1
|
Zheng X, Lu T, Tang Q, Yang M, Fan Y, Wen M. The clinical value of applying diffusion-weighted imaging combined with T2-weighted imaging to assess diagnostic performance of muscularis propria invasion in mid-to-high rectal cancer. Abdom Radiol (NY) 2025; 50:598-607. [PMID: 39207517 DOI: 10.1007/s00261-024-04536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE This study aimed to evaluate the diagnostic performance of combining diffusion-weighted imaging (DWI) with T2-weighted imaging (T2WI) for detecting muscularis propria invasion in rectal cancer. METHODS We conducted a retrospective analysis of MR images from 76 patients with pathologically confirmed rectal cancer between January 2018 and June 2022. Patients were categorized into invasion and non-invasion groups. the present of muscularis propria invasion. The examination regimen included T2WI, dynamic enhanced scanning and DWI.The apparent diffusion coefficient (ADC) values from DWI were compared between the groups, and the diagnostic performance of combining ADC with T2WI was assessed. RESULTS There were differences in ADCmean, ADCmsi, and ADCmin values between the non-invasion group and theinvasion group, and the t values were 3.949, 2.221 and 2.978, respectively. The P values were 0.000, 0.029 and 0.004, respectively. Using an ADCmean threshold of 1.07 × 10- 3 mm²/s, the sensitivity and specificity for detecting muscularis propria invasion were 82.22% and 61.29%, respectively, with an overall diagnostic accuracy of 89.5%. For ADCmsi, with a threshold of 0.996 × 10- 3 mm²/s, the sensitivity and specificity were 62.75% and 73.33%, respectively, yielding a diagnostic accuracy of 82.9%. The ADCmin, with a threshold of 0.854 × 10- 3 mm²/s, demonstrated sensitivity and specificity of 78.43% and 66.67%, respectively, with a diagnostic accuracy of 85.5%. CONCLUSION T2WI combined ADC value has a good predictive value for judging the degree of musculature invasion of medium-to-high rectal cancer, while ADC mean has a higher comprehensive diagnostic efficiency. Our finding may provide reference for increasing accuracy in mid-to-high rectal cancer diagnosis.
Collapse
Affiliation(s)
- Xin Zheng
- Chongqing Tongnan Hospital of traditional chinese medical, Chongqing, China
| | - Tingyong Lu
- Chongqing Tongnan Hospital of traditional chinese medical, Chongqing, China
| | - Qiu Tang
- Chongqing Tongnan Hospital of traditional chinese medical, Chongqing, China
| | - Mao Yang
- Chongqing Tongnan Hospital of traditional chinese medical, Chongqing, China
| | - Yinfeng Fan
- Chongqing Tongnan Hospital of traditional chinese medical, Chongqing, China
| | - Ming Wen
- First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Šarošković M, Vuković M, Stojanoski S, Zorić M, Prvulović Bunović N, Spirovski M, Nosek I. Significance of apparent diffusion coefficient in diagnosis of rectal carcinoma. Front Oncol 2024; 14:1464183. [PMID: 39416464 PMCID: PMC11479860 DOI: 10.3389/fonc.2024.1464183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction The apparent diffusion coefficient (ADC) is a quantitative parameter that facilitates the detection and reliable differentiation of rectal cancer. MR differentiation between rectal carcinoma, post-radiation proctitis, and normal rectal wall with the ADC values and their comparison depending on the level of tumor markers and pathohistological characteristics of rectal carcinoma. Methods The retrospective study performed at the Oncology Institute of Vojvodina included 300 patients, 100 each with rectal cancer, post-radiation proctitis, and normal rectum. Mean ADC values were obtained by measuring the region of interest (ROI) of the rectal wall. Results Rectal cancer showed lower ADC values (0.665 ± 0.086 x 10-3mm2/s) compared to both post-radiation proctitis (1.648 ± 0.268 x 10-3mm2/s) and normal rectum (1.180 ± 0.110 x 10-3mm2/s) (p<0.001). No significant differences in ADC values were observed between different grades of rectal cancer (p=0.874; p>0.05), depending on the presence of metastases in the lymph nodes (p=0.357; p>0.05), different TN stage (p=0.196; p>0.05), local spread of the tumor (p=0.312; p>0.05), the presence of RAS mutation (p=0.829; p>0.05) and the value of tumor markers (p=0.923; p>0.05). ADC values below 1.013 x 10-3mm2/s with 100% sensitivity and 96% specificity indicate the presence of rectal cancer in relation to normal wall, with a positive predictive value of 96.1% and a negative of 100%. ADC values below 1.255 x 10-3mm2/s with 100% sensitivity and 95% specificity indicate rectal cancer in relation to post-radiation proctitis. ADC values above 1.339 x 10-3mm2/s with 87% sensitivity and 89% specificity indicate post-radiation proctitis in relation to normal wall. Discussion The ADC is a useful marker in differentiating between rectal cancer, post-radiation proctitis, and normal rectal wall with high sensitivity and specificity, but it cannot be used to distinguish the histological grades of rectal cancer, nor other pathohistological parameters.
Collapse
Affiliation(s)
- Milica Šarošković
- Department of Radiology, Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Miloš Vuković
- Department of Radiology, Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Department for Radiology diagnostics, Oncology Institute of Vojvodina, Sremska Kamenica, Serbia
| | - Stefan Stojanoski
- Department of Radiology, Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Department for Radiology diagnostics, Oncology Institute of Vojvodina, Sremska Kamenica, Serbia
| | - Milica Zorić
- Department of Radiology, Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Nataša Prvulović Bunović
- Department for Radiology diagnostics, Oncology Institute of Vojvodina, Sremska Kamenica, Serbia
- Department of Nuclear Medicine, Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Milena Spirovski
- Department for Radiology diagnostics, Oncology Institute of Vojvodina, Sremska Kamenica, Serbia
- Department of Oncology, Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Igor Nosek
- Department of Radiology, Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Department for Radiology diagnostics, Oncology Institute of Vojvodina, Sremska Kamenica, Serbia
| |
Collapse
|
3
|
Curcean S, Curcean A, Martin D, Fekete Z, Irimie A, Muntean AS, Caraiani C. The Role of Predictive and Prognostic MRI-Based Biomarkers in the Era of Total Neoadjuvant Treatment in Rectal Cancer. Cancers (Basel) 2024; 16:3111. [PMID: 39272969 PMCID: PMC11394290 DOI: 10.3390/cancers16173111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
The role of magnetic resonance imaging (MRI) in rectal cancer management has significantly increased over the last decade, in line with more personalized treatment approaches. Total neoadjuvant treatment (TNT) plays a pivotal role in the shift from traditional surgical approach to non-surgical approaches such as 'watch-and-wait'. MRI plays a central role in this evolving landscape, providing essential morphological and functional data that support clinical decision-making. Key MRI-based biomarkers, including circumferential resection margin (CRM), extramural venous invasion (EMVI), tumour deposits, diffusion-weighted imaging (DWI), and MRI tumour regression grade (mrTRG), have proven valuable for staging, response assessment, and patient prognosis. Functional imaging techniques, such as dynamic contrast-enhanced MRI (DCE-MRI), alongside emerging biomarkers derived from radiomics and artificial intelligence (AI) have the potential to transform rectal cancer management offering data that enhance T and N staging, histopathological characterization, prediction of treatment response, recurrence detection, and identification of genomic features. This review outlines validated morphological and functional MRI-derived biomarkers with both prognostic and predictive significance, while also exploring the potential of radiomics and artificial intelligence in rectal cancer management. Furthermore, we discuss the role of rectal MRI in the 'watch-and-wait' approach, highlighting important practical aspects in selecting patients for non-surgical management.
