effectors and identified Stat1, Hmox1, and Slc7a11 as potential NFE2L3 targets. These proteins are induced during colitis to suppress the immune response, reduce oxidative stress, and trigger ferroptosis, respectively. We analyzed the candidate targets and observed an increase in their protein expression upon DSS treatment in wild type but not in Nfe2l3-/- mice. Furthermore, in the absence of DSS, we observed an increase in the basal levels of pSTAT1 and SLC7A11 proteins in Nfe2l3-/- mice. These data suggest that the NFE2L3 transcription factor primes the microenvironment towards a pro-inflammatory ready state during inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Linda Yaker
- Lady Davis Institute for Medical Research, Montreal, H3T 1E2, Canada; Department of Medicine, McGill University, Montreal, H4A 3J1, Canada
| | - James Saliba
- Lady Davis Institute for Medical Research, Montreal, H3T 1E2, Canada; Department of Medicine, McGill University, Montreal, H4A 3J1, Canada
| | - Liam P C Scott
- Lady Davis Institute for Medical Research, Montreal, H3T 1E2, Canada; Department of Medicine, McGill University, Montreal, H4A 3J1, Canada
| | - Anantpreet Kaur Sood
- Lady Davis Institute for Medical Research, Montreal, H3T 1E2, Canada; Department of Medicine, McGill University, Montreal, H4A 3J1, Canada
| | - Palak Gujral
- Lady Davis Institute for Medical Research, Montreal, H3T 1E2, Canada; Department of Medicine, McGill University, Montreal, H4A 3J1, Canada
| | - Eduardo Orozco-Alonso
- Lady Davis Institute for Medical Research, Montreal, H3T 1E2, Canada; Department of Medicine, McGill University, Montreal, H4A 3J1, Canada
| | - Xingyue Yan
- Lady Davis Institute for Medical Research, Montreal, H3T 1E2, Canada; Department of Medicine, McGill University, Montreal, H4A 3J1, Canada
| | - Adam Yeh
- Lady Davis Institute for Medical Research, Montreal, H3T 1E2, Canada; Department of Medicine, McGill University, Montreal, H4A 3J1, Canada
| | - Volker Blank
- Lady Davis Institute for Medical Research, Montreal, H3T 1E2, Canada; Department of Medicine, McGill University, Montreal, H4A 3J1, Canada; Department of Physiology, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
2
|
Jin J, Yue L, Du M, Geng F, Gao X, Zhou Y, Lu Q, Pan X. Molecular Hydrogen Therapy: Mechanisms, Delivery Methods, Preventive, and Therapeutic Application. MedComm (Beijing) 2025; 6:e70194. [PMID: 40297245 PMCID: PMC12035766 DOI: 10.1002/mco2.70194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Molecular hydrogen (H2), recognized as the smallest gas molecule, is capable of permeating cellular membranes and diffusing throughout the body. Due to its high bioavailability, H2 is considered a therapeutic gas for the treatment of various diseases. The therapeutic efficacy of hydrogen is contingent upon factors such as the administration method, duration of contact with diseased tissue, and concentration at targeted sites. H2 can be administered exogenously and is also produced endogenously within the intestinal tract. A comprehensive understanding of its delivery mechanisms and modes of action is crucial for advancing hydrogen medicine. This review highlights H₂'s mechanisms of action, summarizes its administration methods, and explores advancements in treating intestinal diseases (e.g., inflammatory bowel disease, intestinal ischemia-reperfusion, colorectal cancer). Additionally, its applications in managing other diseases are discussed. Finally, the challenges associated with its clinical application and potential solutions are explored. We propose that current delivery challenges faced by H2 can be effectively addressed through the use of nanoplatforms; furthermore, interactions between hydrogen and gut microbiota may provide insights into its mechanisms for treating intestinal diseases. Future research should explore the synergistic effects of H2 in conjunction with conventional therapies and develop personalized treatment plans to achieve precision medicine.
Collapse
Affiliation(s)
- Jiayi Jin
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Lijun Yue
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Maoru Du
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Feng Geng
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Xue Gao
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Yuming Zhou
- Department of Laboratory MedicineYantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Qianqian Lu
- Department of OncologyYantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Xiaohong Pan
- School of PharmacyBinzhou Medical UniversityYantaiChina
| |
Collapse
|
3
|
Kuang X, Liang Z, Xia Y, Shan M, Hao Y, Liu H, Wang Z, He Q, Xia C, Feng C, Chang G, Wang Y. Hydrogen-Rich Saline Combined With Vacuum Sealing Drainage Promotes Wound Healing by Altering Biotin Metabolism. J Cell Mol Med 2025; 29:e70292. [PMID: 39804806 PMCID: PMC11728484 DOI: 10.1111/jcmm.70292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 11/22/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Impaired wound healing affects the life quality of patients and causes a substantial financial burden. Hydrogen-rich medium is reported to have antioxidant and anti-inflammatory effects. However, the role of hydrogen-rich saline (HRS) in cutaneous wound healing remains largely unexplored, especially by metabolomics. Thus, untargeted metabolomics profiling was analysed to study the effects and mechanism of HRS combined with vacuum sealing drainage (VSD) in a rabbit full-thickness wound model. Our results indicated that the combination treatment of HRS and VSD could accelerate wound healing. In vitro experiments further confirmed its effects on HaCaT keratinocytes. We found that 45 metabolites were significantly changed between the VSD + HRS group and the VSD + saline-treated group. Pathway enrichment analysis indicated that biotin metabolism was the potential target pathway. The biochemical interpretation analysis demonstrated that combining HRS and VSD might enhance mitochondrial function, ATP synthesis, and GSH homeostasis by altering biotin metabolism. The detection of representative indicators of oxidative stress supported the critical metabolic pathway analysis as well. In summary, VSD combined with HRS might provide a new strategy to enhance wound healing.
