1
|
Scalzo PL, Marshall AG, Soriano S, Curry K, Dulay M, Hodics T, Quigley EMM, Treangen TJ, Piskorz MM, Villapol S. Gut Microbiome dysbiosis and immune activation correlate with somatic and neuropsychiatric symptoms in COVID-19 patients. J Transl Med 2025; 23:327. [PMID: 40087795 PMCID: PMC11907868 DOI: 10.1186/s12967-025-06348-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Infection with SARS-CoV-2, the virus responsible for COVID-19, can lead to a range of physical symptoms and mental health challenges, including stress, anxiety, and depression. These effects are particularly pronounced in hospitalized patients, likely due to the virus's direct and indirect impact on the nervous system. Gut dysbiosis, an imbalance in the gut microbiome, has been implicated in immune dysfunction and chronic inflammation in COVID-19 patients. However, the interactions between gut microbiome composition and the physical and mental symptoms of COVID-19 remain incompletely understood. METHODS We investigated the association between physical and mental symptoms, cytokine profiles, and gut microbiota composition in 124 hospitalized COVID-19 patients. We collected data on demographics, COVID-19 severity, and mental health indicators (stress, anxiety, and depression). Gut microbiome profiling was performed using full-length 16 S rRNA gene sequencing to evaluate microbial diversity and composition. RESULTS COVID-19 severity was categorized as low (27.4%), moderate (29.8%), or critical (42.8%). Common symptoms included fever (66.1%) and cough (55.6%), while somatic symptoms (27.3%), anxiety (27.3%), depressive symptoms (39%), and stress (80.5%) were frequently self-reported. Elevated interleukin-6 levels in severe cases highlighted systemic inflammation, reduced gut bacterial diversity, particularly among women and obese patients, correlated with higher disease severity. Notably, the genus Mitsuokella was associated with increased physical symptoms and mental distress, while Granulicatella was linked to critical illness. CONCLUSIONS Our findings reveal significant associations between mental health status, systemic inflammation, and gut dysbiosis in hospitalized COVID-19 patients. These results indicate the potential for microbiome-targeted therapies to mitigate psychological and physical complications and improve recovery outcomes in this population.
Collapse
Affiliation(s)
- Paula L Scalzo
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Austin G Marshall
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Sirena Soriano
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Kristen Curry
- Department of Computer Science, Rice University, Houston, TX, USA
- Department of Computational Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Mario Dulay
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Timea Hodics
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Eamonn M M Quigley
- Lynda K. and David M. Underwood Center for Digestive Health, Houston Methodist Hospital, Houston, TX, USA
| | - Todd J Treangen
- Department of Computer Science, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - María M Piskorz
- Department of Neurogastroenterology, Hospital de Clinicas José de San Martin, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sonia Villapol
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA.
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Neuroscience in Neurological Surgery, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
2
|
Zhu S, Yu Q, Xue Y, Li J, Huang Y, Liu W, Wang G, Wang L, Zhai Q, Zhao J, Zhang H, Chen W. Bifidobacterium bifidum CCFM1163 alleviates cathartic colon by activating the BDNF-TrkB-PLC/IP 3 pathway to reconstruct the intestinal nerve and barrier. Food Funct 2025; 16:2057-2072. [PMID: 39963068 DOI: 10.1039/d4fo05835f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Introduction: Cathartic colon (CC) is a type of slow-transit constipation caused by a patient's long-term use of irritating laxatives. Probiotics play a crucial role in managing constipation. Objectives: This study aims to identify probiotics that can alleviate CC and explore their specific mechanisms of action. Methods: The CC-model was constructed using senna leaf extract. Bifidobacterium bifidum was applied to the mice for intervention. Relevant marker changes were then examined using ELISA and RT-qPCR. Furthermore, 16S rDNA sequencing was utilized for functional prediction of intestinal microorganisms, while GC-MS analysis was performed to determine the content of short-chain fatty acids (SCFAs) in feces. Results: Senna damages the intestinal nerve and the intestinal barrier while inducing CC. In contrast, Bifidobacterium bifidum CCFM1163 may enhance the brain-derived neurotrophic factor (BDNF) expression in the colon by altering the intestinal microbiota composition (e.g., increasing Lactobacillus and Bacteroides, and decreasing Faecalibaculum) and by elevating SCFA levels (e.g., acetic and isobutyric acid). Subsequently, elevated BDNF expression activates the BDNF-tyrosine kinase receptor B-phospholipase C/inositol trisphosphate (BDNF-TrkB-PLC/IP3) pathway, which upregulates the gene expression of Uchl1, S100β, and Acta2; repairs the enteric nervous system-interstitial cells of Cajal-smooth muscle cells (ENS-ICC-SMC) network; upregulates the gene expression of Ocln and Tjp1; improves intestinal permeability in CC mice; and modulates the immune response by upregulating Tlr4, downregulating Il1b, and upregulating Il10, ultimately alleviating CC. Conclusion: Bifidobacterium bifidum CCFM1163 was identified as a probiotic that can promote BDNF expression in the colon, activate the BDNF-TrkB-PLC/IP3 signaling pathway, and effectively alleviate CC.