Collapse
Affiliation(s)
- Sebastian Curcean
- Department of Radiation Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania
- Department of Radiation Oncology, 'Prof. Dr. Ion Chiricuta' Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Andra Curcean
- Department of Imaging, Affidea Center, 15c Ciresilor Street, 400487 Cluj-Napoca, Romania
| | - Daniela Martin
- Department of Radiation Oncology, 'Prof. Dr. Ion Chiricuta' Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Zsolt Fekete
- Department of Radiation Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania
- Department of Radiation Oncology, 'Prof. Dr. Ion Chiricuta' Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Alexandru Irimie
- Department of Oncological Surgery and Gynecological Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania
- Department of Oncological Surgery, 'Prof. Dr. Ion Chiricuta' Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Alina-Simona Muntean
- Department of Radiation Oncology, 'Prof. Dr. Ion Chiricuta' Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Cosmin Caraiani
- Department of Medical Imaging and Nuclear Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Ma Y, Shi Z, Wei Y, Shi F, Qin G, Zhou Z. Exploring the value of multiple preprocessors and classifiers in constructing models for predicting microsatellite instability status in colorectal cancer. Sci Rep 2024; 14:20305. [PMID: 39218940 PMCID: PMC11366760 DOI: 10.1038/s41598-024-71420-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Approximately 15% of patients with colorectal cancer (CRC) exhibit a distinct molecular phenotype known as microsatellite instability (MSI). Accurate and non-invasive prediction of MSI status is crucial for cost savings and guiding clinical treatment strategies. The retrospective study enrolled 307 CRC patients between January 2020 and October 2022. Preoperative images of computed tomography and postoperative status of MSI information were available for analysis. The stratified fivefold cross-validation was used to avoid sample bias in grouping. Feature extraction and model construction were performed as follows: first, inter-/intra-correlation coefficients and the least absolute shrinkage and selection operator algorithm were used to identify the most predictive feature subset. Subsequently, multiple discriminant models were constructed to explore and optimize the combination of six feature preprocessors (Box-Cox, Yeo-Johnson, Max-Abs, Min-Max, Z-score, and Quantile) and three classifiers (logistic regression, support vector machine, and random forest). Selecting the one with the highest average value of the area under the curve (AUC) in the test set as the radiomics model, and the clinical screening model and combined model were also established using the same processing steps as the radiomics model. Finally, the performances of the three models were evaluated and analyzed using decision and correction curves.We observed that the logistic regression model based on the quantile preprocessor had the highest average AUC value in the discriminant models. Additionally, tumor location, the clinical of N stage, and hypertension were identified as independent clinical predictors of MSI status. In the test set, the clinical screening model demonstrated good predictive performance, with the average AUC of 0.762 (95% confidence interval, 0.635-0.890). Furthermore, the combined model showed excellent predictive performance (AUC, 0.958; accuracy, 0.899; sensitivity, 0.929) and favorable clinical applicability and correction effects. The logistic regression model based on the quantile preprocessor exhibited excellent performance and repeatability, which may further reduce the variability of input data and improve the model performance for predicting MSI status in CRC.
Collapse
Affiliation(s)
- Yi Ma
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, China
| | - Zhihao Shi
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, China
| | - Ying Wei
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., 701 Yunjin Rd, Xuhui District, Shanghai, 200232, China
| | - Feng Shi
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., 701 Yunjin Rd, Xuhui District, Shanghai, 200232, China
| | - Guochu Qin
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, China.
| | - Zhengyang Zhou
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, China.
| |
Collapse
|
5
|
Wei Q, Chen L, Hou X, Lin Y, Xie R, Yu X, Zhang H, Wen Z, Wu Y, Liu X, Chen W. Multiparametric MRI-based radiomic model for predicting lymph node metastasis after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Insights Imaging 2024; 15:163. [PMID: 38922456 PMCID: PMC11208366 DOI: 10.1186/s13244-024-01726-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/16/2024] [Indexed: 06/27/2024] Open
Abstract
OBJECTIVES To construct and validate multiparametric MR-based radiomic models based on primary tumors for predicting lymph node metastasis (LNM) following neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC) patients. METHODS A total of 150 LARC patients from two independent centers were enrolled. The training cohort comprised 100 patients from center A. Fifty patients from center B were included in the external validation cohort. Radiomic features were extracted from the manually segmented volume of interests of the primary tumor before and after nCRT. Feature selection was performed using multivariate logistic regression analysis. The clinical risk factors were selected via the least absolute shrinkage and selection operator method. The radiologist's assessment of LNM was performed. Eight models were constructed using random forest classifiers, including four single-sequence models, three combined-sequence models, and a clinical model. The models' discriminative performance was assessed via receiver operating characteristic curve analysis quantified by the area under the curve (AUC). RESULTS The AUCs of the radiologist's assessment, the clinical model, and the single-sequence models ranged from 0.556 to 0.756 in the external validation cohort. Among the single-sequence models, modelpost_DWI exhibited superior predictive power, with an AUC of 0.756 in the external validation set. In combined-sequence models, modelpre_T2_DWI_post had the best diagnostic performance in predicting LNM after nCRT, with a significantly higher AUC (0.831) than those of the clinical model, modelpre_T2_DWI, and the single-sequence models (all p < 0.05). CONCLUSIONS A multiparametric model that incorporates MR radiomic features before and after nCRT is optimal for predicting LNM after nCRT in LARC. CRITICAL RELEVANCE STATEMENT This study enrolled 150 LARC patients from two independent centers and constructed multiparametric MR-based radiomic models based on primary tumors for predicting LNM following nCRT, which aims to guide therapeutic decisions and predict prognosis for LARC patients. KEY POINTS The biological characteristics of primary tumors and metastatic LNs are similar in rectal cancer. Radiomics features and clinical data before and after nCRT provide complementary tumor information. Preoperative prediction of LN status after nCRT contributes to clinical decision-making.
Collapse
Affiliation(s)
- Qiurong Wei
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Ling Chen
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Hou
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunying Lin
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Renlong Xie
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiayu Yu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanliang Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuankui Wu
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xian Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Weicui Chen
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
6
|
Deng B, Wang Q, Liu Y, Yang Y, Gao X, Dai H. A nomogram based on MRI radiomics features of mesorectal fat for diagnosing T2- and T3-stage rectal cancer. Abdom Radiol (NY) 2024; 49:1850-1860. [PMID: 38349392 DOI: 10.1007/s00261-023-04164-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/10/2023] [Accepted: 12/16/2023] [Indexed: 06/29/2024]
Abstract
PURPOSE To develop and validate a nomogram for the preoperative diagnosis of T2 and T3 stage rectal cancer using MRI radiomics features of mesorectal fat. METHODS The data of 288 patients with T2 and T3 stage rectal cancer were retrospectively collected. Radiomics features were extracted from the lesion region of interest (ROI) in the MRI high-resolution T2WI, apparent diffusion coefficient (ADC), and diffusion-weighted imaging (DWI) sequences. After using ICC inter-group consistency analysis and Pearson correlation analysis to reduce dimensions, LASSO regression analysis was performed to select features and calculate Rad-score for each sequence. Then, Combined_Radscore and nomogram were constructed based on the LASSO-selected features and clinical data for each sequence. Receiver operating characteristic curve (ROC) area under the curve (AUC) was used to evaluate the performance of the Rad-score model and nomogram. Decision curve analysis (DCA) was performed to evaluate the clinical usability of the radiomics nomogram, which were combined with calibration curves to evaluate the prediction accuracy. RESULTS The nomogram based on MRI-report T status and Combined_Radscore achieved AUCs of 0.921 and 0.889 in the training and validation cohorts, respectively. CONCLUSION The nomogram can be stated that the radiomics nomogram based on multi-sequence MRI imaging of the mesorectal fat has excellent diagnosing performance for preoperative differentiation of T2 and T3 stage rectal cancer.
Collapse
Affiliation(s)
- Bo Deng
- Department of Radiology, Shanghai Fifth Rehabilitation Hospital, Shanghai, China
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qian Wang
- Department of Radiology, Shanghai Fifth Rehabilitation Hospital, Shanghai, China
| | - Yuanqing Liu
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanwei Yang
- Magnetic Resonance Room of Orthopedics Department, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaolong Gao
- Department of Radiology, Luodian Hospital, Shanghai University Medical College, Baoshan District, Shanghai, China.
| | - Hui Dai
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Huang H, Han L, Guo J, Zhang Y, Lin S, Chen S, Lin X, Cheng C, Guo Z, Qiu Y. Pretreatment MRI-Based Radiomics for Prediction of Rectal Cancer Outcome: A Discovery and Validation Study. Acad Radiol 2024; 31:1878-1888. [PMID: 37996362 DOI: 10.1016/j.acra.2023.10.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/22/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023]
Abstract
RATIONALE AND OBJECTIVES Accurate prediction of local recurrence or distant metastasis is critical for developing individualized therapies for locally advanced rectal cancer (LARC) patients after standard therapy. This study aims to develop and validate a multiparameter MRI-based radiomics signature (RS) for prognostic prediction in LARC patients receiving neoadjuvant chemoradiotherapy (nCRT) and total mesorectal excision (TME) and to explore the ability of RS for personalized survival risk stratification. MATERIALS AND METHODS In this multi-center study, 454 patients who received nCRT and TME and completed 3 years of follow-up participated. RS was constructed for prognostic prediction based on features extracted from pretreatment multiparameter MRI in a training cohort (TC; n = 298), which was tested in an internal validation cohort (IVC; n = 75) and further validated in an independent external validation cohort (EVC; n = 81). Furthermore, the ability of RS for personalized survival risk stratification was explored using the Kaplan-Meier survival curves. RESULTS The RS model showed satisfactory accuracy for prognostic prediction with AUCs of 0.83, 0.81 and 0.82 in the TC, IVC and EVC, respectively. In addition, RS helped to refine risk stratification for LARC patients on the basis of significantly different 3-year disease-free survival rates, independent of their pathological stage, pre-surgery CEA, and even treatment modality. CONCLUSIONS The proposed RS can be used not only to predict local recurrence or distant metastasis but also to serve as an effective postoperative survival risk stratification tool for clinicians to facilitate decision-making for LARC patients receiving standard treatment.