Collapse
Affiliation(s)
- Xinwen Kuang
- Department of Plastic Surgery, Peking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Zhengyun Liang
- Department of Plastic Surgery, Peking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
- Department of Dermatology, Shenzhen Center for Chronic Disease ControlShenzhen Institute of DermatologyShenzhenChina
| | - Yijun Xia
- Department of Plastic Surgery, Peking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Mengjie Shan
- Department of Plastic Surgery, Peking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Yan Hao
- Department of Plastic Surgery, Peking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Hao Liu
- Department of Plastic Surgery, Peking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Zhi Wang
- Department of Plastic Surgery, Peking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Qianjun He
- Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Chao Xia
- Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Cheng Feng
- Department of Plastic Surgery, Peking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Guojing Chang
- Department of Plastic Surgery, Peking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
4
|
Xavier LEMDS, Reis TCG, Martins ASDP, Santos JCDF, Bueno NB, Goulart MOF, Moura FA. Antioxidant Therapy in Inflammatory Bowel Diseases: How Far Have We Come and How Close Are We? Antioxidants (Basel) 2024; 13:1369. [PMID: 39594511 PMCID: PMC11590966 DOI: 10.3390/antiox13111369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Inflammatory bowel diseases (IBD) pose a growing public health challenge with unclear etiology and limited efficacy of traditional pharmacological treatments. Alternative therapies, particularly antioxidants, have gained scientific interest. This systematic review analyzed studies from MEDLINE, Cochrane, Web of Science, EMBASE, and Scopus using keywords like "Inflammatory Bowel Diseases" and "Antioxidants." Initially, 925 publications were identified, and after applying inclusion/exclusion criteria-covering studies from July 2015 to June 2024 using murine models or clinical trials in humans and evaluating natural or synthetic substances affecting oxidative stress markers-368 articles were included. This comprised 344 animal studies and 24 human studies. The most investigated antioxidants were polyphenols and active compounds from medicinal plants (n = 242; 70.3%). The review found a strong link between oxidative stress and inflammation in IBD, especially in studies on nuclear factor kappa B and nuclear factor erythroid 2-related factor 2 pathways. However, it remains unclear whether inflammation or oxidative stress occurs first in IBD. Lipid peroxidation was the most studied oxidative damage, followed by DNA damage. Protein damage was rarely investigated. The relationship between antioxidants and the gut microbiota was examined in 103 animal studies. Human studies evaluating oxidative stress markers were scarce, reflecting a major research gap in IBD treatment. PROSPERO registration: CDR42022335357 and CRD42022304540.
Collapse
Affiliation(s)
| | | | - Amylly Sanuelly da Paz Martins
- Postgraduate Studies at the Northeast Biotechnology Network (RENORBIO), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| | - Juliana Célia de Farias Santos
- Postgraduate Degree in Medical Sciences (PPGCM/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| | - Nassib Bezerra Bueno
- Postgraduate Degree in Nutrition (PPGNUT), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (L.E.M.d.S.X.); (N.B.B.)
| | - Marília Oliveira Fonseca Goulart
- Postgraduate Studies at the Northeast Biotechnology Network (RENORBIO), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
- Institute of Chemistry and Biotechnology (IQB/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil
| | - Fabiana Andréa Moura
- Postgraduate Degree in Nutrition (PPGNUT), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (L.E.M.d.S.X.); (N.B.B.)
- Postgraduate Degree in Medical Sciences (PPGCM/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| |
Collapse
|
5
|
Li J, Huang G, Wang J, Wang S, Yu Y. Hydrogen Regulates Ulcerative Colitis by Affecting the Intestinal Redox Environment. J Inflamm Res 2024; 17:933-945. [PMID: 38370464 PMCID: PMC10871146 DOI: 10.2147/jir.s445152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
The redox balance in the intestine plays an important role in maintaining intestinal homeostasis, and it is closely related to the intestinal mucosal barrier, intestinal inflammation, and the gut microbiota. Current research on the treatment of ulcerative colitis has focused on immune disorders, excessive inflammation, and oxidative stress. However, an imbalance in intestinal redox reaction plays a particularly critical role. Hydrogen is produced by some anaerobic bacteria via hydrogenases in the intestine. Increasing evidence suggests that hydrogen, as an inert gas, is crucial for immunity, inflammation, and oxidative stress and plays a protective role in ulcerative colitis. Hydrogen maintains the redox state balance in the intestine in ulcerative colitis and reduces damage to intestinal epithelial cells by exerting its selective antioxidant ability. Hydrogen also regulates the intestinal flora, reduces the harmful effects of bacteria on the intestinal epithelial barrier, promotes the restoration of normal anaerobic bacteria in the intestines, and ultimately improves the integrity of the intestinal epithelial barrier. The present review focuses on the therapeutic mechanisms of hydrogen-targeting ulcerative colitis.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Gang Huang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Juexin Wang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Sui Wang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Yanbo Yu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
6
|
Liu H, Kang X, Ren P, Kuang X, Yang X, Yang H, Shen X, Yan H, Kang Y, Zhang F, Wang X, Guo L, Fan W. Hydrogen gas ameliorates acute alcoholic liver injury via anti-inflammatory and antioxidant effects and regulation of intestinal microbiota. Int Immunopharmacol 2023; 120:110252. [PMID: 37196556 DOI: 10.1016/j.intimp.2023.110252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
Alcoholic liver disease (ALD) is a globally prevalent liver-related disorder characterized by severe oxidative stress and inflammatory liver damage, for which no effective treatment is currently available. Hydrogen gas (H2) has been demonstrated to be an efficient antioxidant in various diseases in animals as well as humans. However, the protective effects of H2 on ALD and its underlying mechanisms remain to be elucidated. The present study demonstrated that H2 inhalation ameliorated liver injury, and attenuated liver oxidative stress, inflammation, and steatosis in an ALD mouse model. Moreover, H2 inhalation improved gut microbiota, including increasing the abundance of Lachnospiraceae and Clostridia, and decreasing the abundance of Prevotellaceae and Muribaculaceae, and also improved intestinal barrier integrity. Mechanistically, H2 inhalation blocked activation of the LPS/TLR4/NF-κB pathway in liver. Notably, it was further demonstrated that the reshaped gut microbiota may accelerate alcohol metabolism, regulate lipid homeostasis and maintain immune balance by bacterial functional potential prediction (PICRUSt). Fecal microbiota transplantation from mice that had undergone H2 inhalation significantly alleviated acute alcoholic liver injury. In summary, the present study showed that H2 inhalation alleviated liver injury by reducing oxidative stress and inflammation, while also improving intestinal flora and enhancing the intestinal barrier. H2 inhalation may serve as an effective intervention for preventing and treating ALD in a clinical context.
