1
|
Ding C, Shen Z, Zhu Y, Cheng Y. Insights into the Modification of Carbonous Felt as an Electrode for Vanadium Redox Flow Batteries. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103811. [PMID: 37241437 DOI: 10.3390/ma16103811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
The vanadium redox flow battery (VRFB) has been regarded as one of the best potential stationary electrochemical storage systems for its design flexibility, long cycle life, high efficiency, and high safety; it is usually utilized to resolve the fluctuations and intermittent nature of renewable energy sources. As one of the critical components of VRFBs to provide the reaction sites for redox couples, an ideal electrode should possess excellent chemical and electrochemical stability, conductivity, and a low price, as well as good reaction kinetics, hydrophilicity, and electrochemical activity, in order to satisfy the requirements for high-performance VRFBs. However, the most commonly used electrode material, a carbonous felt electrode, such as graphite felt (GF) or carbon felt (CF), suffers from relatively inferior kinetic reversibility and poor catalytic activity toward the V2+/V3+ and VO2+/VO2+ redox couples, limiting the operation of VRFBs at low current density. Therefore, modified carbon substrates have been extensively investigated to improve vanadium redox reactions. Here, we give a brief review of recent progress in the modification methods of carbonous felt electrodes, such as surface treatment, the deposition of low-cost metal oxides, the doping of nonmetal elements, and complexation with nanostructured carbon materials. Thus, we give new insights into the relationships between the structure and the electrochemical performance, and provide some perspectives for the future development of VRFBs. Through a comprehensive analysis, it is found that the increase in the surface area and active sites are two decisive factors that enhance the performance of carbonous felt electrodes. Based on the varied structural and electrochemical characterizations, the relationship between the surface nature and electrochemical activity, as well as the mechanism of the modified carbon felt electrodes, is also discussed.
Collapse
Affiliation(s)
- Cong Ding
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhefei Shen
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Zhu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanhui Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Lindner A, Radinger H, Scheiba F, Ehrenberg H. Structure-activity correlation of thermally activated graphite electrodes for vanadium flow batteries. RSC Adv 2022; 12:14119-14126. [PMID: 35558842 PMCID: PMC9092384 DOI: 10.1039/d2ra02368g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/30/2022] [Indexed: 11/21/2022] Open
Abstract
Thermal activation of graphite felts has proven to be a valuable technique for electrodes in vanadium flow batteries to improve their sluggish reaction kinetics. In the underlying work, a novel approach is presented to describe the morphological, microstructural, and chemical changes that occur as a result of the activation process. All surface properties were monitored at different stages of thermal activation and correlated with the electrocatalytic activity. The subsequently developed model consists of a combined ablation and damaging process observed by Raman spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy. Initially, the outermost layer of adventitious carbon is removed and sp2 layers of graphite are damaged in the oxidative atmosphere, which enhances the electrocatalytic activity by introducing small pores with sharp edges. In later stages, the concentration of reaction sites does not increase further, but the defect geometry changes significantly, leading to lower activity. This new perspective on thermal activation allows several correlations between structural and functional properties of graphite for the vanadium redox couple, describing the importance of structural defects over surface chemistry. Structural changes on the surface of graphite felts after thermal activation were monitored. Fundamental correlations led to a new model to explain the morphological evolution and its effects on the electrocatalytic activity in vanadium flow batteries.![]()
Collapse
Affiliation(s)
- Adrian Lindner
- Institute for Applied Materials, Karlsruhe Institute of Technology 76344 Eggenstein-Leopoldshafen Germany
| | - Hannes Radinger
- Institute for Applied Materials, Karlsruhe Institute of Technology 76344 Eggenstein-Leopoldshafen Germany
| | - Frieder Scheiba
- Institute for Applied Materials, Karlsruhe Institute of Technology 76344 Eggenstein-Leopoldshafen Germany
| | - Helmut Ehrenberg
- Institute for Applied Materials, Karlsruhe Institute of Technology 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
4
|
Radinger H. 2021: A Surface Odyssey. Role of Oxygen Functional Groups on Activated Carbon-Based Electrodes in Vanadium Flow Batteries. Chemphyschem 2021; 22:2498-2505. [PMID: 34643328 PMCID: PMC9297873 DOI: 10.1002/cphc.202100623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Indexed: 11/24/2022]
Abstract
The market breakthrough of vanadium flow batteries is hampered by their low power density, which depends heavily on the catalytic activity of the graphite‐based electrodes used. Researchers try to increase their performance by thermal, chemical, or electrochemical treatments but find no common activity descriptors. No consistent results exist for the so‐called oxygen functional groups, which seem to catalyze mainly the VIII/VII but rarely the VVO2+/VIVO2+ redox reaction. Some studies suggest that the activity is related to graphitic lattice defects which often contain oxygen and are therefore held responsible for inconsistent conclusions. Activation of electrodes does not change one property at a time, but rather surface chemistry and microstructure simultaneously, and the choice of starting material is crucial for subsequent observations. In this contribution, the literature on the catalytic and physicochemical properties of activated carbon‐based electrodes is analyzed and evaluated. In addition, an outlook on possible future investigations is given to avoid the propagation of contradictions.