Collapse
Affiliation(s)
- Hongyan Huang
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, P.R. China
| | - Lujun Han
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, P.R. China
| | - Jianbo Guo
- Department of Radiology, Meizhou People's Hospital, No. 63 Huangtang Road, Meizhou 514000 P.R. China
| | - Yanyu Zhang
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Duobao AVE 56, Liwan district, Guangzhou, P.R. China
| | - Shiwei Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, P.R. China
| | - Shengli Chen
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, P.R. China
| | - Xiaoshan Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, P.R. China
| | - Caixue Cheng
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, P.R. China
| | - Zheng Guo
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Xueyuan AVE 1098, Nanshan District, Shenzhen, Guangdong 518000, P.R. China
| | - Yingwei Qiu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, P.R. China.
| |
Collapse
|
8
|
Wu MY, Han QJ, Ai Z, Liang YY, Yan HW, Xie Q, Xiang ZM. Assessment of chemotherapy resistance changes in human colorectal cancer xenografts in rats based on MRI histogram features. Front Oncol 2024; 14:1301649. [PMID: 38357206 PMCID: PMC10864667 DOI: 10.3389/fonc.2024.1301649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024] Open
Abstract
PURPOSE We investigated the value of magnetic resonance imaging (MRI) histogram features, a non-invasive method, in assessing the changes in chemoresistance of colorectal cancer xenografts in rats. METHODS A total of 50 tumor-bearing mice with colorectal cancer were randomly divided into two groups: control group and 5-fluorouracil (5-FU) group. The MRI histogram characteristics and the expression levels of p53 protein and MRP1 were obtained at 24 h, 48 h, 72 h, 120 h, and 168 h after treatment. RESULTS Sixty highly repeatable MRI histogram features were obtained. There were 16 MRI histogram parameters and MRP1 resistance protein differences between groups. At 24 h after treatment, the MRI histogram texture parameters of T2-weighted imaging (T2WI) images (10%, 90%, median, energy, and RootMeanSquared) and D images (10% and Range) were positively correlated with MRP1 (r = 0.925, p = 0.005). At 48 h after treatment, histogram texture parameters of apparent diffusion coefficient (ADC) images (Energy) were positively correlated with the presence of MRP1 resistance protein (r = 0.900, p = 0.037). There was no statistically significant difference between MRI histogram features and p53 protein expression level. CONCLUSIONS MRI histogram texture parameters based on T2WI, D, and ADC maps can help to predict the change of 5-FU resistance in colorectal cancer in the early stage and provide important reference significance for clinical treatment.
Collapse
Affiliation(s)
- Min-Yi Wu
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Qi-Jia Han
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Zhu Ai
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yu-Ying Liang
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Hao-Wen Yan
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Qi Xie
- Department of Radiology, Guangzhou First People’s Hospital/Department of Medical Imaging, Nansha Hospital, Guangzhou, Guangzhou, China
| | - Zhi-Ming Xiang
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
9
|
Di Costanzo G, Ascione R, Ponsiglione A, Tucci AG, Dell’Aversana S, Iasiello F, Cavaglià E. Artificial intelligence and radiomics in magnetic resonance imaging of rectal cancer: a review. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:406-421. [PMID: 37455833 PMCID: PMC10344900 DOI: 10.37349/etat.2023.00142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/01/2023] [Indexed: 07/18/2023] Open
Abstract
Rectal cancer (RC) is one of the most common tumours worldwide in both males and females, with significant morbidity and mortality rates, and it accounts for approximately one-third of colorectal cancers (CRCs). Magnetic resonance imaging (MRI) has been demonstrated to be accurate in evaluating the tumour location and stage, mucin content, invasion depth, lymph node (LN) metastasis, extramural vascular invasion (EMVI), and involvement of the mesorectal fascia (MRF). However, these features alone remain insufficient to precisely guide treatment decisions. Therefore, new imaging biomarkers are necessary to define tumour characteristics for staging and restaging patients with RC. During the last decades, RC evaluation via MRI-based radiomics and artificial intelligence (AI) tools has been a research hotspot. The aim of this review was to summarise the achievement of MRI-based radiomics and AI for the evaluation of staging, response to therapy, genotyping, prediction of high-risk factors, and prognosis in the field of RC. Moreover, future challenges and limitations of these tools that need to be solved to favour the transition from academic research to the clinical setting will be discussed.
Collapse
Affiliation(s)
- Giuseppe Di Costanzo
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Raffaele Ascione
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Giacoma Tucci
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Serena Dell’Aversana
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Francesca Iasiello
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Enrico Cavaglià
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| |
Collapse
|
10
|
Zhu X, Ye DD, Wang JH, Li J, Liu SW. Diagnostic performance of texture analysis in the differential diagnosis of perianal fistulising Crohn’s disease and glandular anal fistula. World J Gastrointest Surg 2023; 15:882-891. [PMID: 37342861 PMCID: PMC10277959 DOI: 10.4240/wjgs.v15.i5.882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/16/2023] [Accepted: 03/30/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Perianal fistulising Crohn's disease (PFCD) and glandular anal fistula have many similarities on conventional magnetic resonance imaging. However, many patients with PFCD show concomitant active proctitis, but only few patients with glandular anal fistula have active proctitis.
AIM To explore the value of differential diagnosis of PFCD and glandular anal fistula by comparing the textural feature parameters of the rectum and anal canal in fat suppression T2-weighted imaging (FS-T2WI).
METHODS Patients with rectal water sac implantation were screened from the first part of this study (48 patients with PFCD and 22 patients with glandular anal fistula). Open-source software ITK-SNAP (Version 3.6.0, http://www.itksnap.org/) was used to delineate the region of interest (ROI) of the entire rectum and anal canal wall on every axial section, and then the ROIs were input in the Analysis Kit software (version V3.0.0.R, GE Healthcare) to calculate the textural feature parameters. Textural feature parameter differences of the rectum and anal canal wall between the PFCD group vs the glandular anal fistula group were analyzed using Mann-Whitney U test. The redundant textural parameters were screened by bivariate Spearman correlation analysis, and binary logistic regression analysis was used to establish the model of textural feature parameters. Finally, diagnostic accuracy was assessed by receiver operating characteristic-area under the curve (AUC) analysis.
RESULTS In all, 385 textural parameters were obtained, including 37 parameters with statistically significant differences between the PFCD and glandular anal fistula groups. Then, 16 texture feature parameters remained after bivariate Spearman correlation analysis, including one histogram parameter (Histogram energy); four grey level co-occurrence matrix (GLCM) parameters (GLCM energy_all direction_offset1_SD, GLCM entropy_all direction_ offset4_SD, GLCM entropy_all direction_offset7_SD, and Haralick correlation_all direction_ offset7_SD); four texture parameters (Correlation_all direction_offset1_SD, cluster prominence _angle 90_offset4, Inertia_all direction_offset7_SD, and cluster shade_angle 45_offset7); five grey level run-length matrix parameters (grey level nonuniformity_angle 90_offset1, grey level nonuniformity_all direction_offset4_SD, long run high grey level emphasis_all direction_offset1_SD, long run emphasis_all direction_ offset4_ SD, and long run high grey level emphasis_all direction_offset4_SD); and two form factor parameters (surface area and maximum 3D diameter). The AUC, sensitivity, and specificity of the model of textural feature parameters were 0.917, 85.42%, and 86.36%, respectively.
CONCLUSION The model of textural feature parameters showed good diagnostic performance for PFCD. The texture feature parameters of the rectum and anal canal in FS-T2WI are helpful to distinguish PFCD from glandular anal fistula.
