1
|
Abrantes AM, Caetano-Oliveira R, Oliveiros B, Cipriano MA, Tralhão JG. Association Between Colorectal Cancer Primary Features and Liver Metastases Histological Growth Patterns: Inflammation on the Primary Tumor is Associated with Desmoplastic Growth Pattern. Clin Colorectal Cancer 2025; 24:239-247. [PMID: 40021416 DOI: 10.1016/j.clcc.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 01/04/2025] [Accepted: 01/29/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND More than 50% of patients diagnosed with colorectal cancer (CRC) will develop liver metastases (CRCLM), which is the main cause of death for more than 60% of these patients. The aim of this study was to correlate the clinical and pathological characteristics of the primary CRC and CRCLM, with emphasis in predicting the histological growth pattern of the CRCLM. METHODS Cohort of 73 patients with CRC. Analysis of clinical data and blinded pathological review was performed related with primary tumor and CRCLM features. The analysis was performed in SPSS (version 27) with a significance level of 5%. RESULTS A statistically significant association was found between tumor size and metastasis growth pattern (P = .002), with larger tumors giving rise to metastases with a nondesmoplastic growth pattern. Lymphovascular invasion (LVI) was associated with metachronous CRCLM (P = .043). In the absence of LVI, the time required for CRCLM to appear was significantly longer (P = .011). The number of metastases was significantly higher (P = .049) in tumors without LVI when compared to tumors with LVI. There was a statistically significant association between CRC high-grade inflammation and the desmoplastic metastases growth pattern of the CRCLM (P = .017). CONCLUSION The possibility of predicting the CRCLM histological growth pattern resorting to primary CRC characteristics would be useful for proper patient selection for surgery and adapting biological therapies.
Collapse
Affiliation(s)
- Ana Margarida Abrantes
- Biophysics Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal; Coimbra Centor Académico e Clínico (CACC), Coimbra, Portugal
| | - Rui Caetano-Oliveira
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal; Coimbra Centor Académico e Clínico (CACC), Coimbra, Portugal; Pathology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Centro de Anatomia Patológica Germano de Sousa, Coimbra, Portugal; General Surgery Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.
| | - Bárbara Oliveiros
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal; Coimbra Centor Académico e Clínico (CACC), Coimbra, Portugal
| | | | - José Guilherme Tralhão
- Biophysics Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal; Coimbra Centor Académico e Clínico (CACC), Coimbra, Portugal; General Surgery Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Bohlok A, Tonneau C, Vankerckhove S, Craciun L, Lucidi V, Bouazza F, Hendlisz A, Van Laethem JL, Larsimont D, Vermeulen P, Donckier V, Demetter P. Association between primary tumor characteristics and histopathological growth pattern of liver metastases in colorectal cancer. Clin Exp Metastasis 2023; 40:431-440. [PMID: 37453024 DOI: 10.1007/s10585-023-10221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION The microarchitecture of liver metastases (LMs), or histopathological growth pattern (HGP), has been demonstrated to be a significant prognostic factor in patients undergoing resection of colorectal liver metastases (CRLMs). Currently, however, HGP can be only determined on the operative specimen. Therefore, the development of new tools to predict the HGP of CRLMs before surgery and to understand the mechanisms that drive these patterns is important for improving individualization of therapeutic management. In this study, we analyzed data from a retrospective series of patients who underwent surgery for CRLMs to compare primary tumor characteristics, including markers of local aggressiveness and migratory capacity, and HGP of liver metastases. METHODS Data from a retrospective series of 167 patients who underwent curative-intent resection of CRLMs and in whom pathological samples from both primary tumor and liver metastases were available were reviewed. At the primary tumor level, KRAS mutational status, grade of differentiation, and tumor budding were assessed. HGP was scored in each resected CRLM, according to consensus guidelines, and classified as desmoplastic (dHGP) or non-desmoplastic (non-dHGP). Associations between primary tumor characteristics and HGP of CRLMs were evaluated using a binary logistic regression model. Overall survival and disease-free survival were evaluated using Kaplan-Meier and multivariable Cox regression analyses. RESULTS CRLMs were classified as dHGP in 36% of the patients and as non-dHGP in 64%. Higher rates of moderately or poorly differentiated primary tumors were observed in the non-dHGP CRLM group (80%), as compared with the dHGP group (60%) (OR = 3.6; 95%CI: 1.6-7.05; p = 0.001). Higher rates of tumor budding were observed in the non-dHGP CRLM group, with a median tumor budding value of 4 as compared with 2.5 in the dHGP group (p = 0.042). In the entire series, 5-year overall and disease-free survival were 43% and 32.5%, respectively. The non-dHGP CRLM group had worse post-hepatectomy survival, with 5-year overall and disease-free survival of 32.2% and 24.6%, respectively, as compared with 60.8% and 45.9%, respectively, for the dHGP group (p = 0.02). CONCLUSION Colorectal tumors with moderate or poor differentiation and those with high tumor budding are more frequently associated with CRLMs with a non-dHGP. This suggests that primary tumor characteristics of local aggressiveness and migratory capacity could preferentially promote the development of CRLMs with an infiltrating pattern and that these parameters should be considered as part of new scores for predicting HGP before surgery. This finding may stimulate new lines of research for more individualized therapeutic decision in patients with CRLM candidate to surgery.
Collapse
Affiliation(s)
- Ali Bohlok
- Surgical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Camille Tonneau
- Surgical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sophie Vankerckhove
- Surgical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ligia Craciun
- Pathology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Valerio Lucidi
- Abdominal Surgery, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Fikri Bouazza
- Surgical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alain Hendlisz
- Digestive Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jean Luc Van Laethem
- Hepato-Gastroenterology, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Denis Larsimont
- Pathology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Peter Vermeulen
- Translational Cancer Research Unit, Gasthuiszusters Antwerpen Hospitals and University of Antwerp (CORE, MIPRO), Wilrijk, Antwerp, Belgium
| | - Vincent Donckier
- Surgical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Pieter Demetter
- Pathology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
3
|
Wu JB, Li XJ, Liu H, Liu XP. Ring finger protein 215 is a potential prognostic biomarker involved in immune infiltration and angiogenesis in colorectal cancer. Biomed Rep 2023; 19:50. [PMID: 37383678 PMCID: PMC10293879 DOI: 10.3892/br.2023.1633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/19/2023] [Indexed: 06/30/2023] Open
Abstract
The prognostic value of ring finger protein 215 (RNF215) in colorectal cancer (CRC) is unclear. Herein, the present study aimed to investigate the precise value of RNF215 based on CRC datasets from The Cancer Genome Atlas (TCGA) and clinical cases. CRC patient data was collected from TCGA and clinical samples from the Department of Pathology, Shanghai Fifth People's Hospital, Fudan University (Shanghai, China). Logistic regression analysis was used to investigate the correlations between RNF215 and clinicopathological characteristics. The predictive value of RNF215 for the clinical outcome of CRC was determined using Kaplan-Meier curves and Cox regression. Gene set enrichment analysis (GSEA), single-sample GSEA (ssGSEA), and angiogenesis analysis were also conducted to investigate the biological role of RNF215. Immunohistochemistry was conducted to validate the results. The results of the present study confirmed that RNF215 protein expression was significantly associated with age, lymphatic invasion, and overall survival (OS). Univariate analysis showed that upregulation of RNF215 in CRC was significantly associated with age and lymphatic invasion. Kaplan-Meier survival analysis revealed that high RNF215 expression predicted poorer OS and disease-specific survival. A total of nine experimentally detected RNF215-binding proteins were identified with the STRING tool and Cytoscape software. GSEA suggested that RNF215 was associated with several important pathways involved in tumor occurrence, including the Kyoto Encyclopedia of Genes and Genomes MAPK signaling pathway and the WikiPathway RAS signaling pathway. ssGSEA confirmed that RNF215 was significantly expressed in natural killer cells, CD8 T cells and T helper cells. Angiogenesis analysis revealed that numerous angiogenesis-related genes had the same expression trend as RNF215 in CRC. The immunostaining results indicated that RNF215 expression was significantly higher in CRC tissues than in corresponding normal tissues. In conclusion, increased RNF215 expression may be a potential molecular marker predictive of poor survival and a treatment target in CRC. In addition, RNF215 may participate in the formation of CRC through a variety of signaling pathways.