Collapse
Affiliation(s)
- Haixia Liu
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Xing Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Peng Ren
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Xiaoyu Kuang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Xiaodan Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Hao Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Xiaorong Shen
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Huan Yan
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Yongbo Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Fan Zhang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Xiaohui Wang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China; Laboratory of Morphology, Shanxi Medical University, Jinzhong 030619, China
| | - Linzhi Guo
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China; Laboratory of Morphology, Shanxi Medical University, Jinzhong 030619, China
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China.
| |
Collapse
|
7
|
Rahman MH, Jeong ES, You HS, Kim CS, Lee KJ. Redox-Mechanisms of Molecular Hydrogen Promote Healthful Longevity. Antioxidants (Basel) 2023; 12:988. [PMID: 37237854 PMCID: PMC10215238 DOI: 10.3390/antiox12050988] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Age-related diseases represent the largest threat to public health. Aging is a degenerative, systemic, multifactorial and progressive process, coupled with progressive loss of function and eventually leading to high mortality rates. Excessive levels of both pro- and anti-oxidant species qualify as oxidative stress (OS) and result in damage to molecules and cells. OS plays a crucial role in the development of age-related diseases. In fact, damage due to oxidation depends strongly on the inherited or acquired defects of the redox-mediated enzymes. Molecular hydrogen (H2) has recently been reported to function as an anti-oxidant and anti-inflammatory agent for the treatment of several oxidative stress and aging-related diseases, including Alzheimer's, Parkinson's, cancer and osteoporosis. Additionally, H2 promotes healthy aging, increases the number of good germs in the intestine that produce more intestinal hydrogen and reduces oxidative stress through its anti-oxidant and anti-inflammatory activities. This review focuses on the therapeutic role of H2 in the treatment of neurological diseases. This review manuscript would be useful in knowing the role of H2 in the redox mechanisms for promoting healthful longevity.
Collapse
Affiliation(s)
- Md. Habibur Rahman
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea (C.-S.K.)
| | - Eun-Sook Jeong
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea (C.-S.K.)
| | - Hae Sun You
- Department of Anesthesiology & Pain Medicine, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Cheol-Su Kim
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea (C.-S.K.)
| | - Kyu-Jae Lee
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea (C.-S.K.)
| |
Collapse
|
8
|
Hancock JT. Editorial for Special Issue: “Production and Role of Molecular Hydrogen in Plants”. PLANTS 2022; 11:plants11152047. [PMID: 35956525 PMCID: PMC9370376 DOI: 10.3390/plants11152047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
Abstract
Molecular hydrogen (H2) is an extremely small molecule, which is relatively insoluble in water and relatively inert [...]
Collapse
Affiliation(s)
- John T Hancock
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| |
Collapse
|
9
|
Song L, Zhang Y, Zhu C, Ding X, Yang L, Yan H. Hydrogen-rich water partially alleviate inflammation, oxidative stress and intestinal flora dysbiosis in DSS-induced chronic ulcerative colitis mice. Adv Med Sci 2022; 67:29-38. [PMID: 34784538 DOI: 10.1016/j.advms.2021.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/27/2021] [Accepted: 10/26/2021] [Indexed: 11/01/2022]
Abstract
PURPOSE Oxidative damage and intestinal flora dysbiosis play important roles in the progression of chronic ulcerative colitis (UC). This study explored the effect and mechanism of molecular hydrogen in chronic UC. MATERIALS AND METHODS Male C57BL/6 mice (19.6 ± 0.4 g, 7 weeks) were randomly divided into 3 groups: normal control (NC) group, UC (Dextran Sulfate Sodium, DSS) group, and hydrogen-rich water (HRW, 0.8 ppm)-treated UC (DSS + HRW) group. Mice in the DSS treatment group were treated with DSS for the following 3 cycles to establish chronic UC model: the first 2 cycles consisted of 2.5% DSS for 5 days, followed by drinking water for 16 days, and a third cycle consisted of 2% DSS for 4 days, followed by drinking water for 10 days. The mice in the DSS + HRW group were administered HRW daily throughout the experiment. RESULTS The mice in the DSS groups developed typical clinical signs of colitis. HRW treatment partially ameliorated colitis symptoms, improved histopathological changes, significantly increased glutathione (GSH) concentration and decreased TNF-α level. Notably, HRW treatment significantly inhibited the growth of Enterococcus faecalis, Clostridium perfringens and Bacteroides fragilis (P < 0.05 vs. DSS group), with the relative abundance that was close to the levels in the NC group. Microarray analysis revealed that 252 genes were significantly modified after HRW treatment compared with those in the DSS treatment alone group, and 17 genes were related to inflammation, including 9 interferon-stimulated genes (ISGs). CONCLUSIONS Hydrogen-rich water partially alleviates inflammation, oxidative stress and intestinal flora dysbiosis in DSS-induced chronic UC mice.