Collapse
Affiliation(s)
- Xin Zhu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Dan-Dan Ye
- Department of Radiology, Quanzhou Orthopedic-Traumatological Hospital, Quanzhou 362000, Fujian Province, China
| | - Jian-Hua Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Jing Li
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Shao-Wei Liu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
11
|
Wang C, Ma Y, Liu Y, Li L, Cui C, Qin H, Zhao Z, Li C, Ju W, Chen M, Li D, Zhou W. Texture analysis of SPECT myocardial perfusion provides prognostic value for dilated cardiomyopathy. J Nucl Cardiol 2023; 30:504-515. [PMID: 35676551 DOI: 10.1007/s12350-022-03006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Texture analysis (TA) has demonstrated clinical values in extracting information, quantifying inhomogeneity, evaluating treatment outcomes, and predicting long-term prognosis for cardiac diseases. The aim of this study was to explore whether TA of SPECT myocardial perfusion could contribute to improving the prognosis of dilated cardiomyopathy (DCM) patients. METHODS Eighty-eight patients were recruited in our study between 2009 and 2020 who were diagnosed with DCM and underwent single-photon emission tomography myocardial perfusion imaging (SPECT MPI). Forty TA features were obtained from quantitative analysis of SPECT imaging in subjects with myocardial perfusion at rest. All patients were divided into two groups: the all-cause death group and the survival group. The prognostic value of texture parameters was assessed by Cox regression and Kaplan-Meier analysis. RESULTS Twenty-five all-cause deaths (28.4%) were observed during the follow-up (39.2±28.7 months). Compared with the survival group, NT-proBNP and total perfusion deficit (TPD) were higher and left ventricular ejection fraction (LVEF) was lower in the all-cause death group. In addition, 26 out of 40 texture parameters were significantly different between the two groups. Univariate Cox regression analysis revealed that NT-proBNP, LVEF, and 25 texture parameters were significantly associated with all-cause death. The multivariate Cox regression analysis showed that low gray-level emphasis (LGLE) (P = 0.010, HR = 4.698, 95% CI 1.457-15.145) and long-run low gray-level emphasis (LRLGE) (P =0.002, HR = 6.085, 95% CI 1.906-19.422) were independent predictors of the survival outcome. When added to clinical parameters, LVEF, TPD, and TA parameters, including LGLE and LRLGE, were incrementally associated with all-cause death (global chi-square statistic of 26.246 vs. 33.521; P = 0.028, global chi-square statistic of 26.246 vs. 34.711; P = 0.004). CONCLUSION TA based on gated SPECT MPI could discover independent prognostic predictors of all-cause death in medically treated patients with DCM. Moreover, TA parameters, including LGLE and LRLGE, independent of the total perfusion deficit of the cardiac myocardium, appeared to provide incremental prognostic value for DCM patients.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Ying Ma
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Yanyun Liu
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Shaanxi, 710126, China
| | - Longxi Li
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Chang Cui
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Huiyuan Qin
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Zhongqiang Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Chunxiang Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Weizhu Ju
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Minglong Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Dianfu Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Weihua Zhou
- Department of Applied Computing, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA.
- Center for Biocomputing and Digital Health, Institute of Computing and Cybersystems, and Health Research Institute, Michigan Technological University, Houghton, USA.
| |
Collapse
|
12
|
Wang H, Chen X, Ding J, Deng S, Mao G, Tian S, Zhu X, Ao W. Novel multiparametric MRI-based radiomics in preoperative prediction of perirectal fat invasion in rectal cancer. Abdom Radiol (NY) 2023; 48:471-485. [PMID: 36508131 DOI: 10.1007/s00261-022-03759-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To investigate the feasibility and efficacy of a nomogram that combines clinical and radiomic features of magnetic resonance imaging (MRI) for preoperative perirectal fat invasion (PFI) prediction in rectal cancer. METHODS This was a retrospective study. A total of 363 patients from two centers were included in the study. Patients in the first center were randomly divided into training cohort (n = 212) and internal validation cohort (n = 91) at the ratio of 7:3. Patients in the second center were allocated to the external validation cohort (n = 60). Among the training cohort, the numbers of patients who were PFI positive and PFI negative were 108 and 104, respectively. The radiomics features of preoperative T2-weighted images, diffusion-weighted images and enhanced T1-weighted images were extracted, and the total Radscore of each patient was obtained. We created Clinic model and Radscore model, respectively, according to clinical data or Radscore only. And that, we assembled the combined model using the clinical data and Radscore. We used DeLong's test, receiver operating characteristic, calibration and decision curve analysis to assess the models' performance. RESULTS The three models had good performance. Clinic model and Radscore model showed equivalent performance with AUCs of 0.85, 0.82 (accuracy of 81%, 81%) in the training cohort, AUCs of 0.78, 0.86 (accuracy of 74%, 84%) in the internal cohort, and 0.84, 0.84 (accuracy of 80%, 82%) in the external cohort without statistical difference (DeLong's test, p > 0.05). AUCs and accuracy of Combined model were 0.89 and 87%, 0.90 and 88%, and 0.90 and 88% in the three cohorts, respectively, which were higher than that of Clinic model and Radscore model, but only in the training cohort with a statistical difference (DeLong's test, p < 0.05). The calibration curves of the nomogram exhibited acceptable consistency, and the decision curve analysis indicated higher net benefit in clinical practice. CONCLUSION A nomogram combining clinical and radiomic features of MRI to compute the probability of PFI in rectal cancer was developed and validated. It has the potential to serve as a preoperative biomarker for predicting pathological PFI of rectal cancer.
Collapse
Affiliation(s)
- Hui Wang
- Department of Radiology, Tongde Hospital of Zhejiang Province, No. 234, Gucui Road, Hangzhou, 310012, Zhejiang, China
| | - Xiaoyong Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jingfeng Ding
- Department of Radiology, Shanghai Putuo District People's Hospital, Shanghai, China
| | - Shuitang Deng
- Department of Radiology, Tongde Hospital of Zhejiang Province, No. 234, Gucui Road, Hangzhou, 310012, Zhejiang, China
| | - Guoqun Mao
- Department of Radiology, Tongde Hospital of Zhejiang Province, No. 234, Gucui Road, Hangzhou, 310012, Zhejiang, China
| | - Shuyuan Tian
- Department of Ultrasound, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiandi Zhu
- Department of Radiology, Tongde Hospital of Zhejiang Province, No. 234, Gucui Road, Hangzhou, 310012, Zhejiang, China
| | - Weiqun Ao
- Department of Radiology, Tongde Hospital of Zhejiang Province, No. 234, Gucui Road, Hangzhou, 310012, Zhejiang, China.
| |
Collapse
|
13
|
Jin J, Zhou H, Sun S, Tian Z, Ren H, Feng J, Jiang X. Machine learning based gray-level co-occurrence matrix early warning system enables accurate detection of colorectal cancer pelvic bone metastases on MRI. Front Oncol 2023; 13:1121594. [PMID: 37035167 PMCID: PMC10073745 DOI: 10.3389/fonc.2023.1121594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
Objective The mortality of colorectal cancer patients with pelvic bone metastasis is imminent, and timely diagnosis and intervention to improve the prognosis is particularly important. Therefore, this study aimed to build a bone metastasis prediction model based on Gray level Co-occurrence Matrix (GLCM) - based Score to guide clinical diagnosis and treatment. Methods We retrospectively included 614 patients with colorectal cancer who underwent pelvic multiparameter magnetic resonance image(MRI) from January 2015 to January 2022 in the gastrointestinal surgery department of Gezhouba Central Hospital of Sinopharm. GLCM-based Score and Machine learning algorithm, that is,artificial neural net7work model(ANNM), random forest model(RFM), decision tree model(DTM) and support vector machine model(SVMM) were used to build prediction model of bone metastasis in colorectal cancer patients. The effectiveness evaluation of each model mainly included decision curve analysis(DCA), area under the receiver operating characteristic (AUROC) curve and clinical influence curve(CIC). Results We captured fourteen categories of radiomics data based on GLCM for variable screening of bone metastasis prediction models. Among them, Haralick_90, IV_0, IG_90, Haralick_30, CSV, Entropy and Haralick_45 were significantly related to the risk of bone metastasis, and were listed as candidate variables of machine learning prediction models. Among them, the prediction efficiency of RFM in combination with Haralick_90, Haralick_all, IV_0, IG_90, IG_0, Haralick_30, CSV, Entropy and Haralick_45 in training set and internal verification set was [AUC: 0.926,95% CI: 0.873-0.979] and [AUC: 0.919,95% CI: 0.868-0.970] respectively. The prediction efficiency of the other four types of prediction models was between [AUC: 0.716,95% CI: 0.663-0.769] and [AUC: 0.912,95% CI: 0.859-0.965]. Conclusion The automatic segmentation model based on diffusion-weighted imaging(DWI) using depth learning method can accurately segment the pelvic bone structure, and the subsequently established radiomics model can effectively detect bone metastases within the pelvic scope, especially the RFM algorithm, which can provide a new method for automatically evaluating the pelvic bone turnover of colorectal cancer patients.