Collapse
Affiliation(s)
- Jing-Bo Wu
- Department of Pathology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Xiao-Jing Li
- Department of Pathology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Hui Liu
- Department of Pathology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Xiu-Ping Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
4
|
El Asmar A, Demetter P, Fares F, Sclafani F, Hendlisz A, Donckier V, Vermeulen P, Liberale G. The Prognostic Value of Distinct Histological Growth Patterns of Colorectal Peritoneal Metastases: A Pilot Study. Ann Surg Oncol 2023; 30:3320-3328. [PMID: 36754942 PMCID: PMC10175429 DOI: 10.1245/s10434-023-13118-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/02/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Different histological growth patterns (HGP) describing the tumor-to-liver interface have been described in colorectal liver metastases and have been associated with a strong prognostic value. However, HGP of peritoneal metastases (PM) of colorectal cancer (CRC) have not yet been described. Our objective was to determine whether distinct HGP can be identified in PMCRC and to evaluate their potential prognostic value in these patients. METHODS This retrospective study included 38 patients who underwent curative-intent surgery for PMCRC between July 2012 and March 2019, with PCI≤6, and who had not received preoperative chemotherapy. In each patient, the tumor-to-peritoneum interface was evaluated in the excised peritoneal nodules. The association between HGP and postoperative survival was analyzed by using the Kaplan-Meier method. RESULTS Two distinct HGP were identified: a pushing-type (P-HGP), characterized by a fibrous rim separating the PM and peritoneum, and an infiltrating-type (I-HGP), characterized by focal penetration of tumor cells into the surrounding peritoneal lining without a fibrous rim. Fifteen patients had dominant P-HGP, and 23 patients had dominant I-HGP. Patients with dominant P-HGP (>50% tumor-peritoneum interface) had a significantly better DFS (30 months) than those with P-HGP <50% (9 months; p = 0.029). Patients with a P-HGP dominance >60% had better OS (131 months) than those with P-HGP <60% (41 months; p = 0.044). CONCLUSIONS This is the first description of two distinct, reproducible HGP in PMCRC. The dominant P-HGP is associated with a favorable prognosis in patients with PMCRC, compared with I-HGP, suggesting that this parameter could ultimately represent a new prognostic biomarker.
Collapse
Affiliation(s)
- Antoine El Asmar
- Department of Surgical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| | - Pieter Demetter
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Fahd Fares
- Department of Surgery, Université Libre de Bruxelles, Brussels, Belgium
| | - Francesco Sclafani
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Alain Hendlisz
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Vincent Donckier
- Department of Surgical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Peter Vermeulen
- Translational Cancer Research Unit, Department of Oncological Research, Oncology Center GZA, GZA Hospitals St. Augustinus, and University of Antwerp, Antwerp, Belgium
| | - Gabriel Liberale
- Department of Surgical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
5
|
Meyer YM, Wilting SM, Kraan J, Olthof P, Vermeulen P, Martens J, Grünhagen DJ, Sleijfer S, Verhoef C. Circulating tumour cells are associated with histopathological growth patterns of colorectal cancer liver metastases. Clin Exp Metastasis 2023; 40:69-77. [PMID: 36326981 PMCID: PMC9898367 DOI: 10.1007/s10585-022-10191-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Histopathological Growth Patterns (HGPs) have prognostic and predictive value in patients with Colorectal Liver Metastases (CRLM). This study examined whether preoperative measurement of Circulating Tumour Cells (CTCs) is associated with HGP. CTCs were prospectively enumerated in 7.5 ml of blood using the FDA-approved CellSearch system in patients who underwent local treatment of CRLM with curative intent between 2008 and 2021. All CTC samples were collected on the day of local treatment. Patients treated with neoadjuvant chemotherapy for CRLM or with extrahepatic disease at the time of CTC sampling were excluded. HGP was scored retrospectively following the current consensus guidelines. The association between CTCs and HGP was investigated through multivariable logistic regression. Data were available for 177 patients, desmoplastic HGP (dHGP) was observed in 34 patients (19%). There were no statistically significant differences in patient and tumour characteristics between dHGP and non-dHGP at baseline. Patients with dHGP had longer overall - and disease-free survival (logrank p = 0.003 and 0.003, respectively) compared to patients with non-dHGP. CTCs were not detected in 25(74%) of dHGP patients and in 68(48%) of non-dHGP patients (chi-squared p = 0.006). Preoperative absence of CTCs was the only significant predictor for dHGP in multivariable logistic regression (Odds Ratio 2.7, 95%CI 1.1-6.8, p = 0.028), Table 3. Preoperative absence of CTCs is associated with dHGP in chemo naive CRLM patients without extrahepatic disease. Based on our results, CTC count alone is not sufficient to preoperatively identify HGPs, but integration of CTC count in multivariable prediction models may aid the preoperative identification of HGPs of CRLM.
Collapse
Affiliation(s)
- Y M Meyer
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - S M Wilting
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - J Kraan
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - P Olthof
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - P Vermeulen
- Translational Cancer Research Unit (GZA Hospitals and University of Antwerp), Antwerp, Belgium
| | - J Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - D J Grünhagen
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - S Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - C Verhoef
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
6
|
Zaharia C, Veen T, Lea D, Kanani A, Alexeeva M, Søreide K. Histopathological Growth Pattern in Colorectal Liver Metastasis and The Tumor Immune Microenvironment. Cancers (Basel) 2022; 15:cancers15010181. [PMID: 36612177 PMCID: PMC9818232 DOI: 10.3390/cancers15010181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Almost half of all patients with colorectal cancer present with or eventually develop metastasis, most frequently in the liver. Understanding the histopathological growth patterns and tumor immune microenvironment of colorectal liver metastases may help determine treatment strategies and assess prognosis. A literature search was conducted to gather information on cancer biology, histopathological growth patterns, and the tumor immune microenvironment in colorectal liver metastases, including their mechanisms and their impact on clinical outcomes. A first consensus on histopathological growth patterns emerged in 2017, identifying five growth patterns. Later studies found benefits from a two-tier system, desmoplastic and non-desmoplastic, incorporated into the updated 2022 consensus. Furthermore, the tumor immune microenvironment shows additional characteristic features with relevance to cancer biology. This includes density of T-cells (CD8+), expression of claudin-2, presence of vessel co-option versus angiogenesis, as well as several other factors. The relation between histopathological growth patterns and the tumor immune microenvironment delineates distinct subtypes of cancer biology. The distinct subtypes are found to correlate with risk of metastasis or relapse, and hence to clinical outcome and long-term survival in each patient. In order to optimize personalized and precision therapy for patients with colorectal liver metastases, further investigation into the mechanisms of cancer biology and their translational aspects to novel treatment targets is warranted.