Collapse
Affiliation(s)
- Shengnan Zhu
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiangqing Yu
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yifan Xue
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiazhen Li
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yin Huang
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenxu Liu
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Scalzo PL, Marshall A, Soriano S, Curry K, Dulay M, Hodics T, Quigley EMM, Treangen TJ, Piskorz MM, Villapol S. Gut microbiome dysbiosis and immune activation correlate with somatic and neuropsychiatric symptoms in COVID-19 patients: Microbiome dysbiosis linked to COVID-19 symptoms. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.18.24317428. [PMID: 39606341 PMCID: PMC11601728 DOI: 10.1101/2024.11.18.24317428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
COVID-19 patients often exhibit altered immune responses and neuropsychiatric symptoms during hospitalization. However, the potential interactions with gut microbiome profiles have not been fully characterized. Here, COVID-19 disease severity was classified as low (27.4%), moderate (29.8%), and critical (42.8%). Fever (66.1%) and cough (55.6%) were common symptoms. Additionally, 27.3% reported somatic symptoms, 27.3% experienced anxiety, 39% had depressive symptoms, and 80.5% reported stress. Gut microbiome profiling was performed using full-length 16S rRNA gene sequencing. Elevated interleukin-6 levels were observed in the most severe cases, indicating systemic inflammation. Reduced gut bacterial diversity was more pronounced in women and obese patients and correlated with higher disease severity. The presence of the genus Mitsuokella was significantly associated with increased physical, stress, anxiety, and depressive symptoms, and Granulicatella with critically ill patients. These findings suggest a link between mental health status, systemic inflammation, and gut dysbiosis in COVID-19 patients, emphasizing the potential of microbiome-targeted therapies to improve recovery and reduce severe complications.
Collapse
Affiliation(s)
- Paula L. Scalzo
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | - Austin Marshall
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Sirena Soriano
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Kristen Curry
- Department of Computer Science, Rice University, Houston, TX, USA
- Department of Computational Biology, Institut Pasteur, Université Paris Cité, Paris 75015, France
| | - Mario Dulay
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Timea Hodics
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Eamonn MM Quigley
- Lynda K. and David M. Underwood Center for Digestive Health, Houston Methodist Hospital, Houston, TX, USA
| | - Todd J. Treangen
- Department of Computer Science, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - María M. Piskorz
- Department of Neurogastroenterology, Hospital de Clinicas José de San Martin, Universidad de Buenos Aires, Argentina
| | - Sonia Villapol
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
- Department of Neuroscience in Neurological Surgery, Weill Cornell Medical College, NY, USA
| |
Collapse
|
4
|
Santa K, Tamaki R, Watanabe K, Nagaoka I. Comparative analysis of COVID-19 responses in Japan and Africa: diet, phytochemicals, vitamin D, and gut microbiota in reducing mortality-A systematic review and meta-analysis. Front Nutr 2024; 11:1465324. [PMID: 39434894 PMCID: PMC11492870 DOI: 10.3389/fnut.2024.1465324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 10/23/2024] Open
Abstract
Background As the novel coronavirus disease 2019 (COVID-19) pandemic subsides, the clinical sequelae are becoming more problematic. Interestingly, the statistical data indicate that Africa has experienced the lowest number of cases and deaths, with an unexpected phenomenon where the number of deaths from COVID-19 has not increased significantly. Several studies have investigated the relationship between diet and coronavirus. However, no systematic review/meta-analysis has conclusively linked diet (phytochemicals and vitamin D) and the gut microbiota in the context of COVID-19. Methods This study examined the responses to COVID-19 in Japan and Africa, formulating the following hypotheses: (1) a healthy diet is effective against COVID-19, (2) blood vitamin D levels are associated with COVID-19 mortality, and (3) COVID-19 is associated with the gut microbiota. To investigate these hypotheses, a keyword search and meta-analysis were conducted using PubMed, and each hypothesis was tested. Results This study found that a healthy diet, particularly rich in phytochemicals such as polyphenols and flavonoids, is effective against COVID-19. An association was detected between blood vitamin D levels and COVID-19 mortality. The gut microbiota was linked to COVID-19 and its amelioration. These findings may have significant implications for not only understanding COVID-19 but also future prevention of pneumonia.