Collapse
|
14
|
Li H, Wang B, Wang Y. 2'-Fucosyllactose Suppresses Angiogenesis and Alleviates Toxic Effects of 5-Fu in a HCT116 Colon Tumor-Bearing Model. Molecules 2022; 27:7255. [PMID: 36364081 PMCID: PMC9658278 DOI: 10.3390/molecules27217255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 08/29/2023] Open
Abstract
The present study was aimed at examining the anti-tumor effects and molecular mechanisms of 2'-fucosyllactose (2'-FL). At the beginning, the viabilities of four types of colon cancer cells were analyzed after exposure to increasing concentrations of 2'-FL, and HCT116 cells were selected as the sensitive ones, which were applied in the further experiments; then, interestingly, 2'-FL (102.35 µM) was found to induce apoptosis of HCT116 cells, which coincides with significant changes in VEGFA/VEGFR2/p-PI3K/p-Akt/cleaved Caspase3 proteins. Next, in a tumor-bearing nude mouse model, HCT116 was chosen as the sensitive cell line, and 5-fluorouracil (5-Fu) was chosen as the positive medicine. It was noteworthy that both 2'-FL group (2.41 ± 0.57 g) and 2'FL/5-Fu group (1.22 ± 0.35 g) had a significantly lower tumor weight compared with the control (3.87 ± 0.79 g), suggesting 2'-FL could inhibit colon cancer. Since 2'-FL reduced the number of new blood vessels and the malignancy of tumors, we confirmed that 2'-FL effectively inhibited HCT116 tumors, and its mechanism was achieved by regulating the VEGFA/VEGFR2/PI3K/Akt/Caspase3 pathway. Moreover, though HE staining and organ index measurement, 2'-FL was validated to alleviate toxic effects on liver and kidney tissue when combining with 5-Fu. In conclusion, 2'-FL had certain anti-tumor and detoxification effects.
Collapse
Affiliation(s)
- Huiying Li
- Beijing Key Laboratory of Food Processing and Safety in Forest, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Bingyuan Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Wang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Wang L, Feng B, Wang S, Hu J, Liang M, Li D, Wang S, Ma X, Zhao X. Diagnostic value of whole-tumor apparent diffusion coefficient map radiomics analysis in predicting early recurrence of solitary hepatocellular carcinoma ≤ 5 cm. ABDOMINAL RADIOLOGY (NEW YORK) 2022; 47:3290-3300. [PMID: 35776146 DOI: 10.1007/s00261-022-03582-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE To evaluate the role of whole-tumor radiomics analysis of apparent diffusion coefficient (ADC) maps in predicting early recurrence (ER) of solitary hepatocellular carcinoma (HCC) ≤ 5 cm and compare the diagnostic efficiency of whole-tumor and single-slice ADC measurements. METHODS One hundred and seventy patients with primary HCC were randomly divided into the training set (n = 119) and the test set (n = 51). The diagnostic efficiency was compared between the whole-tumor and single-slice ADC measurements. The clinical-radiological model was established by selected significant clinical characteristics and qualitative imaging features. The radiomics model was constructed using the least absolute shrinkage and selection operator (LASSO) logistic regression algorithm. The significant clinical-radiological risk factors and radiomics features were integrated to develop the combined model. Receiver operating characteristic (ROC) curves were used for evaluating the predictive performance. RESULTS Cirrhosis, age, and albumin were significantly associated with ER in the clinical-radiological model selected by the random forest classifier. The diagnostic efficiency of the whole-tumor ADC measurements was slight higher than that of the single-slice (AUC = 0.602 and 0.586, respectively). The clinical-radiological model (AUC = 0.84 and 0.82 in the training and test sets, respectively) showed better diagnostic performance than the radiomics model (AUC = 0.70 and 0.69 in the training and test sets, respectively) in predicting ER. The combined model showed optimal predictive performance with the highest AUC values of 0.88 and 0.85 in the training and test sets, respectively. CONCLUSIONS The whole-tumor ADC measurements performed better than the single-slice ADC measurements. The clinical-radiological model performed better than the radiomics model for predicting ER in patients with solitary HCC ≤ 5 cm.
Collapse
Affiliation(s)
- Leyao Wang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bing Feng
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Sicong Wang
- Magnetic Resonance Imaging Research, General Electric Healthcare (China), Beijing, 100176, China
| | - Jiesi Hu
- Institute of Electronical and Information Engineering, Harbin Institute of Technology at Shenzhen, Shenzhen, 518055, China
| | - Meng Liang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dengfeng Li
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuang Wang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaohong Ma
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xinming Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
16
|
Ability of Delta Radiomics to Predict a Complete Pathological Response in Patients with Loco-Regional Rectal Cancer Addressed to Neoadjuvant Chemo-Radiation and Surgery. Cancers (Basel) 2022; 14:cancers14123004. [PMID: 35740669 PMCID: PMC9221458 DOI: 10.3390/cancers14123004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The present study aimed to investigate the possible use of MRI delta texture analysis (D-TA) in order to predict the extent of pathological response in patients with locally advanced rectal cancer addressed to neoadjuvant chemo-radiotherapy (C-RT) followed by surgery. We found that D-TA may really predict the frequency of pCR in this patient setting and, thus, it may be investigated as a potential item to identify candidate patients who may benefit from an aggressive radical surgery. Abstract We performed a pilot study to evaluate the use of MRI delta texture analysis (D-TA) as a methodological item able to predict the frequency of complete pathological responses and, consequently, the outcome of patients with locally advanced rectal cancer addressed to neoadjuvant chemoradiotherapy (C-RT) and subsequently, to radical surgery. In particular, we carried out a retrospective analysis including 100 patients with locally advanced rectal adenocarcinoma who received C-RT and then radical surgery in three different oncological institutions between January 2013 and December 2019. Our experimental design was focused on the evaluation of the gross tumor volume (GTV) at baseline and after C-RT by means of MRI, which was contoured on T2, DWI, and ADC sequences. Multiple texture parameters were extracted by using a LifeX Software, while D-TA was calculated as percentage of variations in the two time points. Both univariate and multivariate analysis (logistic regression) were, therefore, carried out in order to correlate the above-mentioned TA parameters with the frequency of pathological responses in the examined patients’ population focusing on the detection of complete pathological response (pCR, with no viable cancer cells: TRG 1) as main statistical endpoint. ROC curves were performed on three different datasets considering that on the 21 patients, only 21% achieved an actual pCR. In our training dataset series, pCR frequency significantly correlated with ADC GLCM-Entropy only, when univariate and binary logistic analysis were performed (AUC for pCR was 0.87). A confirmative binary logistic regression analysis was then repeated in the two remaining validation datasets (AUC for pCR was 0.92 and 0.88, respectively). Overall, these results support the hypothesis that D-TA may have a significant predictive value in detecting the occurrence of pCR in our patient series. If confirmed in prospective and multicenter trials, these results may have a critical role in the selection of patients with locally advanced rectal cancer who may benefit form radical surgery after neoadjuvant chemoradiotherapy.
Collapse
|
17
|
Borgheresi A, De Muzio F, Agostini A, Ottaviani L, Bruno A, Granata V, Fusco R, Danti G, Flammia F, Grassi R, Grassi F, Bruno F, Palumbo P, Barile A, Miele V, Giovagnoni A. Lymph Nodes Evaluation in Rectal Cancer: Where Do We Stand and Future Perspective. J Clin Med 2022; 11:2599. [PMID: 35566723 PMCID: PMC9104021 DOI: 10.3390/jcm11092599] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022] Open
Abstract
The assessment of nodal involvement in patients with rectal cancer (RC) is fundamental in disease management. Magnetic Resonance Imaging (MRI) is routinely used for local and nodal staging of RC by using morphological criteria. The actual dimensional and morphological criteria for nodal assessment present several limitations in terms of sensitivity and specificity. For these reasons, several different techniques, such as Diffusion Weighted Imaging (DWI), Intravoxel Incoherent Motion (IVIM), Diffusion Kurtosis Imaging (DKI), and Dynamic Contrast Enhancement (DCE) in MRI have been introduced but still not fully validated. Positron Emission Tomography (PET)/CT plays a pivotal role in the assessment of LNs; more recently PET/MRI has been introduced. The advantages and limitations of these imaging modalities will be provided in this narrative review. The second part of the review includes experimental techniques, such as iron-oxide particles (SPIO), and dual-energy CT (DECT). Radiomics analysis is an active field of research, and the evidence about LNs in RC will be discussed. The review also discusses the different recommendations between the European and North American guidelines for the evaluation of LNs in RC, from anatomical considerations to structured reporting.