Collapse
Affiliation(s)
- Claudia Zaharia
- Department of Pathology, Stavanger University Hospital, N-4068 Stavanger, Norway
- Gastrointestinal Translational Research Group, Laboratory for Molecular Medicine, Stavanger University Hospital, N-4068 Stavanger, Norway
| | - Torhild Veen
- Gastrointestinal Translational Research Group, Laboratory for Molecular Medicine, Stavanger University Hospital, N-4068 Stavanger, Norway
- Department of Gastrointestinal Surgery, Stavanger University Hospital, N-4068 Stavanger, Norway
| | - Dordi Lea
- Department of Pathology, Stavanger University Hospital, N-4068 Stavanger, Norway
- Gastrointestinal Translational Research Group, Laboratory for Molecular Medicine, Stavanger University Hospital, N-4068 Stavanger, Norway
| | - Arezo Kanani
- Gastrointestinal Translational Research Group, Laboratory for Molecular Medicine, Stavanger University Hospital, N-4068 Stavanger, Norway
- Department of Gastrointestinal Surgery, Stavanger University Hospital, N-4068 Stavanger, Norway
| | - Marina Alexeeva
- Gastrointestinal Translational Research Group, Laboratory for Molecular Medicine, Stavanger University Hospital, N-4068 Stavanger, Norway
- Department of Gastrointestinal Surgery, Stavanger University Hospital, N-4068 Stavanger, Norway
| | - Kjetil Søreide
- Gastrointestinal Translational Research Group, Laboratory for Molecular Medicine, Stavanger University Hospital, N-4068 Stavanger, Norway
- Department of Gastrointestinal Surgery, Stavanger University Hospital, N-4068 Stavanger, Norway
- Department of Clinical Medicine, University of Bergen, N-7804 Bergen, Norway
- Correspondence:
| |
Collapse
|
7
|
Latacz E, Höppener D, Bohlok A, Leduc S, Tabariès S, Fernández Moro C, Lugassy C, Nyström H, Bozóky B, Floris G, Geyer N, Brodt P, Llado L, Van Mileghem L, De Schepper M, Majeed AW, Lazaris A, Dirix P, Zhang Q, Petrillo SK, Vankerckhove S, Joye I, Meyer Y, Gregorieff A, Roig NR, Vidal-Vanaclocha F, Denis L, Oliveira RC, Metrakos P, Grünhagen DJ, Nagtegaal ID, Mollevi DG, Jarnagin WR, D’Angelica MI, Reynolds AR, Doukas M, Desmedt C, Dirix L, Donckier V, Siegel PM, Barnhill R, Gerling M, Verhoef C, Vermeulen PB. Histopathological growth patterns of liver metastasis: updated consensus guidelines for pattern scoring, perspectives and recent mechanistic insights. Br J Cancer 2022; 127:988-1013. [PMID: 35650276 PMCID: PMC9470557 DOI: 10.1038/s41416-022-01859-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 04/19/2022] [Accepted: 05/11/2022] [Indexed: 02/08/2023] Open
Abstract
The first consensus guidelines for scoring the histopathological growth patterns (HGPs) of liver metastases were established in 2017. Since then, numerous studies have applied these guidelines, have further substantiated the potential clinical value of the HGPs in patients with liver metastases from various tumour types and are starting to shed light on the biology of the distinct HGPs. In the present guidelines, we give an overview of these studies, discuss novel strategies for predicting the HGPs of liver metastases, such as deep-learning algorithms for whole-slide histopathology images and medical imaging, and highlight liver metastasis animal models that exhibit features of the different HGPs. Based on a pooled analysis of large cohorts of patients with liver-metastatic colorectal cancer, we propose a new cut-off to categorise patients according to the HGPs. An up-to-date standard method for HGP assessment within liver metastases is also presented with the aim of incorporating HGPs into the decision-making processes surrounding the treatment of patients with liver-metastatic cancer. Finally, we propose hypotheses on the cellular and molecular mechanisms that drive the biology of the different HGPs, opening some exciting preclinical and clinical research perspectives.
Collapse
Affiliation(s)
- Emily Latacz
- grid.5284.b0000 0001 0790 3681Translational Cancer Research Unit, GZA Hospitals, Iridium Netwerk and University of Antwerp, Antwerp, Belgium
| | - Diederik Höppener
- grid.508717.c0000 0004 0637 3764Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Ali Bohlok
- grid.418119.40000 0001 0684 291XDepartment of Surgical Oncology, Institut Jules Bordet, Brussels, Belgium
| | - Sophia Leduc
- grid.5596.f0000 0001 0668 7884Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sébastien Tabariès
- grid.14709.3b0000 0004 1936 8649Department of Medicine, Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QC Canada
| | - Carlos Fernández Moro
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Huddinge, Sweden ,grid.24381.3c0000 0000 9241 5705Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Huddinge, Sweden
| | - Claire Lugassy
- grid.418596.70000 0004 0639 6384Department of Translational Research, Institut Curie, Paris, France
| | - Hanna Nyström
- grid.12650.300000 0001 1034 3451Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden ,grid.12650.300000 0001 1034 3451Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Béla Bozóky
- grid.24381.3c0000 0000 9241 5705Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Huddinge, Sweden
| | - Giuseppe Floris
- grid.5596.f0000 0001 0668 7884Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research and University Hospitals Leuven, KU Leuven, Leuven, Belgium ,grid.410569.f0000 0004 0626 3338Department of Pathology, University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Natalie Geyer
- grid.4714.60000 0004 1937 0626Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Pnina Brodt
- grid.63984.300000 0000 9064 4811Department of Surgery, Oncology and Medicine, McGill University and the Research Institute, McGill University Health Center, Montreal, QC Canada
| | - Laura Llado
- grid.418284.30000 0004 0427 2257HBP and Liver Transplantation Unit, Department of Surgery, Hospital Universitari de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Catalonia Spain
| | - Laura Van Mileghem
- grid.5284.b0000 0001 0790 3681Translational Cancer Research Unit, GZA Hospitals, Iridium Netwerk and University of Antwerp, Antwerp, Belgium
| | - Maxim De Schepper
- grid.5596.f0000 0001 0668 7884Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ali W. Majeed
- grid.31410.370000 0000 9422 8284Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | - Anthoula Lazaris
- grid.63984.300000 0000 9064 4811Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC Canada
| | - Piet Dirix
- grid.5284.b0000 0001 0790 3681Translational Cancer Research Unit, GZA Hospitals, Iridium Netwerk and University of Antwerp, Antwerp, Belgium
| | - Qianni Zhang
- grid.4868.20000 0001 2171 1133School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK
| | - Stéphanie K. Petrillo
- grid.63984.300000 0000 9064 4811Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC Canada
| | - Sophie Vankerckhove
- grid.418119.40000 0001 0684 291XDepartment of Surgical Oncology, Institut Jules Bordet, Brussels, Belgium
| | - Ines Joye
- grid.5284.b0000 0001 0790 3681Translational Cancer Research Unit, GZA Hospitals, Iridium Netwerk and University of Antwerp, Antwerp, Belgium
| | - Yannick Meyer
- grid.508717.c0000 0004 0637 3764Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Alexander Gregorieff
- grid.63984.300000 0000 9064 4811Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Pathology, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Regenerative Medicine Network, McGill University, Montreal, QC Canada
| | - Nuria Ruiz Roig
- grid.411129.e0000 0000 8836 0780Department of Pathology, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Catalonia Spain ,grid.418284.30000 0004 0427 2257Tumoral and Stromal Chemoresistance Group, Oncobell Program, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Catalonia Spain ,grid.5841.80000 0004 1937 0247Human Anatomy and Embryology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Catalonia Spain
| | - Fernando Vidal-Vanaclocha
- grid.253615.60000 0004 1936 9510GWU-Cancer Center, Department of Biochemistry and Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, USA
| | - Larsimont Denis
- grid.418119.40000 0001 0684 291XDepartment of Pathology, Institut Jules Bordet, Brussels, Belgium
| | - Rui Caetano Oliveira
- grid.28911.330000000106861985Pathology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Peter Metrakos
- grid.63984.300000 0000 9064 4811Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC Canada
| | - Dirk J. Grünhagen
- grid.508717.c0000 0004 0637 3764Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Iris D. Nagtegaal
- grid.10417.330000 0004 0444 9382Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
| | - David G. Mollevi
- grid.418284.30000 0004 0427 2257Tumoral and Stromal Chemoresistance Group, Oncobell Program, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Catalonia Spain ,grid.418701.b0000 0001 2097 8389Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d’Oncologia, L’Hospitalet de Llobregat, Barcelona, Catalonia Spain
| | - William R. Jarnagin
- grid.51462.340000 0001 2171 9952Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Michael I D’Angelica
- grid.51462.340000 0001 2171 9952Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Andrew R. Reynolds
- grid.417815.e0000 0004 5929 4381Oncology R&D, AstraZeneca, Cambridge, UK
| | - Michail Doukas
- grid.5645.2000000040459992XDepartment of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Christine Desmedt
- grid.5596.f0000 0001 0668 7884Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Luc Dirix
- grid.5284.b0000 0001 0790 3681Translational Cancer Research Unit, GZA Hospitals, Iridium Netwerk and University of Antwerp, Antwerp, Belgium
| | - Vincent Donckier
- grid.418119.40000 0001 0684 291XDepartment of Surgical Oncology, Institut Jules Bordet, Brussels, Belgium
| | - Peter M. Siegel
- grid.14709.3b0000 0004 1936 8649Department of Medicine, Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Departments of Medicine, Biochemistry, Anatomy & Cell Biology, McGill University, Montreal, QC Canada
| | - Raymond Barnhill
- grid.418596.70000 0004 0639 6384Department of Translational Research, Institut Curie, Paris, France ,Université de Paris l’UFR de Médecine, Paris, France
| | - Marco Gerling
- grid.4714.60000 0004 1937 0626Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden ,grid.24381.3c0000 0000 9241 5705Theme Cancer, Karolinska University Hospital, Solna, Sweden
| | - Cornelis Verhoef
- grid.508717.c0000 0004 0637 3764Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Peter B. Vermeulen
- grid.5284.b0000 0001 0790 3681Translational Cancer Research Unit, GZA Hospitals, Iridium Netwerk and University of Antwerp, Antwerp, Belgium
| |
Collapse
|
8
|
Höppener DJ, Stook JLPL, Galjart B, Nierop PMH, Nagtegaal ID, Vermeulen PB, Grünhagen DJ, Verhoef C, Doukas M. The relationship between primary colorectal cancer histology and the histopathological growth patterns of corresponding liver metastases. BMC Cancer 2022; 22:911. [PMID: 35996090 PMCID: PMC9394040 DOI: 10.1186/s12885-022-09994-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
Background The histopathological growth patterns (HGPs) are a prognostic and predictive biomarker in colorectal cancer liver metastasis (CRLM). This study evaluates the relationship between the HGP and primary colorectal cancer (CRC) histopathology. Methods A total of 183 treatment-naive patients with resected CRC and CRLM were included. Thirteen CRC histopathology markers were determined and compared between the desmoplastic and non-desmoplastic HGP; tumour sidedness, pT&pN stage, tumour grade, tumour deposits, perineural- (lympho-)vascular- and extramural venous invasion, peritumoural budding, stroma type, CRC growth pattern, Crohn’s-like lymphoid reaction, and tumour-infiltrating lymphocyte (TIL) density. Logistic regression analysis was performed using both CRC and CRLM characteristics. Results Unfavourable CRC histopathology was more frequent in non-desmoplastic CRLM for all markers evaluated, and significantly so for a lower TIL density, absent Crohn’s-like lymphoid reaction, and a “non-mature” stroma (all p < 0.03). The cumulative prevalence of unfavourable CRC histopathology was significantly higher in patients with non-desmoplastic compared to desmoplastic CRLM, with a median (IQR) of 4 (3–6) vs 2 (1–3.5) unfavourable characteristics observed, respectively (p < 0.001). Multivariable regression with 9 CRC histopathology markers and 2 CRLM characteristics achieved good discriminatory performance (AUC = 0.83). Conclusions The results of this study associates primary CRC histopathology with the HGP of corresponding liver metastases. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09994-3.