Collapse
Affiliation(s)
- Kazuki Santa
- Faculty of Medical Sciences, Juntendo University, Chiba, Japan
- Department of Biotechnology, Tokyo College of Biotechnology, Tokyo, Japan
| | - Raita Tamaki
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | | | - Isao Nagaoka
- Faculty of Medical Sciences, Juntendo University, Chiba, Japan
- Department of Biochemistry and Systems Biomedicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
5
|
Tarnawski AS. Editor-in-Chief articles of choice and comments at the year-end of 2023. World J Gastroenterol 2024; 30:1-8. [PMID: 38293322 PMCID: PMC10823905 DOI: 10.3748/wjg.v30.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/06/2024] Open
Abstract
As the Editor-in-Chief of World Journal of Gastroenterology, every week prior to a new issue's online publication, I perform a careful review of all encompassed articles, including the title, clinical and/or research importance, originality, novelty, and ratings by the peer reviewers. Based on this review, I select the papers of choice and suggest pertinent changes (e.g., in the title) to the Company Editors responsible for publication. This process, while time-consuming, is very important for assuring the quality of publications and highlighting important articles that Readers may revisit.
Collapse
Affiliation(s)
- Andrzej S Tarnawski
- Department of Gastroenterology Research, University of California Irvine and the Veterans Administration Long Beach Healthcare System, Long Beach, CA 90822, United States
| |
Collapse
|
6
|
He X, Gou X, Fan D, Yang J, Fu X, Luo Y, Yang T. Repurposing TAK875 as a novel STAT3 inhibitor for treating inflammatory bowel disease. Biochem Pharmacol 2024; 219:115957. [PMID: 38049007 DOI: 10.1016/j.bcp.2023.115957] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/28/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-mediated disease associated with a high recurrence rate and an elevated risk of colon cancer. In this study, we screened a bioactive compound library using a luciferase reporter assay and identified the compound TAK875 as a novel inhibitor of signal transducer and activator of transcription 3 (STAT3). Surface plasmon resonance analysis, differential scanning fluorimetry, and isothermal titration calorimetry demonstrated that TAK875 directly bound to recombinant STAT3. TAK875 suppressed the lipopolysaccharide (LPS)-induced release of nitric oxide, inducible nitric oxide synthase, and inflammatory factors in RAW264.7 cells, likely by inhibiting STAT3 phosphorylation. In addition, TAK875 inhibited the differentiation of CD4+ T cells into T-helper 17 cells, which may partially account for its anti-inflammatory effect. TAK875 also alleviated the LPS-induced accumulation of intracellular reactive oxygen species, thus displaying its antioxidant effects. Finally, we demonstrated its satisfactory anti-inflammatory effect in a dextran sulfate sodium-induced mouse model of ulcerative colitis. In conclusion, this study presented TAK875 as a novel STAT3 inhibitor and demonstrated its anti-inflammatory and antioxidant effects both in vitro and in vivo.
Collapse
Affiliation(s)
- Xinlian He
- Department of Gastroenterology and Hepatology, and Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xupeng Gou
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dongmei Fan
- Department of Gastroenterology and Hepatology, and Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiaxing Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyuan Fu
- Department of Gastroenterology and Hepatology, and Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Tao Yang
- Department of Gastroenterology and Hepatology, and Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Ge P, Luo Y, Liu J, Liu J, Wen H, Zhang G, Chen H. Eliminating COVID-19 as the immediate culprit for igniting pancreatitis. J Med Virol 2023; 95:e29272. [PMID: 38054501 DOI: 10.1002/jmv.29272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/24/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023]
Abstract
The impact of severe acute respiratory syndrome coronavirus 2 infection on the potential development of pancreatitis is a subject of ongoing debate within academic discourse. Establishing a causal link between COVID-19 and pancreatitis may not be fully supported by relying only on retrospective studies or case reports. This study examined the relationship between COVID-19 phenotypes and pancreatitis by Mendelian randomization (MR) method. The identification of instrumental variables (single nucleotide polymorphisms) that exhibit a robust association with the COVID-19 phenotypes was accomplished through a meticulous process of rigorous screening procedures. We included acute pancreatitis and chronic pancreatitis (CP) as the outcomes in the MR analysis, even though no definitive studies exist between COVID-19 and CP. A direct causal relationship between genetically predicted COVID-19 phenotypes and pancreatitis risk cannot be established. There is an ongoing debate over the designation of COVID-19 as a definitive cause of pancreatitis.
Collapse
Affiliation(s)
- Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jie Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jin Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haiyun Wen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|