Collapse
Affiliation(s)
- Lihua Song
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chuang Zhu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinwen Ding
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Yang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongli Yan
- Department of Reproductive Medicine Center, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
10
|
Ge L, Qi J, Shao B, Ruan Z, Ren Y, Sui S, Wu X, Sun X, Liu S, Li S, Xu C, Song W. Microbial hydrogen economy alleviates colitis by reprogramming colonocyte metabolism and reinforcing intestinal barrier. Gut Microbes 2022; 14:2013764. [PMID: 35025709 PMCID: PMC8759589 DOI: 10.1080/19490976.2021.2013764] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
With the rapid development and high therapeutic efficiency and biosafety of gas-involving theranostics, hydrogen medicine has been particularly outstanding because hydrogen gas (H2), a microbial-derived gas, has potent anti-oxidative, anti-apoptotic, and anti-inflammatory activities in many disease models. Studies have suggested that H2-enriched saline/water alleviates colitis in murine models; however, the underlying mechanism remains poorly understood. Despite evidence demonstrating the importance of the microbial hydrogen economy, which reflects the balance between H2-producing (hydrogenogenic) and H2-utilizing (hydrogenotrophic) microbes in maintaining colonic mucosal ecosystems, minimal efforts have been exerted to manipulate relevant H2-microbe interactions for colonic health. Consistent with previous studies, we found that administration of hydrogen-rich saline (HS) ameliorated dextran sulfate sodium-induced acute colitis in a mouse model. Furthermore, we demonstrated that HS administration can increase the abundance of intestinal-specific short-chain fatty acid (SCFA)-producing bacteria and SCFA production, thereby activating the intracellular butyrate sensor peroxisome proliferator-activated receptor γ signaling and decreasing the epithelial expression of Nos2, consequently promoting the recovery of the colonic anaerobic environment. Our results also indicated that HS administration ameliorated disrupted intestinal barrier functions by modulating specific mucosa-associated mucolytic bacteria, leading to substantial inhibition of opportunistic pathogenic Escherichia coli expansion as well as a significant increase in the expression of interepithelial tight junction proteins and a decrease in intestinal barrier permeability in mice with colitis. Exogenous H2 reprograms colonocyte metabolism by regulating the H2-gut microbiota-SCFAs axis and strengthens the intestinal barrier by modulating specific mucosa-associated mucolytic bacteria, wherein improved microbial hydrogen economy alleviates colitis.
Collapse
Affiliation(s)
- Li Ge
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China,College of Basic Medical Sciences & Institute of Basic Medical Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Qi
- College of Basic Medical Sciences & Institute of Basic Medical Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bo Shao
- College of Basic Medical Sciences & Institute of Basic Medical Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenzhen Ruan
- College of Basic Medical Sciences & Institute of Basic Medical Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yueran Ren
- College of Basic Medical Sciences & Institute of Basic Medical Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shujing Sui
- Department of Gastroenterology, The Affiliated Taishan Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Xinpei Wu
- College of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xueqiang Sun
- College of Basic Medical Sciences & Institute of Basic Medical Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shuman Liu
- College of Basic Medical Sciences & Institute of Basic Medical Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Sha Li
- College of Basic Medical Sciences & Institute of Basic Medical Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Changqing Xu
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Wengang Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China,College of Basic Medical Sciences & Institute of Basic Medical Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China,CONTACT Wengang Song Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jingshi Road 16766, Jinan, Shandong250014, China; College of Basic Medical Sciences & Institute of Basic Medical Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao Road 6699, Jinan, Shandong 250000, China
| |
Collapse
|
11
|
Craig CF, Filippone RT, Stavely R, Bornstein JC, Apostolopoulos V, Nurgali K. Neuroinflammation as an etiological trigger for depression comorbid with inflammatory bowel disease. J Neuroinflammation 2022; 19:4. [PMID: 34983592 PMCID: PMC8729103 DOI: 10.1186/s12974-021-02354-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with inflammatory bowel disease (IBD) suffer from depression at higher rates than the general population. An etiological trigger of depressive symptoms is theorised to be inflammation within the central nervous system. It is believed that heightened intestinal inflammation and dysfunction of the enteric nervous system (ENS) contribute to impaired intestinal permeability, which facilitates the translocation of intestinal enterotoxins into the blood circulation. Consequently, these may compromise the immunological and physiological functioning of distant non-intestinal tissues such as the brain. In vivo models of colitis provide evidence of increased blood–brain barrier permeability and enhanced central nervous system (CNS) immune activity triggered by intestinal enterotoxins and blood-borne inflammatory mediators. Understanding the immunological, physiological, and structural changes associated with IBD and neuroinflammation may aid in the development of more tailored and suitable pharmaceutical treatment for IBD-associated depression.
Collapse
Affiliation(s)
- Colin F Craig
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| | - Rhiannon T Filippone
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| | - Rhian Stavely
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia.,Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Joel C Bornstein
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Vasso Apostolopoulos
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia.,Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Kulmira Nurgali
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia. .,Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia. .,Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia. .,Institute for Health and Sport, Victoria University, Level 4 Research Labs, Western Centre for Health Research and Education, Sunshine Hospital, 176 Furlong Road, St Albans, VIC, 3021, Australia.
| |
Collapse
|
12
|
Abstract
Since the late 18th century, molecular hydrogen (H2) has been shown to be well tolerated, firstly in animals, and then in humans. However, although research into the beneficial effects of molecular hydrogen in both plant and mammalian physiology is gaining momentum, the idea of utilising this electrochemically neutral and non-polar diatomic compound for the benefit of health has yet to be widely accepted by regulatory bodies worldwide. Due to the precise mechanisms of H2 activity being as yet undefined, the lack of primary target identification, coupled with difficulties regarding administration methods (e.g., dosage and dosage frequencies, long-term effects of treatment, and the patient’s innate antioxidant profile), there is a requirement for H2 research to evidence how it can reasonably and most effectively be incorporated into medical practice. This review collates and assesses the current information regarding the many routes of molecular hydrogen administration in animals and humans, whilst evaluating how targeted delivery methods could be integrated into a modern healthcare system.
Collapse
|
13
|
LeBaron TW, Asgharzadeh F, Khazei M, Kura B, Tarnava A, Slezak J. Molecular hydrogen is comparable to sulfasalazine as a treatment for DSS-induced colitis in mice. EXCLI JOURNAL 2021; 20:1106-1117. [PMID: 34345230 PMCID: PMC8326503 DOI: 10.17179/excli2021-3762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/15/2021] [Indexed: 01/03/2023]
Abstract
Colitis is an inflammatory condition of the bowels associated with abdominal pain, diarrhea, fatigue, and fever. Its etiology is multifactorial but related to the overproduction of inflammatory and oxidative mediators. There is currently no cure for this disease, and drugs used to manage it often have deleterious side effects. H2 is recognized as having anti-inflammatory and antioxidant effects, which may qualify it as a novel therapeutic for colitis. We induced an acute model of colitis in mice by administering dextran sulfate sodium (DSS) in drinking water for seven days. Mice were divided into five groups (n=6); normal, colitis, H2-treated colitis, sulfasalazine-treated colitis, and H2 plus sulfasalazine-treated colitis. From days three to ten, mice were given H2, sulfasalazine, or both. H2 was administered via dissolving a hydrogen-generating tablet in water to make hydrogen-rich water (HRW), which was ingested ad libitum and via oral gavage (200 μL). The Disease Activity Index (DAI), histological changes, and markers of inflammation and oxidative stress were assessed. HRW and sulfasalazine significantly improved bodyweight, DAI, mucosal damage, crypt loss, and spleen weight compared to control. Both treatments significantly decreased inflammation (high-sensitive C-reactive protein) and restored redox balance (total thiol, superoxide dismutase, catalase activity). There was a trend for the combination treatment to be more effective than either HRW or sulfasalazine alone. Furthermore, HRW tended to be as effective as, and often more effective than, sulfasalazine. HRW may serve as a therapeutic for ameliorating DSS-induced colitis in mice.