Collapse
Affiliation(s)
- Diederik J Höppener
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Jean-Luc P L Stook
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Boris Galjart
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Pieter M H Nierop
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Iris D Nagtegaal
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter B Vermeulen
- Translational Cancer Research Unit (GZA Hospitals and University of Antwerp), Antwerp, Belgium
| | - Dirk J Grünhagen
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Cornelis Verhoef
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands.
| | - Michail Doukas
- Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | | |
Collapse
|
9
|
Hao M, Wang K, Ding Y, Li H, Liu Y, Ding L. Which patients are prone to suffer liver metastasis? A review of risk factors of metachronous liver metastasis of colorectal cancer. Eur J Med Res 2022; 27:130. [PMID: 35879739 PMCID: PMC9310475 DOI: 10.1186/s40001-022-00759-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/09/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND In recent years, with the increasing incidence of colorectal cancer (CRC) and its high fatality rate, CRC has seized the attention of the world. And liver metastasis, as the main cause of death of CRC, has become the leading cause of treatment failure in CRC, especially metachronous liver metastasis, have caused patients who underwent bowel resection to experience multiple tortures. MAIN BODY Metachronous liver metastasis has severely affected the quality of life and prognosis of patients. Therefore, in this review, we discuss risk factors for metachronous liver metastasis of CRC, which is the premise for effective intervention for CRC patients who suffer metachronous liver metastasis after undergoing surgery, as well as the signaling pathways associated with CRC. CONCLUSION The occurrence of metachronous liver metastasis is closely related to histology-based prognostic biomarkers, serum-based biomarkers, tumor microenvironment, pre-metastatic niche, liquid biopsy and tissue-based biomarkers. Further research is required to explore the risk factors associated with liver metastasis of CRC.
Collapse
Affiliation(s)
- Mengdi Hao
- Department of Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Tieyilu 10 Yangfangdian, Haidian, Beijing, 100038, People's Republic of China
- Department of Oncology Surgery, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Kun Wang
- Department of Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Tieyilu 10 Yangfangdian, Haidian, Beijing, 100038, People's Republic of China
- Department of Oncology Surgery, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Yuhan Ding
- Department of Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Tieyilu 10 Yangfangdian, Haidian, Beijing, 100038, People's Republic of China
- Department of Oncology Surgery, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Huimin Li
- Department of Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Tieyilu 10 Yangfangdian, Haidian, Beijing, 100038, People's Republic of China
- Department of Oncology Surgery, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Yin Liu
- Department of Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Tieyilu 10 Yangfangdian, Haidian, Beijing, 100038, People's Republic of China
- Department of Oncology Surgery, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Lei Ding
- Department of Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Tieyilu 10 Yangfangdian, Haidian, Beijing, 100038, People's Republic of China.
- Department of Oncology Surgery, Ninth School of Clinical Medicine, Peking University, Beijing, China.
| |
Collapse
|
10
|
Kong BT, Fan QS, Wang XM, Zhang Q, Zhang GL. Clinical implications and mechanism of histopathological growth pattern in colorectal cancer liver metastases. World J Gastroenterol 2022; 28:3101-3115. [PMID: 36051338 PMCID: PMC9331533 DOI: 10.3748/wjg.v28.i26.3101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/21/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
Liver is the most common site of metastases of colorectal cancer, and liver metastases present with distinct histopathological growth patterns (HGPs), including desmoplastic, pushing and replacement HGPs and two rare HGPs. HGP is a miniature of tumor-host reaction and reflects tumor biology and pathological features as well as host immune dynamics. Many studies have revealed the association of HGPs with carcinogenesis, angiogenesis, and clinical outcomes and indicates HGP functions as bond between microscopic characteristics and clinical implications. These findings make HGP a candidate marker in risk stratification and guiding treatment decision-making, and a target of imaging observation for patient screening. Of note, it is crucial to determine the underlying mechanism shaping HGP, for instance, immune infiltration and extracellular matrix remodeling in desmoplastic HGP, and aggressive characteristics and special vascularization in replacement HGP (rHGP). We highlight the importance of aggressive features, vascularization, host immune and organ structure in formation of HGP, hence propose a novel "advance under camouflage" hypothesis to explain the formation of rHGP.
Collapse
Affiliation(s)
- Bing-Tan Kong
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qing-Sheng Fan
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Xiao-Min Wang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Qing Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Gan-Lin Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| |
Collapse
|
11
|
Abe H, Yasunaga Y, Yamazawa S, Nakai Y, Gonoi W, Nishioka Y, Murono K, Sasaki K, Arita J, Kawai K, Nozawa H, Hasegawa K, Ishihara S, Ushiku T. Histological growth patterns of colorectal cancer liver metastases: a strong prognostic marker associated with invasive patterns of the primary tumor and p53 alteration. Hum Pathol 2022; 123:74-83. [PMID: 35247436 DOI: 10.1016/j.humpath.2022.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023]
Abstract
The histological growth pattern of liver metastases (desmoplastic, pushing, and replacement patterns) at the tumor-liver parenchymal interface is a prognostic factor in patients with colorectal cancer. However, data regarding its association with the primary tumor characteristics and molecular alterations are limited. This study evaluated the histological growth pattern in 136 cases of colorectal cancer liver metastases without preoperative treatment, comparing it with the clinicopathological features of the primary tumor. Liver metastasis exhibiting predominantly non-desmoplastic pattern (<50%), observed in 74 cases (54%), was associated with hepatic vein invasion (P = 0.025), worse recurrence-free survival (P < 0.001) and overall survival (P = 0.008). In multivariate analyses, multiple tumors (P < 0.001) and non-desmoplastic patterns (P = 0.009) were associated with worse recurrence-free survival, and tumor size (P = 0.025) and non-desmoplastic pattern (P = 0.025) were associated with worse overall survival. In 88 patients with available primary tumor tissue slides, non-desmoplastic pattern in the liver metastasis was associated with high-grade tumor budding (P = 0.002), high-grade poorly differentiated cluster (P = 0.021), absence of mucinous histology (P = 0.016), and aberrant p53 expression (complete loss or overexpression; P 0.001) of the primary colorectal cancer. In conclusion, the histological growth pattern in liver metastasis was a strong and independent prognostic factor for colorectal cancer. Our observations highlight the significant associations between histological growth patterns in liver metastases and histopathological features of the primary tumor, especially invasive front morphology and p53 aberration.