Collapse
Affiliation(s)
- Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
| | - Federica De Muzio
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Andrea Agostini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, 60126 Ancona, Italy;
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
| | - Letizia Ottaviani
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, 60126 Ancona, Italy;
| | - Alessandra Bruno
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale IRCCS di Napoli, 80131 Naples, Italy;
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Napoli, Italy
| | - Ginevra Danti
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy;
| | - Federica Flammia
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy;
| | - Roberta Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy
| | - Francesca Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy
| | - Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Pierpaolo Palumbo
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Abruzzo Health Unit 1, Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, 67100 L’Aquila, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy;
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, 60126 Ancona, Italy;
| |
Collapse
|
18
|
Mizutani C, Matsuhashi N, Tomita H, Takahashi T, Suetsugu T, Tajima JY, Kiyama S, Yasufuku I, Tanaka Y, Okumura N, Murase K, Futamura M, Kawaguchi M, Ishihara T, Matsuo M, Miyazaki T, Hara A, Yoshida K. Predictive Value of the Prognostic Nutritional Index in Neoadjuvant Chemoradiotherapy for Rectal Cancer. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:38-48. [PMID: 35400011 PMCID: PMC8962848 DOI: 10.21873/cdp.10074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND/AIM Prognostic nutritional index (PNI) and neutrophil-to-lymphocyte ratio (NLR) indicate nutritional status and host immunity. We used immunohistochemistry and apparent diffusion coefficient (ADC) values calculated using diffusion-weighted imaging (DWI) to investigate relationships of these factors with pathological and radiological characteristics in rectal cancer treated with neoadjuvant chemoradiotherapy (nCRT). PATIENTS AND METHODS We evaluated expression levels of VEGFA, CD8, CD33, and ADC values in tumors pre/post nCRT; and analyzed the relationships between those factors and PNI, NLR in 32 patients. RESULTS Pretreatment PNI negatively correlated with change in tumor stromal CD8 + T cells and positively correlated with ADC values. Pretreatment NLR and PNI change correlated with recurrence-free survival (RFS). CONCLUSION Patients with higher pretreatment PNI had greater changes in ADC values and stromal CD8 + T-cell counts, and those with greater PNI reduction from nCRT had a worse prognosis. Proper nutritional management during nCRT benefits patients and may lead to better prognosis in rectal cancer.
Collapse
Affiliation(s)
- Chika Mizutani
- Department of Gastroenterological Surgery/Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Nobuhisa Matsuhashi
- Department of Gastroenterological Surgery/Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takao Takahashi
- Department of Gastroenterological Surgery/Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomonari Suetsugu
- Department of Gastroenterological Surgery/Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Jesse Yu Tajima
- Department of Gastroenterological Surgery/Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shigeru Kiyama
- Department of Gastroenterological Surgery/Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Itaru Yasufuku
- Department of Gastroenterological Surgery/Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yoshihiro Tanaka
- Department of Gastroenterological Surgery/Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Naoki Okumura
- Department of Gastroenterological Surgery/Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Katsutoshi Murase
- Department of Gastroenterological Surgery/Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Manabu Futamura
- Department of Breast Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masaya Kawaguchi
- Department of Radiology, Gifu University School of Medicine, Gifu, Japan
| | - Takuma Ishihara
- Innovative and Clinical Research Promotion Center, Gifu University Hospital, Gifu, Japan
| | - Masayuki Matsuo
- Department of Radiology, Gifu University School of Medicine, Gifu, Japan
| | | | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuhiro Yoshida
- Department of Gastroenterological Surgery/Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
19
|
Response prediction of neoadjuvant chemoradiation therapy in locally advanced rectal cancer using CT-based fractal dimension analysis. Eur Radiol 2021; 32:2426-2436. [PMID: 34643781 DOI: 10.1007/s00330-021-08303-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES There are individual variations in neo-adjuvant chemoradiation therapy (nCRT) in patients with locally advanced rectal cancer (LARC). No reliable modality currently exists that can predict the efficacy of nCRT. The purpose of this study is to assess if CT-based fractal dimension and filtration-histogram texture analysis can predict therapeutic response to nCRT in patients with LARC. METHODS In this retrospective study, 215 patients (average age: 57 years (18-87 years)) who received nCRT for LARC between June 2005 and December 2016 and underwent a staging diagnostic portal venous phase CT were identified. The patients were randomly divided into two datasets: a training set (n = 170), and a validation set (n = 45). Tumor heterogeneity was assessed on the CT images using fractal dimension (FD) and filtration-histogram texture analysis. In the training set, the patients with pCR and non-pCR were compared in univariate analysis. Logistic regression analysis was applied to identify the predictive value of efficacy of nCRT and receiver operating characteristic analysis determined optimal cutoff value. Subsequently, the most significant parameter was assessed in the validation set. RESULTS Out of the 215 patients evaluated, pCR was reached in 20.9% (n = 45/215) patients. In the training set, 7 out of 37 texture parameters showed significant difference comparing between the pCR and non-pCR groups and logistic multivariable regression analysis incorporating clinical and 7 texture parameters showed that only FD was associated with pCR (p = 0.001). The area under the curve of FD was 0.76. In the validation set, we applied FD for predicting pCR and sensitivity, specificity, and accuracy were 60%, 89%, and 82%, respectively. CONCLUSION FD on pretreatment CT is a promising parameter for predicting pCR to nCRT in patients with LARC and could be used to help make treatment decisions. KEY POINTS • Fractal dimension analysis on pretreatment CT was associated with response to neo-adjuvant chemoradiation in patients with locally advanced rectal cancer. • Fractal dimension is a promising biomarker for predicting pCR to nCRT and may potentially select patients for individualized therapy.
Collapse
|
20
|
Lin X, Zhao S, Jiang H, Jia F, Wang G, He B, Jiang H, Ma X, Li J, Shi Z. A radiomics-based nomogram for preoperative T staging prediction of rectal cancer. Abdom Radiol (NY) 2021; 46:4525-4535. [PMID: 34081158 PMCID: PMC8435521 DOI: 10.1007/s00261-021-03137-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
Purpose To investigate the value of a radiomics-based nomogram in predicting preoperative T staging of rectal cancer. Methods A total of 268 eligible rectal cancer patients from August 2012 to December 2018 were enrolled and allocated into two datasets: training (n = 188) and validation datasets (n = 80). Another set of 32 patients from January 2019 to July 2019 was included in a prospective analysis. Pretreatment T2-weighted images were used to radiomics features extraction. Feature selection and radiomics score (Rad-score) construction were performed through a least absolute shrinkage and selection operator regression analysis. The nomogram, which included Rad-scores and clinical factors, was built using multivariate logistic regression. Discrimination, calibration, and clinical utility were used to evaluate the performance of the nomogram. Results The Rad-score containing nine selected features was significantly related to T staging. Patients who had locally advanced rectal cancer (LARC) generally had higher Rad-scores than patients with early-stage rectal cancer. The nomogram incorporated Rad-scores and carcinoembryonic antigen levels and showed good discrimination, with an area under the curve (AUC) of 0.882 (95% confidence interval [CI] 0.835–0.930) in the training dataset and 0.846 (95% CI 0.757–0.936) in the validation dataset. The calibration curves confirmed high goodness of fit, and the decision curve analysis revealed the clinical value. A prospective analysis demonstrated that the AUC of the nomogram to predict LARC was 0.859 (95% CI 0.730–0.987). Conclusion A radiomics-based nomogram is a novel method for predicting LARC and can provide support in clinical decision making. Supplementary Information The online version contains supplementary material available at 10.1007/s00261-021-03137-1.