Collapse
Affiliation(s)
- Tyler W LeBaron
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Faculty of Natural Sciences of Comenius University, 841 04 Bratislava, Slovak Republic.,Molecular Hydrogen Institute, Utah, USA.,Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, 84720, Utah, USA
| | - Fereshteh Asgharzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Branislav Kura
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Faculty of Natural Sciences of Comenius University, 841 04 Bratislava, Slovak Republic
| | - Alex Tarnava
- Drink HRW and Natural Wellness Now Health Products Inc., Unit C 60, Braid St, New Westminster, BC, Canada
| | - Jan Slezak
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Faculty of Natural Sciences of Comenius University, 841 04 Bratislava, Slovak Republic
| |
Collapse
|
14
|
Gulburun MA, Karabulut R, Turkyilmaz Z, Eryilmaz S, Kaya C, Arslan B, Gulbahar O, Poyraz A, Sonmez K. Protective effects of hydrogen rich saline solution on ventral penile mathieu type flap with penile tourniquet application in rats. J Pediatr Urol 2021; 17:292.e1-292.e7. [PMID: 33608226 DOI: 10.1016/j.jpurol.2021.01.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/17/2020] [Accepted: 01/31/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Penile tourniquet (Pt) application aims to work in a bloodless field in penile surgery. When the tourniquet is released, reperfusion injury occurs with the resumption of blood flow. Molecular hydrogen can easily attach to biomembranes and enter cytosol, mitochondria and other organelles of the cell and convert the formed OH- to H₂O to prevent cell and tissue damage. AIM We investigated the effects of hydrogen rich saline solution (HRSS) on penile Mathieu type flap tissue with Pt application in rats. STUDY DESIGN Thirty-six Wistar-albino male rats were randomly divided into six groups. No operations were performed in the Sham group. Ventral penile Mathieu type flap was prepared and Pt was applied to the root of the penis with a plastic band in other groups. Pt was applied 10 and 30 min in the PT1⁰ and PT³⁰ groups. HRSS was injected intraperitoneally (ip) 5 ml/kg just before Pt was released in the HRSS1⁰ and HRSS³⁰ groups. In the HRSSB group, HRSS was injected 1 h before 10 min of Pt application. At the 4th hour of experiments the rats were sacrificed and tissue samples were taken for biochemical and histopathological studies. Tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), myeloperoxidase (MPO), malondialdehyde (MDA) and glutathione (GSH) levels were determined in the penile tissue. The results were analyzed with one-way ANOVA and Pearson's Chi-Squared test. RESULTS Tissue MDA, MPO, IL-6 and TNF-α values were significantly lower in all HRSS groups compared to PT1⁰ and PT³⁰ groups. Tissue GSH levels of HRSS groups were higher compared to PT groups. Histopathologically, inflammation was found to be higher in PT groups compared to HRSS groups. Interestingly, in the HRSSB group with HRSS administration prior to Pt, the damage was less in grade, but not statistically different than the other HRSS groups (p > 0.05). DISCUSSION In previous studies, damage in histopathological examinations after Pt could only be demonstrated long after tourniquet applications such as 24 h and with longer duration of Pt such as 30 min. Structural changes in different Pt application times could be demonstrated at 60 min by electron microscopy and 48 h by light microscopy. In this study, the histopathological effect of Pt application could be demonstrated at the 4th hour after release and HRSS was observed to reduce the damage histopathologically as well as biochemically with its anti-inflammatory and antioxidant effects. It was observed that administration of HRSS either before or following Pt did not cause an alteration statistically. CONCLUSION HRSS reduces tissue oxidative stress and inflammation on the flap tissue and has a protective effect in Pt applied to the hypospadias model created with a penile flap.
Collapse
Affiliation(s)
- Merve Altin Gulburun
- Gazi University Faculty of Medicine, Departments of Pediatric Surgery, Biochemistry Pathology, Ankara, Turkey
| | - Ramazan Karabulut
- Gazi University Faculty of Medicine, Departments of Pediatric Surgery, Biochemistry Pathology, Ankara, Turkey.
| | - Zafer Turkyilmaz
- Gazi University Faculty of Medicine, Departments of Pediatric Surgery, Biochemistry Pathology, Ankara, Turkey
| | - Sibel Eryilmaz
- Gazi University Faculty of Medicine, Departments of Pediatric Surgery, Biochemistry Pathology, Ankara, Turkey
| | - Cem Kaya
- Gazi University Faculty of Medicine, Departments of Pediatric Surgery, Biochemistry Pathology, Ankara, Turkey
| | | | | | | | - Kaan Sonmez
- Gazi University Faculty of Medicine, Departments of Pediatric Surgery, Biochemistry Pathology, Ankara, Turkey
| |
Collapse
|
15
|
Ohsawa I. Biological Responses to Hydrogen Molecule and its Preventive Effects on Inflammatory Diseases. Curr Pharm Des 2021; 27:659-666. [PMID: 32981496 DOI: 10.2174/1381612826666200925123510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
Because multicellular organisms do not have hydrogenase, H2 has been considered to be biologically inactive in these species, and enterobacteria to be largely responsible for the oxidation of H2 taken into the body. However, we showed previously that inhalation of H2 markedly suppresses brain injury induced by focal ischemia-reperfusion by buffering oxidative stress. Although the reaction constant of H2 with hydroxyl radical in aqueous solution is two to three orders of magnitude lower than that of conventional antioxidants, we showed that hydroxyl radical generated by the Fenton reaction reacts with H2 at room temperature without a catalyst. Suppression of hydroxyl radical by H2 has been applied in ophthalmic surgery. However, many of the anti- inflammatory and other therapeutic effects of H2 cannot be completely explained by its ability to scavenge reactive oxygen species. H2 administration is protective in several disease models, and preculture in the presence of H2 suppresses oxidative stress-induced cell death. Specifically, H2 administration induces mitochondrial oxidative stress and activates Nrf2; this phenomenon, in which mild mitochondrial stress leaves the cell less susceptible to subsequent perturbations, is called mitohormesis. Based on these findings, we conclude that crosstalk between antioxidative stress pathways and the anti-inflammatory response is the most important molecular mechanism involved in the protective function of H2, and that regulation of the immune system underlies H2 efficacy. For further medical applications of H2, it will be necessary to identify the biomolecule on which H2 first acts.