Collapse
Affiliation(s)
- Hiroyuki Abe
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yoichi Yasunaga
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Sho Yamazawa
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yudai Nakai
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Wataru Gonoi
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yujiro Nishioka
- Department of Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Koji Murono
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kazuhito Sasaki
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Junichi Arita
- Department of Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kazushige Kawai
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hiroaki Nozawa
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kiyoshi Hasegawa
- Department of Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Soichiro Ishihara
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
12
|
Non-contrast-enhanced CT texture analysis of primary and metastatic pancreatic ductal adenocarcinomas: value in assessment of histopathological grade and differences between primary and metastatic lesions. Abdom Radiol (NY) 2022; 47:4151-4159. [PMID: 36104481 PMCID: PMC9626421 DOI: 10.1007/s00261-022-03646-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE To evaluate the utility of non-contrast-enhanced CT texture analysis (CTTA) for predicting the histopathological differentiation of pancreatic ductal adenocarcinomas (PDAC) and to compare non-contrast-enhanced CTTA texture features between primary PDAC and hepatic metastases of PDAC. METHODS This retrospective study included 120 patients with histopathologically confirmed PDAC. Sixty-five patients underwent CT-guided biopsy of primary PDAC, while 55 patients underwent CT-guided biopsy of hepatic PDAC metastasis. All lesions were segmented in non-contrast-enhanced CT scans for CTTA based on histogram analysis, co-occurrence matrix, and run-length matrix. Statistical analysis was conducted for 372 texture features using Mann-Whitney U test, Bonferroni-Holm correction, and receiver operating characteristic (ROC) analysis. A p value < 0.05 was considered statistically significant. RESULTS Three features were identified that differed significantly between histopathological G2 and G3 primary tumors. Of these, "low gray-level zone emphasis" yielded the largest AUC (0.87 ± 0.04), reaching a sensitivity and specificity of 0.76 and 0.83, respectively, when a cut-off value of 0.482 was applied. Fifty-four features differed significantly between primary and hepatic metastatic PDAC. CONCLUSION Non-contrast-enhanced CTTA of PDAC identified differences in texture features between primary G2 and G3 tumors that could be used for non-invasive tumor assessment. Extensive differences between the features of primary and metastatic PDAC on CTTA suggest differences in tumor microenvironment.
Collapse
|
13
|
Vaughan-Shaw PG, Grimes G, Blackmur JP, Timofeeva M, Walker M, Ooi LY, Svinti V, Donnelly K, Din FVN, Farrington SM, Dunlop MG. Oral vitamin D supplementation induces transcriptomic changes in rectal mucosa that are linked to anti-tumour effects. BMC Med 2021; 19:174. [PMID: 34340708 PMCID: PMC8330024 DOI: 10.1186/s12916-021-02044-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/23/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The risk for several common cancers is influenced by the transcriptomic landscape of the respective tissue-of-origin. Vitamin D influences in vitro gene expression and cancer cell growth. We sought to determine whether oral vitamin D induces beneficial gene expression effects in human rectal epithelium and identify biomarkers of response. METHODS Blood and rectal mucosa was sampled from 191 human subjects and mucosa gene expression (HT12) correlated with plasma vitamin D (25-OHD) to identify differentially expressed genes. Fifty subjects were then administered 3200IU/day oral vitamin D3 and matched blood/mucosa resampled after 12 weeks. Transcriptomic changes (HT12/RNAseq) after supplementation were tested against the prioritised genes for gene-set and GO-process enrichment. To identify blood biomarkers of mucosal response, we derived receiver-operator curves and C-statistic (AUC) and tested biomarker reproducibility in an independent Supplementation Trial (BEST-D). RESULTS Six hundred twenty-nine genes were associated with 25-OHD level (P < 0.01), highlighting 453 GO-term processes (FDR<0.05). In the whole intervention cohort, vitamin D supplementation enriched the prioritised mucosal gene-set (upregulated gene-set P < 1.0E-07; downregulated gene-set P < 2.6E-05) and corresponding GO terms (P = 2.90E-02), highlighting gene expression patterns consistent with anti-tumour effects. However, only 9 individual participants (18%) showed a significant response (NM gene-set enrichment P < 0.001) to supplementation. Expression changes in HIPK2 and PPP1CC expression served as blood biomarkers of mucosal transcriptomic response (AUC=0.84 [95%CI 0.66-1.00]) and replicated in BEST-D trial subjects (HIPK2 AUC=0.83 [95%CI 0.77-0.89]; PPP1CC AUC=0.91 [95%CI 0.86-0.95]). CONCLUSIONS Higher plasma 25-OHD correlates with rectal mucosa gene expression patterns consistent with anti-tumour effects, and this beneficial signature is induced by short-term vitamin D supplementation. Heterogenous gene expression responses to vitamin D may limit the ability of randomised trials to identify beneficial effects of supplementation on CRC risk. However, in the current study blood expression changes in HIPK2 and PPP1CC identify those participants with significant anti-tumour transcriptomic responses to supplementation in the rectum. These data provide compelling rationale for a trial of vitamin D and CRC prevention using easily assayed blood gene expression signatures as intermediate biomarkers of response.
Collapse
Affiliation(s)
- P G Vaughan-Shaw
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - G Grimes
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - J P Blackmur
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - M Timofeeva
- DIAS, Danish Institute for Advanced Study, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Deanery of Molecular, Genetic & Population Health Sciences, in the College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - M Walker
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - L Y Ooi
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
- Department of Pathology, National University Hospital, National University Health System, Singapore, Singapore
| | - Victoria Svinti
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Kevin Donnelly
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - F V N Din
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - S M Farrington
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - M G Dunlop
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK.
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
14
|
Anciaux M, Demetter P, De Wind R, Gomez Galdon M, Vande Velde S, Lens G, Craciun L, Deleruelle A, Larsimont D, Lenaerts T, Sclafani F, Deleporte A, Donckier V, Hendlisz A, Vandeputte C. Infiltrative tumour growth pattern correlates with poor outcome in oesophageal cancer. BMJ Open Gastroenterol 2021; 7:bmjgast-2020-000431. [PMID: 32675198 PMCID: PMC7368551 DOI: 10.1136/bmjgast-2020-000431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 11/25/2022] Open
Abstract
Objective Oesophageal cancer (OEC) is an aggressive disease with a poor survival rate. Prognostic markers are thus urgently needed. Due to the demonstrated prognostic value of histopathological growth pattern (HGP) in other cancers, we performed a retrospective assessment of HGP in patients suffering from invasive OEC. Design A first cohort composed of 89 treatment-naïve operated patients with OEC from The Cancer Genome Atlas (TCGA) public database was constituted, from which H&E images and RNA-sequencing data were retrieved. Next, a second cohort composed of 99 patients with OEC treated and operated in a Belgian hospital was established. H&E-stained sections and extracted tumorous RNA were obtained from the samples. HGP were assessed on H&E slides as infiltrative (IGP) or expansive (EGP). TCGA RNA-sequencing data were analysed through the gene set enrichment analysis and Cytoscape softwares. Real-time quantitative PCR (qPCR) experiments were performed to assess gene expression in the Belgian cohort. Results IGP patients displayed a grim prognosis compared with EGP patients, while IGP was found as associated with numerous lymphovascular emboli and perinervous infiltrations. Analyses of the TCGA expression data showed that angiogenesis, epithelial-to-mesenchymal transition (EMT) and inflammation were significantly upregulated in IGP compared with EGP samples. qPCR experiments of three genes appearing as highly upregulated in each pathway showed no difference in expression according to the HGP. Conclusion The current study demonstrates the poor prognostic value carried by IGP in OC and suggests angiogenesis, EMT and inflammation as key carcinogenetic pathways upregulated in this pattern.