Collapse
Affiliation(s)
- Xue Lin
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Research Lab for Medical Imaging and Digital Surgery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Sheng Zhao
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huijie Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Fucang Jia
- Research Lab for Medical Imaging and Digital Surgery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Guisheng Wang
- Department of Radiology, the Third medical centre, Chinese PLA General Hospital, Beijing, China.
| | - Baochun He
- Research Lab for Medical Imaging and Digital Surgery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hao Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao Ma
- Research Lab for Medical Imaging and Digital Surgery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jinping Li
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongxing Shi
- Department of Interventional Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
21
|
The Role of Heart Rate, Body Temperature, and Respiratory Rate in Predicting Anastomotic Leakage following Surgery for Rectal Cancer. Mediators Inflamm 2021; 2021:8698923. [PMID: 34456630 PMCID: PMC8390156 DOI: 10.1155/2021/8698923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022] Open
Abstract
Objective To explore the value of the heart rate, body temperature, and respiratory rate in the early prediction of anastomotic leakage after rectal cancer surgery. Methods Clinical data from patients with rectal cancer who underwent anterior rectal resection in the Department of Gastroenterology, Renmin Hospital of Wuhan University, from January 2017 to December 2019 were collected and analyzed retrospectively. Based on the occurrence of anastomotic leakage after surgery, the patients were divided into two groups: those with and without anastomotic leakage. The quantitative values of the heart rate, body temperature, and respiration rate at day 7 postsurgery were compared between the two groups. The ROC curve was used to analyze their role in the early prediction of anastomotic leakage. Results Among 441 patients with rectal cancer, 30 (6.81%) had clinical anastomotic leakage and were diagnosed at 7 ± 3 days postsurgery. Within 7 days postsurgery, the heart rate, body temperature, and respiratory rate in the anastomotic leakage group were higher than those in the nonanastomotic leakage group. The differences in heart rate (1-5 d), body temperature (2-7 d), and respiratory rate (1-7 d) were statistically significant (P < 0.05). The three ROC curves were drawn, respectively. The predictive value of the heart rate is greatest at days 2-3 postsurgery. The predictive value of the body temperature is greatest at days 4-6 postsurgery. The predictive value of the respiratory rate is best at days 1-4 postsurgery. Conclusion The changes of vital signs (heart rate, body temperature, and respiratory rate) have a certain value in the early prediction of anastomotic leakage after rectal cancer surgery. Observation of postoperative vital signs at 7 days postsurgery is helpful for the early diagnosis of anastomotic leakage.
Collapse
|
22
|
Stanzione A, Verde F, Romeo V, Boccadifuoco F, Mainenti PP, Maurea S. Radiomics and machine learning applications in rectal cancer: Current update and future perspectives. World J Gastroenterol 2021; 27:5306-5321. [PMID: 34539134 PMCID: PMC8409167 DOI: 10.3748/wjg.v27.i32.5306] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/13/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
The high incidence of rectal cancer in both sexes makes it one of the most common tumors, with significant morbidity and mortality rates. To define the best treatment option and optimize patient outcome, several rectal cancer biological variables must be evaluated. Currently, medical imaging plays a crucial role in the characterization of this disease, and it often requires a multimodal approach. Magnetic resonance imaging is the first-choice imaging modality for local staging and restaging and can be used to detect high-risk prognostic factors. Computed tomography is widely adopted for the detection of distant metastases. However, conventional imaging has recognized limitations, and many rectal cancer characteristics remain assessable only after surgery and histopathology evaluation. There is a growing interest in artificial intelligence applications in medicine, and imaging is by no means an exception. The introduction of radiomics, which allows the extraction of quantitative features that reflect tumor heterogeneity, allows the mining of data in medical images and paved the way for the identification of potential new imaging biomarkers. To manage such a huge amount of data, the use of machine learning algorithms has been proposed. Indeed, without prior explicit programming, they can be employed to build prediction models to support clinical decision making. In this review, current applications and future perspectives of artificial intelligence in medical imaging of rectal cancer are presented, with an imaging modality-based approach and a keen eye on unsolved issues. The results are promising, but the road ahead for translation in clinical practice is rather long.
Collapse
Affiliation(s)
- Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples 80131, Italy
| | - Francesco Verde
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples 80131, Italy
| | - Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples 80131, Italy
| | - Francesca Boccadifuoco
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples 80131, Italy
| | - Pier Paolo Mainenti
- Institute of Biostructures and Bioimaging, National Council of Research, Napoli 80131, Italy
| | - Simone Maurea
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples 80131, Italy
| |
Collapse
|
23
|
You J, Yin J. Performances of Whole Tumor Texture Analysis Based on MRI: Predicting Preoperative T Stage of Rectal Carcinomas. Front Oncol 2021; 11:678441. [PMID: 34414105 PMCID: PMC8369414 DOI: 10.3389/fonc.2021.678441] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/19/2021] [Indexed: 12/29/2022] Open
Abstract
Objective To determine whether there is a correlation between texture features extracted from high-resolution T2-weighted imaging (HR-T2WI) or apparent diffusion coefficient (ADC) maps and the preoperative T stage (stages T1–2 versus T3–4) in rectal carcinomas. Materials and Methods One hundred and fifty four patients with rectal carcinomas who underwent preoperative HR-T2WI and diffusion-weighted imaging were enrolled. Patients were divided into training (n = 89) and validation (n = 65) cohorts. 3D Slicer was used to segment the entire volume of interest for whole tumors based on HR-T2WI and ADC maps. The least absolute shrinkage and selection operator (LASSO) was performed to select feature. The significantly difference was tested by the independent sample t-test and Mann-Whitney U test. The support vector machine (SVM) model was used to develop classification models. The correlation between features and T stage was assessed by Spearman’s correlation analysis. Multivariate logistic regression analysis was performed to identify independent predictors of tumor invasion. The performance of classifiers was evaluated by the receiver operating characteristic (ROC) curves. Results The wavelet HHH NGTDM strength (RS = -0.364, P < 0.001) from HR-T2WI was an independent predictor of stage T3–4 tumors. The shape maximum 2D diameter column (RS = 0.431, P < 0.001), log σ = 5.0 mm 3D first-order maximum (RS = 0.276, P = 0.009), and log σ = 5.0 mm 3D first-order interquartile range (RS = -0.229, P = 0.032) from ADC maps were independent predictors. In training cohorts, the classification models from HR-T2WI, ADC maps and the combination of two achieved the area under the ROC curves (AUCs) of 0.877, 0.902 and 0.941, with the accuracy of 79.78%, 89.86% and 89.89%, respectively. In validation cohorts, the three models achieved AUCs of 0.845, 0.881 and 0.910, with the accuracy of 78.46%, 83.08% and 87.69%, respectively. Conclusions Texture analysis based on ADC maps shows more potential than HR-T2WI in identifying preoperative T stage in rectal carcinomas. The combined application of HR-T2WI and ADC maps may help to improve the accuracy of preoperative diagnosis of rectal cancer invasion.
Collapse
Affiliation(s)
- Jia You
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiandong Yin
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
24
|
Radiomics Nomogram Based on Radiomics Score from Multiregional Diffusion-Weighted MRI and Clinical Factors for Evaluating HER-2 2+ Status of Breast Cancer. Diagnostics (Basel) 2021; 11:diagnostics11081491. [PMID: 34441425 PMCID: PMC8395031 DOI: 10.3390/diagnostics11081491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
This study aimed to establish and validate a radiomics nomogram using the radiomics score (rad-score) based on multiregional diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) features combined with clinical factors for evaluating HER-2 2+ status of breast cancer. A total of 223 patients were retrospectively included. Radiomic features were extracted from multiregional DWI and ADC images. Based on the intratumoral, peritumoral, and combined regions, three rad-scores were calculated using the logistic regression model. Independent parameters were selected among clinical factors and combined rad-score (com-rad-score) using multivariate logistic analysis and used to construct a radiomics nomogram. The performance of the nomogram was evaluated using calibration, discrimination, and clinical usefulness. The areas under the receiver operator characteristic curve (AUCs) of intratumoral and peritumoral rad-scores were 0.824/0.763 and 0.794/0.731 in the training and validation cohorts, respectively. Com-rad-score achieved the highest AUC (0.860/0.790) among three rad-scores. ER status and com-rad-score were selected to establish the nomogram, which yielded good discrimination (AUC: 0.883/0.848) and calibration. Decision curve analysis demonstrated the clinical value of the nomogram in the validation cohort. In conclusion, radiomics nomogram, including clinical factors and com-rad-score, showed favorable performance for evaluating HER-2 2+ status in breast cancer.