Collapse
Affiliation(s)
- Ikuroh Ohsawa
- Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
16
|
|
17
|
Hancock JT, Russell G. Downstream Signalling from Molecular Hydrogen. PLANTS (BASEL, SWITZERLAND) 2021; 10:367. [PMID: 33672953 PMCID: PMC7918658 DOI: 10.3390/plants10020367] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/23/2022]
Abstract
Molecular hydrogen (H2) is now considered part of the suite of small molecules that can control cellular activity. As such, H2 has been suggested to be used in the therapy of diseases in humans and in plant science to enhance the growth and productivity of plants. Treatments of plants may involve the creation of hydrogen-rich water (HRW), which can then be applied to the foliage or roots systems of the plants. However, the molecular action of H2 remains elusive. It has been suggested that the presence of H2 may act as an antioxidant or on the antioxidant capacity of cells, perhaps through the scavenging of hydroxyl radicals. H2 may act through influencing heme oxygenase activity or through the interaction with reactive nitrogen species. However, controversy exists around all the mechanisms suggested. Here, the downstream mechanisms in which H2 may be involved are critically reviewed, with a particular emphasis on the H2 mitigation of stress responses. Hopefully, this review will provide insight that may inform future research in this area.
Collapse
Affiliation(s)
- John T. Hancock
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK;
| | | |
Collapse
|
18
|
Hu Q, Zhou Y, Wu S, Wu W, Deng Y, Shao A. Molecular hydrogen: A potential radioprotective agent. Biomed Pharmacother 2020; 130:110589. [PMID: 32763820 DOI: 10.1016/j.biopha.2020.110589] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, many studies have shown that hydrogen has therapeutic and preventive effects on various diseases. Its selective antioxidant properties were well noticed. Most of the ionizing radiation-induced damage is caused by hydroxyl radicals (OH) from radiolysis of H2O. Since hydrogen can mitigate such damage through multiple mechanisms, it presents noteworthy potential as a novel radio-protective agent. This review analyses possible mechanisms for hydrogen's radioprotective properties and effective delivery methods. We also look into details of vitro and vivo studies for hydrogen's radioprotective effects, and clinical practices. We conclude that hydrogen has good potential in radio-protection, with evidence that warrants greater research efforts in this field.
Collapse
Affiliation(s)
- Qiongge Hu
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shijie Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Wu
- Department of Medical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
19
|
Funes SC, Rios M, Fernández-Fierro A, Covián C, Bueno SM, Riedel CA, Mackern-Oberti JP, Kalergis AM. Naturally Derived Heme-Oxygenase 1 Inducers and Their Therapeutic Application to Immune-Mediated Diseases. Front Immunol 2020; 11:1467. [PMID: 32849503 PMCID: PMC7396584 DOI: 10.3389/fimmu.2020.01467] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase (HO) is the primary antioxidant enzyme involved in heme group degradation. A variety of stimuli triggers the expression of the inducible HO-1 isoform, which is modulated by its substrate and cellular stressors. A major anti-inflammatory role has been assigned to the HO-1 activity. Therefore, in recent years HO-1 induction has been employed as an approach to treating several disorders displaying some immune alterations components, such as exacerbated inflammation or self-reactivity. Many natural compounds have shown to be effective inductors of HO-1 without cytotoxic effects; among them, most are chemicals present in plants used as food, flavoring, and medicine. Here we discuss some naturally derived compounds involved in HO-1 induction, their impact in the immune response modulation, and the beneficial effect in diverse autoimmune disorders. We conclude that the use of some compounds from natural sources able to induce HO-1 is an attractive lifestyle toward promoting human health. This review opens a new outlook on the investigation of naturally derived HO-1 inducers, mainly concerning autoimmunity.
Collapse
Affiliation(s)
- Samanta C Funes
- Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariana Rios
- Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ayleen Fernández-Fierro
- Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Covián
- Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Departamento de Ciencias Biológicas, Millenium Institute on Immunolgy and Immunotherapy, Facultad Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Juan Pablo Mackern-Oberti
- Instituto de Medicina y Biología Experimental de Cuyo, IMBECU CCT Mendoza- CONICET, Mendoza, Argentina.,Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
20
|
Shen N, Wang Z, Wang C, Zhang J, Liu C. Methane Alleviates Inflammation and Apoptosis of Dextran Sulfate Sodium-Induced Inflammatory Bowel Diseases by Inhibiting Toll-Like Receptor 4 (TLR4)/Myeloid Differentiation Factor 88 (MyD88)/Nuclear Translocation of Nuclear Factor-κB (NF-κB) and Endoplasmic Reticulum Stress Pathways in Mice. Med Sci Monit 2020; 26:e922248. [PMID: 32500859 PMCID: PMC7297035 DOI: 10.12659/msm.922248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Inflammatory bowel diseases (IBDs) are chronic idiopathic diseases with increased occurrence and recurrence rates. The aim of this study was to explore whether methane-rich saline (MRS) would be beneficial to IBD. Material/Methods Dextran sulfate sodium (DSS) was utilized to establish an IBD model. Male C57BL/6J mice were randomly grouped as follows: the control group, the DSS+NS group, the DSS+5-ASA group, the DSS+MRS (1) and DSS+MRS (10) groups. Seven days after model induction, blood and colon tissues were collected to assess the treatment effects. Results The DSS+MRS (10) group showed obviously reduced weight loss, disease activity index, and spleen index. The isolated colon samples had a notably longer length, less thickness and weight, and better macroscopic score with MRS treatment compared with the DSS+NS group. Additionally, assessment of morphological impairment revealed a milder and lower microscopic score in the DSS+MRS (10) group, consistent with the myeloperoxidase (MPO) results. The inflammation-related molecules levels were dramatically reduced by MRS. MRS also significantly reduced oxidative stress related proteins. In addition, apoptotic cells were visually decreased in the DSS+MRS (10) group, in which the pro-apoptotic molecules Bax and cleaved caspase-3 were reduced, whereas the level of Bcl-2 was increased. Furthermore, MRS markedly decreased the TLR4, MyD88, p-NF-κB p65, p-IKKαβ, and p-IκBα, and increased IL-10, p-JAK1, and p-STAT3 expression levels. Proteins involved in endoplasmic reticulum stress (ERS) were also notably reduced under MRS treatment. Conclusions MRS exerts protective effects on DSS-induced IBD via inhibiting inflammatory reaction, promoting anti-inflammatory capacity, suppressing oxidative stress, and ameliorating apoptosis.