Collapse
Affiliation(s)
- Maelle Anciaux
- Digestive Oncology Laboratory, Institut Jules Bordet, Bruxelles, Belgium
| | - Pieter Demetter
- Department of Pathology, Institut Jules Bordet, Bruxelles, Belgium
| | - Roland De Wind
- Department of Pathology, Institut Jules Bordet, Bruxelles, Belgium
| | | | - Sylvie Vande Velde
- Machine Learning Group, ULB, Bruxelles, Belgium.,Interuniversity Institute of Bioinformatics in Brussels (ULB-VUB), Brussels, Belgium
| | - Gaspard Lens
- Computer Science Unit, Haute Ecole Leonard de Vinci Institut Paul Lambin, Bruxelles, Belgium
| | - Ligia Craciun
- Department of Pathology, Institut Jules Bordet, Bruxelles, Belgium
| | - Amélie Deleruelle
- Digestive Oncology Laboratory, Institut Jules Bordet, Bruxelles, Belgium
| | - Denis Larsimont
- Department of Pathology, Institut Jules Bordet, Bruxelles, Belgium
| | - Tom Lenaerts
- Machine Learning Group, ULB, Bruxelles, Belgium.,Interuniversity Institute of Bioinformatics in Brussels (ULB-VUB), Brussels, Belgium
| | - Francesco Sclafani
- Digestive Oncology Laboratory, Institut Jules Bordet, Bruxelles, Belgium.,Gastrointestinal Oncology Unit, Medical Oncology, Institut Jules Bordet, Bruxelles, Belgium
| | - Amélie Deleporte
- Gastrointestinal Oncology Unit, Medical Oncology, Institut Jules Bordet, Bruxelles, Belgium
| | - Vincent Donckier
- Department of Surgery, Institut Jules Bordet, Bruxelles, Belgium
| | - Alain Hendlisz
- Gastrointestinal Oncology Unit, Medical Oncology, Institut Jules Bordet, Bruxelles, Belgium
| | | |
Collapse
|
15
|
Tabariès S, Annis MG, Lazaris A, Petrillo SK, Huxham J, Abdellatif A, Palmieri V, Chabot J, Johnson RM, Van Laere S, Verhoef C, Hachem Y, Yumeen S, Meti N, Omeroglu A, Altinel G, Gao ZH, Yu ASL, Grünhagen DJ, Vermeulen P, Metrakos P, Siegel PM. Claudin-2 promotes colorectal cancer liver metastasis and is a biomarker of the replacement type growth pattern. Commun Biol 2021; 4:657. [PMID: 34079064 PMCID: PMC8172859 DOI: 10.1038/s42003-021-02189-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
Claudin-2 promotes breast cancer liver metastasis by enabling seeding and early cancer cell survival. We now demonstrate that Claudin-2 is functionally required for colorectal cancer liver metastasis and that Claudin-2 expression in primary colorectal cancers is associated with poor overall and liver metastasis-free survival. We have examined the role of Claudin-2, and other claudin family members, as potential prognostic biomarkers of the desmoplastic and replacement histopathological growth pattern associated with colorectal cancer liver metastases. Immunohistochemical analysis revealed higher Claudin-2 levels in replacement type metastases when compared to those with desmoplastic features. In contrast, Claudin-8 was highly expressed in desmoplastic colorectal cancer liver metastases. Similar observations were made following immunohistochemical staining of patient-derived xenografts (PDXs) that we have established, which faithfully retain the histopathology of desmoplastic or replacement type colorectal cancer liver metastases. We provide evidence that Claudin-2 status in patient-derived extracellular vesicles may serve as a relevant prognostic biomarker to predict whether colorectal cancer patients have developed replacement type liver metastases. Such a biomarker will be a valuable tool in designing optimal treatment strategies to better manage patients with colorectal cancer liver metastases. Tabariès et al. describe that claudin 2 is a promoter of colorectal cancer liver metastasis. Furthermore, high Claudin-2 expression is associated with shorter time to liver-specific recurrence and is a biomarker of replacement type CRC liver metastases.
Collapse
Affiliation(s)
- Sébastien Tabariès
- Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada. .,Departments of Medicine, McGill University, Montréal, QC, Canada.
| | - Matthew G Annis
- Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada.,Departments of Medicine, McGill University, Montréal, QC, Canada
| | - Anthoula Lazaris
- Department of Surgery, McGill University Health Center, Montréal, QC, Canada
| | | | - Jennifer Huxham
- Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada.,Departments of Medicine, McGill University, Montréal, QC, Canada
| | - Amri Abdellatif
- Department of Surgery, McGill University Health Center, Montréal, QC, Canada
| | - Vincent Palmieri
- Department of Surgery, McGill University Health Center, Montréal, QC, Canada
| | - Jaclyn Chabot
- Department of Surgery, McGill University Health Center, Montréal, QC, Canada
| | - Radia M Johnson
- Department of Bioinformatics & Computational Biology, Genentech Inc., South San Francisco, CA, USA
| | - Steven Van Laere
- University of Antwerp, Molecular Imaging, Pathology, Radiotherapy & Oncology (MIPRO), Edegem, Antwerp, Belgium.,Translational Cancer Research Unit, Oncologisch Centrum GZA, Wilrijk, Antwerp, Belgium
| | - Cornelis Verhoef
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Yasmina Hachem
- Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | - Sara Yumeen
- Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | - Nicholas Meti
- Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | - Atilla Omeroglu
- Department of Pathology, McGill University Health Center, Montréal, QC, Canada
| | - Gulbeyaz Altinel
- Department of Pathology, McGill University Health Center, Montréal, QC, Canada
| | - Zu-Hua Gao
- Department of Pathology, McGill University Health Center, Montréal, QC, Canada
| | - Alan S L Yu
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Dirk J Grünhagen
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Peter Vermeulen
- University of Antwerp, Molecular Imaging, Pathology, Radiotherapy & Oncology (MIPRO), Edegem, Antwerp, Belgium.,Translational Cancer Research Unit, Oncologisch Centrum GZA, Wilrijk, Antwerp, Belgium
| | - Peter Metrakos
- Department of Surgery, McGill University Health Center, Montréal, QC, Canada
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada. .,Departments of Medicine, McGill University, Montréal, QC, Canada.
| |
Collapse
|
16
|
He Z, Wang G, Wu J, Tang Z, Luo M. The molecular mechanism of LRP1 in physiological vascular homeostasis and signal transduction pathways. Biomed Pharmacother 2021; 139:111667. [PMID: 34243608 DOI: 10.1016/j.biopha.2021.111667] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 01/10/2023] Open
Abstract
Interactions between vascular smooth muscle cells (VSMCs), endothelial cells (ECs), pericytes (PCs) and macrophages (MФ), the major components of blood vessels, play a crucial role in maintaining vascular structural and functional homeostasis. Low-density lipoprotein (LDL) receptor-related protein-1 (LRP1), a transmembrane receptor protein belonging to the LDL receptor family, plays multifunctional roles in maintaining endocytosis, homeostasis, and signal transduction. Accumulating evidence suggests that LRP1 modulates vascular homeostasis mainly by regulating vasoactive substances and specific intracellular signaling pathways, including the plasminogen activator inhibitor 1 (PAI-1) signaling pathway, platelet-derived growth factor (PDGF) signaling pathway, transforming growth factor-β (TGF-β) signaling pathway and vascular endothelial growth factor (VEGF) signaling pathway. The aim of the present review is to focus on recent advances in the discovery and mechanism of vascular homeostasis regulated by LRP1-dependent signaling pathways. These recent discoveries expand our understanding of the mechanisms controlling LRP1 as a target for studies on vascular complications.