Collapse
|
25
|
Xu YS, Liu G, Zhao C, Lu SL, Long CY, Zhong HG, Chen Y, Huang LX, Liang Z. Prognostic Value of Combined Preoperative Carcinoembryonic Antigen and Prognostic Nutritional Index in Patients With Stage II-III Colon Cancer. Front Surg 2021; 8:667154. [PMID: 34355011 PMCID: PMC8329091 DOI: 10.3389/fsurg.2021.667154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/25/2021] [Indexed: 01/14/2023] Open
Abstract
Background: Tumor status can affect patient prognosis. Prognostic nutritional index (PNI), as a nutritional indicator, is closely related to the prognosis of cancer. However, few studies have examined the combined prognostic value of CEA and PNI in patients. This study investigated the relationship between CEA/PNI and prognosis of colon cancer patients. Methods: A total of 513 patients with stage II–III colon cancer who underwent curative resection at two medical centers from 2009 to 2019 were included. Clinicopathological factors were assessed and overall survival (OS) was assessed in a cohort of 413 patients. Multivariate analysis was used to identify independent prognostic variables to construct histograms predicting 1-year and 3-year OS. Data from 100 independent patients in the validation group was used to validate the prognostic model. Results: The median OS time was 33.6 months, and mortality was observed in 54 patients. Multivariate analysis revealed that preoperative CEA/PNI, lymph node metastasis, peripheral nerve invasion, operation mode, and postoperative chemotherapy were independent factors for prognosis evaluation and thus were utilized to develop the nomogram. The C-index was 0.788 in the learning set and 0.836 in the validation set. The calibration curves reached favorable consensus among the 1-, 3-year OS prediction and actual observation. Conclusion: The combined use of CEA and PNI is an independent prognostic factor and thus can serve as a basis for a model to predict the prognosis of patients with stage II–III colon cancer.
Collapse
Affiliation(s)
- Yan-Song Xu
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gang Liu
- Department of Gastrointestinal and Anorectal Surgery, Nanning First People's Hospital, Nanning, China
| | - Chang Zhao
- Department of Colorectal Surgery, The Eighth Hospital of Wuhan, Wuhan, China
| | - Shao-Long Lu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Chen-Yan Long
- Second Department of General Surgery, Zhuzhou Central Hospital, Zhuzhou, China
| | - Hua-Ge Zhong
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, China
| | - Yi Chen
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, China
| | - Ling-Xu Huang
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, China
| | - Zheng Liang
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
26
|
Zhao L, Liang M, Yang Y, Zhao X, Zhang H. Histogram models based on intravoxel incoherent motion diffusion-weighted imaging to predict nodal staging of rectal cancer. Eur J Radiol 2021; 142:109869. [PMID: 34303149 DOI: 10.1016/j.ejrad.2021.109869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/19/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE To develop a model based on histogram parameters derived from intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) for predicting the nodal staging of rectal cancer (RC). MATERIAL AND METHODS A total of 95 RC patients who underwent direct surgical resection were enrolled in this prospective study. The nodal staging on conventional magnetic resonance imaging (MRI) was evaluated according to the short axis diameter and morphological characteristics. Histogram parameters were extracted from apparent diffusion coefficient (ADC), true diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) maps. Multivariate binary logistic regression analysis was conducted to establish models for predicting nodal staging among all patients and those underestimated on conventional MRI. RESULTS The combined model based on multiple maps demonstrated superior diagnostic performance to single map models, with an area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy of 0.959, 94.3%, 88.3%, and 90.5%, respectively. The AUC of the combined model was significantly higher than that of the conventional nodal staging (P < 0.001). Additionally, 85.0% of the underestimated patients had suspicious lymph nodes with 5-8 mm short-axis diameter. The histogram model for these subgroups of patients showed good diagnostic efficacy with an AUC, sensitivity, specificity, and accuracy of 0.890, 100%, 75%, and 80.5%. CONCLUSION The histogram model based on IVIM-DWI could improve the diagnostic performance of nodal staging of RC. In addition, histogram parameters of IVIM-DWI may help to reduce the uncertainty of nodal staging in underestimated patients on conventional MRI.
Collapse
Affiliation(s)
- Li Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College. No.17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Meng Liang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College. No.17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Yang Yang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College. No.17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Xinming Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College. No.17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| | - Hongmei Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College. No.17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| |
Collapse
|
27
|
Li C, Yin J. Radiomics Based on T2-Weighted Imaging and Apparent Diffusion Coefficient Images for Preoperative Evaluation of Lymph Node Metastasis in Rectal Cancer Patients. Front Oncol 2021; 11:671354. [PMID: 34041033 PMCID: PMC8141802 DOI: 10.3389/fonc.2021.671354] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose To develop and validate a radiomics nomogram based on T2-weighted imaging (T2WI) and apparent diffusion coefficient (ADC) features for the preoperative prediction of lymph node (LN) metastasis in rectal cancer patients. Materials and Methods One hundred and sixty-two patients with rectal cancer confirmed by pathology were retrospectively analyzed, who underwent T2WI and DWI sequences. The data sets were divided into training (n = 97) and validation (n = 65) cohorts. For each case, a total of 2,752 radiomic features were extracted from T2WI, and ADC images derived from diffusion-weighted imaging. A two-sample t-test was used for prefiltering. The least absolute shrinkage selection operator method was used for feature selection. Three radiomics scores (rad-scores) (rad-score 1 for T2WI, rad-score 2 for ADC, and rad-score 3 for the combination of both) were calculated using the support vector machine classifier. Multivariable logistic regression analysis was then used to construct a radiomics nomogram combining rad-score 3 and independent risk factors. The performances of three rad-scores and the nomogram were evaluated using the area under the receiver operating characteristic curve (AUC). Decision curve analysis (DCA) was used to assess the clinical usefulness of the radiomics nomogram. Results The AUCs of the rad-score 1 and rad-score 2 were 0.805, 0.749 and 0.828, 0.770 in the training and validation cohorts, respectively. The rad-score 3 achieved an AUC of 0.879 in the training cohort and an AUC of 0.822 in the validation cohort. The radiomics nomogram, incorporating the rad-score 3, age, and LN size, showed good discrimination with the AUC of 0.937 for the training cohort and 0.884 for the validation cohort. DCA confirmed that the radiomics nomogram had clinical utility. Conclusions The radiomics nomogram, incorporating rad-score based on features from the T2WI and ADC images, and clinical factors, has favorable predictive performance for preoperative prediction of LN metastasis in patients with rectal cancer.
Collapse
Affiliation(s)
- Chunli Li
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Jiandong Yin
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
28
|
Feng H, Shi G, Liu H, Xu Q, Zhang N, Kuang J. Free-breathing radial volumetric interpolated breath-hold examination sequence and dynamic contrast-enhanced MRI combined with diffusion-weighted imaging for assessment of solitary pulmonary nodules. Magn Reson Imaging 2020; 75:100-106. [PMID: 33096226 DOI: 10.1016/j.mri.2020.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/27/2020] [Accepted: 10/18/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To test the performance of free-breathing Dynamic Contrast-Enhanced MRI (DCE-MRI) using a radial volumetric interpolated breath-hold examination (VIBE) sequence combined with diffusion-weighted imaging (DWI) for quantitative solitary pulmonary nodule (SPN) assessment. METHODS A total of 67 SPN cases receiving routine MRI routine scans, DWI, and dynamic-enhanced MRI in our hospital from May 2017 to November 2018 were collected. These cases were divided into a malignant group and a benign group according to the characteristics of the SPNs. The quantitative DCE-MRI parameters (Ktrans, Kep, Ve) and apparent diffusion coefficient (ADC) values of the nodules were measured. RESULTS The Ktrans and Kep values in the malignant group were higher than those in the benign group, while the ADC values in the malignant group were lower than those in the benign group. Furthermore, the Ktrans value of adenocarcinoma was higher than that of squamous cell carcinoma and small cell carcinoma (P < 0.05). The Ve value was significantly different between non-small cell carcinoma and small cell carcinoma (P < 0.05). With an ADC value of 0.98 × 10-3 mm2/s as the threshold, the specificity and sensitivity to diagnose benign and malignant nodules was 90.6% and 80%, respectively. CONCLUSION High-temporal-resolution DCE-MRI using the r-VIBE technique in combination with DWI could contribute to pulmonary nodule analysis and possibly serve as a potential alternative to distinguish malignant from benign nodules as well as differentiate different types of malignancies.
Collapse
Affiliation(s)
- Hui Feng
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Gaofeng Shi
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China.
| | - Hui Liu
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Qian Xu
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Ning Zhang
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Jie Kuang
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| |
Collapse
|