Collapse
Affiliation(s)
- Naiying Shen
- Department of General Surgery, No. 215 Hospital of Shaanxi Nuclear Industry, Xi'an Jiaotong University, Xianyang, Shaanxi, China (mainland)
| | - Zhixiang Wang
- Department of General Surgery, No. 215 Hospital of Shaanxi Nuclear Industry, Xi'an Jiaotong University, Xianyang, Shaanxi, China (mainland)
| | - Cong Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Jingyao Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
21
|
Hydrogen Attenuates Allergic Inflammation by Reversing Energy Metabolic Pathway Switch. Sci Rep 2020; 10:1962. [PMID: 32029879 PMCID: PMC7005324 DOI: 10.1038/s41598-020-58999-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/23/2020] [Indexed: 01/16/2023] Open
Abstract
Mechanisms mediating the protective effects of molecular hydrogen (H2) are not well understood. This study explored the possibility that H2 exerts its anti-inflammatory effect by modulating energy metabolic pathway switch. Activities of glycolytic and mitochondrial oxidative phosphorylation systems were assessed in asthmatic patients and in mouse model of allergic airway inflammation. The effects of hydrogen treatment on airway inflammation and on changes in activities of these two pathways were evaluated. Monocytes from asthmatic patients and lungs from ovalbumin-sensitized and challenged mice had increased lactate production and glycolytic enzyme activities (enhanced glycolysis), accompanied by decreased ATP production and mitochondrial respiratory chain complex I and III activities (suppressed mitochondrial oxidative phosphorylation), indicating an energy metabolic pathway switch. Treatment of ovalbumin-sensitized and challenged mice with hydrogen reversed the energy metabolic pathway switch, and mitigated airway inflammation. Hydrogen abrogated ovalbumin sensitization and challenge-induced upregulation of glycolytic enzymes and hypoxia-inducible factor-1α, and downregulation of mitochondrial respiratory chain complexes and peroxisome proliferator activated receptor-γ coactivator-1α. Hydrogen abrogated ovalbumin sensitization and challenge-induced sirtuins 1, 3, 5 and 6 downregulation. Our data demonstrates that allergic airway inflammation is associated with an energy metabolic pathway switch from oxidative phosphorylation to aerobic glycolysis. Hydrogen inhibits airway inflammation by reversing this switch. Hydrogen regulates energy metabolic reprogramming by acting at multiple levels in the energy metabolism regulation pathways.
Collapse
|
22
|
Hydrogen alleviated organ injury and dysfunction in sepsis: The role of cross-talk between autophagy and endoplasmic reticulum stress: Experimental research. Int Immunopharmacol 2020; 78:106049. [PMID: 31830624 DOI: 10.1016/j.intimp.2019.106049] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 01/26/2023]
|
23
|
Tao G, Song G, Qin S. Molecular hydrogen: current knowledge on mechanism in alleviating free radical damage and diseases. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1189-1197. [PMID: 31738389 DOI: 10.1093/abbs/gmz121] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/20/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022] Open
Abstract
Ever since molecular hydrogen was first reported as a hydroxyl radical scavenger in 2007, the beneficial effect of hydrogen was documented in more than 170 disease models and human diseases including ischemia/reperfusion injury, metabolic syndrome, inflammation, and cancer. All these pathological damages are concomitant with overproduction of reactive oxygen species (ROS) where molecular hydrogen has been widely demonstrated as a selective antioxidant. Although it is difficult to construe the molecular mechanism of hydrogen's biomedical effect, an increasing number of studies have been helping us draw the picture clearer with days passing by. In this review, we summarized the current knowledge on systemic and cellular modulation by hydrogen treatment. We discussed the antioxidative, anti-inflammatory, and anti-apoptosis effects of hydrogen, as well as its protection on mitochondria and the endoplasmic reticulum, regulation of intracellular signaling pathways, and balancing of the immune cell subtypes. We hope that this review will provide organized information that prompts further investigation for in-depth studies of hydrogen effect.