Collapse
Affiliation(s)
- Zhaohui He
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Department of Clinical Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Gang Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianbo Wu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Zonghao Tang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
17
|
Nakanishi R, Oki E, Hasuda H, Sano E, Miyashita Y, Sakai A, Koga N, Kuriyama N, Nonaka K, Fujimoto Y, Jogo T, Hokonohara K, Hu Q, Hisamatsu Y, Ando K, Kimura Y, Yoshizumi T, Mori M. Radiomics Texture Analysis for the Identification of Colorectal Liver Metastases Sensitive to First-Line Oxaliplatin-Based Chemotherapy. Ann Surg Oncol 2021; 28:2975-2985. [PMID: 33454878 DOI: 10.1245/s10434-020-09581-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/01/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The aim of this study was to develop a radiomics-based prediction model for the response of colorectal liver metastases to oxaliplatin-based chemotherapy. METHODS Forty-two consecutive patients treated with oxaliplatin-based first-line chemotherapy for colorectal liver metastasis at our institution from August 2013 to October 2019 were enrolled in this retrospective study. Overall, 126 liver metastases were chronologically divided into the training (n = 94) and validation (n = 32) cohorts. Regions of interest were manually segmented, and the best response to chemotherapy was decided based on Response Evaluation Criteria in Solid Tumors (RECIST). Patients who achieved clinical complete and partial response according to RECIST were defined as good responders. Radiomics features were extracted from the pretreatment enhanced computed tomography scans, and a radiomics score was calculated using the least absolute shrinkage and selection operator regression model in a trial cohort. RESULTS The radiomics score significantly discriminated good responders in both the trial (area under the curve [AUC] 0.8512, 95% confidence interval [CI] 0.7719-0.9305; p < 0.0001) and validation (AUC 0.7792, 95% CI 0.6176-0.9407; p < 0.0001) cohorts. Multivariate analysis revealed that high radiomics scores greater than - 0.06 (odds ratio [OR] 23.803, 95% CI 8.432-80.432; p < 0.0001), clinical non-T4 (OR 6.054, 95% CI 2.164-18.394; p = 0.0005), and metachronous disease (OR 11.787, 95% CI 2.333-70.833; p = 0.0025) were independently associated with good response. CONCLUSIONS Radiomics signatures may be a potential biomarker for the early prediction of chemosensitivity in colorectal liver metastases. This approach may support the treatment strategy for colorectal liver metastasis.
Collapse
Affiliation(s)
- Ryota Nakanishi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirofumi Hasuda
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiki Sano
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yu Miyashita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akihiro Sakai
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naomichi Koga
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naotaka Kuriyama
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kentaro Nonaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshiaki Fujimoto
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoko Jogo
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kentaro Hokonohara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Qingjiang Hu
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichi Hisamatsu
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Ando
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasue Kimura
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
18
|
Yu X, Zhu L, Liu J, Xie M, Chen J, Li J. Emerging Role of Immunotherapy for Colorectal Cancer with Liver Metastasis. Onco Targets Ther 2020; 13:11645-11658. [PMID: 33223838 PMCID: PMC7671511 DOI: 10.2147/ott.s271955] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/29/2020] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor in the world and the second leading cause of cancer-related deaths, with the liver as the most common site of distant metastasis. The prognosis of CRC with liver metastasis is poor, and most patients cannot undergo surgery. In addition, conventional antitumor approaches such as chemotherapy, radiotherapy, targeted therapy, and surgery result in unsatisfactory outcomes. In recent years, immunotherapy has shown good prospects in the treatment of assorted tumors by enhancing the host's antitumor immune function, and it may become a new effective treatment for liver metastasis of CRC. However, challenges remain in applying immunotherapy to CRC with liver metastasis. This review examines how the microenvironment and immunosuppressive landscape of the liver favor tumor progression. It also highlights the latest research advances in immunotherapy for colorectal liver metastasis and identifies immunotherapy as a treatment regimen with a promising future in clinical applications.
Collapse
Affiliation(s)
- Xianzhe Yu
- Gastrointestinal Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, People’s Republic of China
| | - Lingling Zhu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Jiewei Liu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Ming Xie
- Gastrointestinal Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, People’s Republic of China
| | - Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jianguo Li
- Gastrointestinal Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, People’s Republic of China
| |
Collapse
|
19
|
Wada Y, Morine Y, Imura S, Ikemoto T, Saito Y, Takasu C, Yamada S, Shimada M. HIF-1α expression in liver metastasis but not primary colorectal cancer is associated with prognosis of patients with colorectal liver metastasis. World J Surg Oncol 2020; 18:241. [PMID: 32895059 PMCID: PMC7487629 DOI: 10.1186/s12957-020-02012-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023] Open
Abstract
Background The role of hypoxia-inducible factor-1α (HIF-1α) in primary colorectal cancer (CRC) and colorectal liver metastasis (CRLM) has remained unclear. The aim of this study was to investigate HIF-1α expression and its association with prognosis in patients with CRLM with a focus on hepatic stellate cells (HSCs). Methods Colon cancer cells were cultured in HSC-conditioned medium (CM), and HIF-1α expression and cell migration were analyzed. Seventy-five patients with CRLM who underwent an initial curative hepatectomy were enrolled. We examined HIF-1α expressions and patient prognosis between primary CRCs and the matched liver metastatic specimens. Results Activated HSCs induced HIF-1α mRNA and protein expression in colon cancer cells (p < 0.01) and promoted cell migration (p < 0.01). The positive rates of HIF-1α expression in primary CRCs and liver metastases were 68.0 and 72.0%, respectively. There were no differences in overall (OS) and disease-free survival (DFS) of HIF-1α expression in primary CRC. However, HIF-1α expression in liver metastasis correlated to poor prognosis in both OS and DFS. Furthermore, patients with HIF-1α positive expression in liver metastasis had poor prognosis. Conclusion HIF-1α expression in liver metastasis determines poor prognosis of CRLM patients. HSCs might play a key role in aggressive phenotypes of tumor cells.
Collapse
Affiliation(s)
- Yuma Wada
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yuji Morine
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Satoru Imura
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Tetsuya Ikemoto
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yu Saito
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Chie Takasu
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shinichiro Yamada
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Mitsuo Shimada
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| |
Collapse
|
20
|
Paulatto L, Dioguardi Burgio M, Sartoris R, Beaufrère A, Cauchy F, Paradis V, Vilgrain V, Ronot M. Colorectal liver metastases: radiopathological correlation. Insights Imaging 2020; 11:99. [PMID: 32844319 PMCID: PMC7447704 DOI: 10.1186/s13244-020-00904-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
With the development of chemotherapy regimens, targeted therapies, and hepatic surgery, the survival of patients with colorectal liver metastases (CRLM) has dramatically improved. Imaging plays a central role for the diagnosis, staging, and treatment allocation in these patients. To interpret CRLM on imaging, radiologists must be familiar with the main imaging features of untreated tumors as well as the modifications induced by systemic therapies, and their meaning in relation to pathological tumor response and tumor biology. CRLM have the same histological features as the primary tumor. Most are “non-otherwise specified” (NOS) adenocarcinomas. The mucinous tumor is the most common of the rare subtypes. In NOS tumors, imaging usually differentiates central areas of necrosis from peripheral proliferating tumors and desmoplastic reaction. Areas of mucin mixed with fibrosis are seen in mucinous subtypes to help differentiate the metastases from other tumors cysts or hemangiomas. After treatment, the viable tumor is gradually replaced by ischemic-like necrosis and fibrosis, and remnants cells are mainly located on the periphery of tumors. Imaging can help predict the degree of tumor response, but changes can be difficult to differentiate from the pretherapeutic appearance. When chemotherapy is interrupted or in case of resistance to treatment, a peripheral infiltrating halo of tumor growth may appear. The purpose of the article is to illustrate the significance of the imaging features of colorectal liver metastases during systemic therapy, using radiopathological correlations.
Collapse
Affiliation(s)
- Luisa Paulatto
- Department of Radiology, University Hospitals Paris Nord Val de Seine, Beaujon, Hauts-de-Seine, Clichy, France
| | - Marco Dioguardi Burgio
- Department of Radiology, University Hospitals Paris Nord Val de Seine, Beaujon, Hauts-de-Seine, Clichy, France.,Université de Paris, Paris, France.,INSERM U1149, CRI, Paris, France
| | - Riccardo Sartoris
- Department of Radiology, University Hospitals Paris Nord Val de Seine, Beaujon, Hauts-de-Seine, Clichy, France.,Université de Paris, Paris, France.,INSERM U1149, CRI, Paris, France
| | - Aurélie Beaufrère
- INSERM U1149, CRI, Paris, France.,Department of Pathology, University Hospitals Paris Nord Val de Seine, Beaujon, Hauts-de-Seine, Clichy, France
| | - François Cauchy
- Department of HPB Surgery, University Hospitals Paris Nord Val de Seine, Beaujon, Hauts-de-Seine, Clichy, France
| | - Valérie Paradis
- INSERM U1149, CRI, Paris, France.,Department of Pathology, University Hospitals Paris Nord Val de Seine, Beaujon, Hauts-de-Seine, Clichy, France
| | - Valérie Vilgrain
- Department of Radiology, University Hospitals Paris Nord Val de Seine, Beaujon, Hauts-de-Seine, Clichy, France.,Université de Paris, Paris, France.,INSERM U1149, CRI, Paris, France
| | - Maxime Ronot
- Department of Radiology, University Hospitals Paris Nord Val de Seine, Beaujon, Hauts-de-Seine, Clichy, France. .,Université de Paris, Paris, France. .,INSERM U1149, CRI, Paris, France.
| |
Collapse
|
21
|
Predicting liver metastases growth patterns: Current status and future possibilities. Semin Cancer Biol 2020; 71:42-51. [PMID: 32679190 DOI: 10.1016/j.semcancer.2020.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022]
Abstract
Colorectal cancer is highly incident worldwide and presents a health burden with elevated mortality rate despite prevention, detection, and treatment, mainly due to metastatic liver disease. Histological growth patterns of colorectal cancer liver metastases have emerged as a reproducible prognostic factor, with biological implications and therapeutic windows. Nonetheless, the histological growth patterns of colorectal cancer liver metastases are only known after pathological examination of a liver resection specimen, thus limiting the possibilities of pre-surgical decision. Predicting the histological growth pattern of colorectal cancer liver metastases would provide valuable information for patient-tailored medicine. In this article, we perform a review of the histological growth patterns and their implications, with a focus on the possibilities for their prediction.