Collapse
Affiliation(s)
- Geru Tao
- Key Laboratory of Atherosclerosis in University of Shandong, Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271000, China
| | - Guohua Song
- Key Laboratory of Atherosclerosis in University of Shandong, Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271000, China
| | - Shucun Qin
- Key Laboratory of Atherosclerosis in University of Shandong, Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271000, China
| |
Collapse
|
24
|
Li L, Liu T, Liu L, Li S, Zhang Z, Zhang R, Zhou Y, Liu F. Effect of hydrogen-rich water on the Nrf2/ARE signaling pathway in rats with myocardial ischemia-reperfusion injury. J Bioenerg Biomembr 2019; 51:393-402. [DOI: 10.1007/s10863-019-09814-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022]
|
25
|
Hydrogen and Oxygen Mixture to Improve Cardiac Dysfunction and Myocardial Pathological Changes Induced by Intermittent Hypoxia in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7415212. [PMID: 30984338 PMCID: PMC6431505 DOI: 10.1155/2019/7415212] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/11/2018] [Accepted: 01/23/2019] [Indexed: 12/25/2022]
Abstract
Obstructive sleep apnea (OSA) can cause intermittent changes in blood oxygen saturation, resulting in the generation of many reactive oxygen species (ROS). To discover new antioxidants and clarify the endoplasmic reticulum (ER) stress involved in cardiac injury in OSA, we established a chronic intermittent hypoxia (CIH) rat model with a fraction of inspired O2 (FiO2) ranging from 21% to 9%, 20 times/h for 8 h/day, and the rats were treated with H2-O2 mixture (67% hydrogen and 33% oxygen) for 2 h/day for 35 days. Our results showed that H2-O2 mixture remarkably improved cardiac dysfunction and myocardial fibrosis. We found that H2-O2 mixture inhalation declined ER stress-induced apoptosis via three major response pathways: PERK-eIF2α-ATF4, IRE 1-XBP1, and ATF 6. Furthermore, we revealed that H2-O2 mixture blocked c-Jun N-terminal kinase- (JNK-) MAPK activation, increased the ratio of Bcl-2/Bax, and inhibited caspase 3 cleavage to protect against CIH-induced cardiac apoptosis. In addition, H2-O2 mixture considerably decreased ROS levels via upregulating superoxide dismutase (SOD) and glutathione (GSH) as well as downregulating NADPH oxidase (NOX 2) expression in the hearts of CIH rats. All the results demonstrated that H2-O2 mixture significantly reduced ER stress and apoptosis and that H2 might be an efficient antioxidant against the oxidative stress injury induced by CIH.
Collapse
|
26
|
Sebastián VP, Salazar GA, Coronado-Arrázola I, Schultz BM, Vallejos OP, Berkowitz L, Álvarez-Lobos MM, Riedel CA, Kalergis AM, Bueno SM. Heme Oxygenase-1 as a Modulator of Intestinal Inflammation Development and Progression. Front Immunol 2018; 9:1956. [PMID: 30258436 PMCID: PMC6143658 DOI: 10.3389/fimmu.2018.01956] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022] Open
Abstract
Heme Oxygenase 1 (HMOX1) is an enzyme that catalyzes the reaction that degrades the heme group contained in several important proteins, such as hemoglobin, myoglobin, and cytochrome p450. The enzymatic reaction catalyzed by HMOX1 generates Fe2+, biliverdin and CO. It has been shown that HMOX1 activity and the by-product CO can downmodulate the damaging immune response in several models of intestinal inflammation as a result of pharmacological induction of HMOX1 expression and the administration of non-toxic amounts of CO. Inflammatory Bowel Diseases, which includes Crohn's Disease (CD) and Ulcerative Colitis (UC), are one of the most studied ailments associated to HMOX1 effects. However, microbiota imbalances and infections are also important factors influencing the occurrence of acute and chronic intestinal inflammation, where HMOX1 activity may play a major role. As part of this article we discuss the immune modulatory capacity of HMOX1 during IBD, as well during the infections and interactions with the microbiota that contribute to this inflammatory disease.
Collapse
Affiliation(s)
- Valentina P. Sebastián
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Geraldyne A. Salazar
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Irenice Coronado-Arrázola
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara M. Schultz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Omar P. Vallejos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loni Berkowitz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel M. Álvarez-Lobos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
27
|
Kumar V, Mansfield J, Fan R, MacLean A, Li J, Mohan M. miR-130a and miR-212 Disrupt the Intestinal Epithelial Barrier through Modulation of PPARγ and Occludin Expression in Chronic Simian Immunodeficiency Virus-Infected Rhesus Macaques. THE JOURNAL OF IMMUNOLOGY 2018. [PMID: 29514950 DOI: 10.4049/jimmunol.1701148] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intestinal epithelial barrier dysfunction is a well-known sequela of HIV/SIV infection that persists despite antiretroviral therapy. Although inflammation is a triggering factor, the underlying molecular mechanisms remain unknown. Emerging evidence suggests that epithelial barrier function is epigenetically regulated by inflammation-induced microRNAs (miRNAs). Accordingly, we profiled and characterized miRNA/mRNA expression exclusively in colonic epithelium and identified 46 differentially expressed miRNAs (20 upregulated and 26 downregulated) in chronically SIV-infected rhesus macaques (Macaca mulatta). We bioinformatically crossed the predicted miRNA targets to transcriptomic data and characterized miR-130a and miR-212 as both were predicted to interact with critical epithelial barrier-associated genes. Next, we characterized peroxisome proliferator-activated receptor γ (PPARγ) and occludin (OCLN), predicted targets of miR-130a and miR-212, respectively, as their downregulation has been strongly linked to epithelial barrier disruption and dysbiosis. Immunofluorescence, luciferase reporter, and overexpression studies confirmed the ability of miR-130a and miR-212 to decrease protein expression of PPARγ and OCLN, respectively, and reduce transepithelial electrical resistance. Because Δ-9-tetrahydrocannabinol exerted protective effects in the intestine in our previous studies, we successfully used it to reverse miR-130a- and miR-212-mediated reduction in transepithelial electrical resistance. Finally, ex vivo Δ-9-tetrahydrocannabinol treatment of colon tissue from chronically SIV-infected rhesus macaques significantly increased PPARγ expression. Our findings suggest that dysregulated miR-130a and miR-212 expression in colonic epithelium during chronic HIV/SIV infection can facilitate epithelial barrier disruption by downregulating OCLN and PPARγ expression. Most importantly, our results highlight the beneficial effects of cannabinoids on epithelial barrier function in not just HIV/SIV but potentially other chronic intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Vinay Kumar
- Eurofins Bioanalytics USA, Saint Charles, MO 63304
| | - Joshua Mansfield
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433; and
| | - Rong Fan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433; and
| | - Andrew MacLean
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433; and
| | - Jian Li
- Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112
| | - Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433; and
| |
Collapse
|
28
|
Hydrogen-rich saline protects against small-scale liver ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress. Life Sci 2018; 194:7-14. [DOI: 10.1016/j.lfs.2017.12.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022]
|