Collapse
|
22
|
Liu M, Ma X, Shen F, Xia Y, Jia Y, Lu J. MRI-based radiomics nomogram to predict synchronous liver metastasis in primary rectal cancer patients. Cancer Med 2020; 9:5155-5163. [PMID: 32476295 PMCID: PMC7367643 DOI: 10.1002/cam4.3185] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
At the time of diagnosis, approximately 15%-20% of patients with rectal cancer (RC) presented synchronous liver metastasis (SLM), which is the most common cause of death in patients with RC. Therefore, preoperative, noninvasive, and accurate prediction of SLM is crucial for personalized treatment strategies. Recently, radiomics has been considered as an advanced image analysis method to evaluate the neoplastic heterogeneity with respect to diagnosis of the tumor and prediction of prognosis. In this study, a total of 1409 radiomics features were extracted for each volume of interest (VOI) from high-resolution T2WI images of the primary RC. Subsequently, five optimal radiomics features were selected based on the training set using the least absolute shrinkage and selection operator (LASSO) method to construct the radiomics signature. In addition, radiomics signature combined with carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) was included in the multifactor logistic regression to construct the nomogram model. It showed an optimal predictive performance in the validation set as compared to that in the radiomics model. The favorable calibration of the radiomics nomogram showed a nonsignificant Hosmer-Lemeshow test statistic (P > .05). The decision curve analysis (DCA) showed that the radiomics nomogram is clinically superior to the radiomics model. Therefore, the nomogram amalgamating the radiomics signature and clinical risk factors serve as an effective quantitative approach to predict the SLM of primary RC.
Collapse
Affiliation(s)
- Minglu Liu
- Department of RadiologyChanghai HospitalShanghaiChina
| | - Xiaolu Ma
- Department of RadiologyChanghai HospitalShanghaiChina
| | - Fu Shen
- Department of RadiologyChanghai HospitalShanghaiChina
| | - Yuwei Xia
- Huiying Medical Technology Co., LtdBeijingChina
| | - Yan Jia
- Huiying Medical Technology Co., LtdBeijingChina
| | - Jianping Lu
- Department of RadiologyChanghai HospitalShanghaiChina
| |
Collapse
|
23
|
Le CC, Bennasroune A, Collin G, Hachet C, Lehrter V, Rioult D, Dedieu S, Morjani H, Appert-Collin A. LRP-1 Promotes Colon Cancer Cell Proliferation in 3D Collagen Matrices by Mediating DDR1 Endocytosis. Front Cell Dev Biol 2020; 8:412. [PMID: 32582700 PMCID: PMC7283560 DOI: 10.3389/fcell.2020.00412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Low density lipoprotein receptor related protein-1 (LRP-1) is a large ubiquitous endocytic receptor mediating the clearance of various molecules from the extracellular matrix. Several studies have shown that LRP-1 plays crucial roles during tumorigenesis functioning as a main signal pathway regulator, especially by interacting with other cell-surface receptors. Discoïdin Domain Receptors (DDRs), type I collagen receptors with tyrosine kinase activity, have previously been associated with tumor invasion and aggressiveness in diverse tumor environments. Here, we addressed whether it could exist functional interplays between LRP-1 and DDR1 to control colon carcinoma cell behavior in three-dimensional (3D) collagen matrices. We found that LRP-1 established tight molecular connections with DDR1 at the plasma membrane in colon cancer cells. In this tumor context, we provide evidence that LRP-1 regulates by endocytosis the cell surface levels of DDR1 expression. The LRP-1 mediated endocytosis of DDR1 increased cell proliferation by promoting cell cycle progression into S phase and decreasing apoptosis. In this study, we identified a new molecular way that controls the cell-surface expression of DDR1 and consequently the colon carcinoma cell proliferation and apoptosis and highlighted an additional mechanism by which LRP-1 carries out its sensor activity of the tumor microenvironment.
Collapse
Affiliation(s)
- Cao Cuong Le
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France.,Unité BioSpecT, EA7506, Reims, France
| | - Amar Bennasroune
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Guillaume Collin
- Université de Reims Champagne-Ardenne, Reims, France.,Unité BioSpecT, EA7506, Reims, France
| | - Cathy Hachet
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Véronique Lehrter
- Université de Reims Champagne-Ardenne, Reims, France.,Unité BioSpecT, EA7506, Reims, France
| | - Damien Rioult
- Plateau Technique Mobile de Cytométrie Environnementale MOBICYTE, URCA/INERIS, Reims Champagne-Ardenne University (URCA), Reims, France
| | - Stéphane Dedieu
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Hamid Morjani
- Université de Reims Champagne-Ardenne, Reims, France.,Unité BioSpecT, EA7506, Reims, France
| | - Aline Appert-Collin
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| |
Collapse
|
24
|
Li Y, Eresen A, Shangguan J, Yang J, Lu Y, Chen D, Wang J, Velichko Y, Yaghmai V, Zhang Z. Establishment of a new non-invasive imaging prediction model for liver metastasis in colon cancer. Am J Cancer Res 2019; 9:2482-2492. [PMID: 31815048 PMCID: PMC6895455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023] Open
Abstract
The aim of this study was to develop and validate a new non-invasive artificial intelligence (AI) model based on preoperative computed tomography (CT) data to predict the presence of liver metastasis (LM) in colon cancer (CC). A total of forty-eight eligible CC patients were enrolled, including twenty-four patients with LM and twenty-four patients without LM. Six clinical factors and one hundred and fifty-two tumor image features extracted from CT data were utilized to develop three models: clinical, radiomics, and hybrid (a combination of clinical and radiomics features) using support vector machines with 5-fold cross-validation. The performance of each model was evaluated in terms of accuracy, specificity, sensitivity, and area under the curve (AUC). For the radiomics model, a total of four image features utilized to construct the model resulting in an accuracy of 83.87% for training and 79.50% for validation. The clinical model that employed two selected clinical variables had an accuracy of 69.82% and 69.50% for training and validation, respectively. The hybrid model that combined relevant image features and clinical variables improved accuracy of both training (90.63%) and validation (85.50%) sets. In terms of AUC, hybrid (0.96; 0.87) and radiomics models (0.91; 0.85) demonstrated a significant improvement compared with the clinical model (0.71; 0.69), and the hybrid model had the best prediction performance. In conclusion, the AI model developed using preoperative conventional CT data can accurately predict LM in CC patients without additional procedures. Furthermore, combining image features with clinical characteristics greatly improved the model's prediction performance. We have thus generated a promising tool that allows guidance and individualized surveillance of CC patients with high risks of LM.
Collapse
Affiliation(s)
- Yu Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, China
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - Aydin Eresen
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - Junjie Shangguan
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - Jia Yang
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - Yun Lu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, China
- Shandong Key Laboratory of Digital Medicine and Computer Assisted SurgeryQingdao, Shandong, China
| | - Dong Chen
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, China
| | - Jian Wang
- Department of Radiological Sciences, School of Medicine, Southwest Hospital, Third Military Medical UniversityChongqing, China
| | - Yury Velichko
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - Vahid Yaghmai
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
- Department of Radiology, University of CaliforniaIrvine, Orange, CA, USA
| | - Zhuoli Zhang
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| |
Collapse
|