Collapse
Affiliation(s)
- Hannes Radinger
- Institute for Applied Materials, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
5
|
Characteristics of Graphite Felt Electrodes Treated by Atmospheric Pressure Plasma Jets for an All-Vanadium Redox Flow Battery. MATERIALS 2021; 14:ma14143847. [PMID: 34300767 PMCID: PMC8304689 DOI: 10.3390/ma14143847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022]
Abstract
In an all-vanadium redox flow battery (VRFB), redox reaction occurs on the fiber surface of the graphite felts. Therefore, the VRFB performance highly depends on the characteristics of the graphite felts. Although atmospheric pressure plasma jets (APPJs) have been applied for surface modification of graphite felt electrode in VRFBs for the enhancement of electrochemical reactivity, the influence of APPJ plasma reactivity and working temperature (by changing the flow rate) on the VRFB performance is still unknown. In this work, the performance of the graphite felts with different APPJ plasma reactivity and working temperatures, changed by varying the flow rates (the conditions are denoted as APPJ temperatures hereafter), was analyzed and compared with those treated with sulfuric acid. X-ray photoelectron spectroscopy (XPS) indicated that the APPJ treatment led to an increase in O-/N-containing functional groups on the GF surface to ~21.0% as compared to ~15.0% for untreated GF and 18.0% for H2SO4-treated GF. Scanning electron microscopy (SEM) indicated that the surface morphology of graphite felt electrodes was still smooth, and no visible changes were detected after oxidation in the sulfuric acid or after APPJ treatment. The polarization measurements indicated that the APPJ treatment increased the limiting current densities from 0.56 A·cm-2 for the GFs treated by H2SO4 to 0.64, 0.68, and 0.64 A·cm-2, respectively, for the GFs APPJ-treated at 450, 550, and 650 °C, as well as reduced the activation overpotential when compared with the H2SO4-treated electrode. The electrochemical charge/discharge measurements showed that the APPJ treatment temperature of 550 °C gave the highest energy efficiency of 83.5% as compared to 72.0% with the H2SO4 treatment.
Collapse
|
6
|
Bellani S, Najafi L, Prato M, Oropesa-Nuñez R, Martín-García B, Gagliani L, Mantero E, Marasco L, Bianca G, Zappia MI, Demirci C, Olivotto S, Mariucci G, Pellegrini V, Schiavetti M, Bonaccorso F. Graphene-Based Electrodes in a Vanadium Redox Flow Battery Produced by Rapid Low-Pressure Combined Gas Plasma Treatments. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2021; 33:4106-4121. [PMID: 34267420 PMCID: PMC8274967 DOI: 10.1021/acs.chemmater.1c00763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/26/2021] [Indexed: 05/09/2023]
Abstract
The development of high-power density vanadium redox flow batteries (VRFBs) with high energy efficiencies (EEs) is crucial for the widespread dissemination of this energy storage technology. In this work, we report the production of novel hierarchical carbonaceous nanomaterials for VRFB electrodes with high catalytic activity toward the vanadium redox reactions (VO2+/VO2 + and V2+/V3+). The electrode materials are produced through a rapid (minute timescale) low-pressure combined gas plasma treatment of graphite felts (GFs) in an inductively coupled radio frequency reactor. By systematically studying the effects of either pure gases (O2 and N2) or their combination at different gas plasma pressures, the electrodes are optimized to reduce their kinetic polarization for the VRFB redox reactions. To further enhance the catalytic surface area of the electrodes, single-/few-layer graphene, produced by highly scalable wet-jet milling exfoliation of graphite, is incorporated into the GFs through an infiltration method in the presence of a polymeric binder. Depending on the thickness of the proton-exchange membrane (Nafion 115 or Nafion XL), our optimized VRFB configurations can efficiently operate within a wide range of charge/discharge current densities, exhibiting energy efficiencies up to 93.9%, 90.8%, 88.3%, 85.6%, 77.6%, and 69.5% at 25, 50, 75, 100, 200, and 300 mA cm-2, respectively. Our technology is cost-competitive when compared to commercial ones (additional electrode costs < 100 € m-2) and shows EEs rivalling the record-high values reported for efficient systems to date. Our work remarks on the importance to study modified plasma conditions or plasma methods alternative to those reported previously (e.g., atmospheric plasmas) to improve further the electrode performances of the current VRFB systems.
Collapse
Affiliation(s)
- Sebastiano Bellani
- BeDimensional
S.p.a., Via Lungotorrente
secca 3D, 16163 Genova, Italy
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- (S.B.)
| | - Leyla Najafi
- BeDimensional
S.p.a., Via Lungotorrente
secca 3D, 16163 Genova, Italy
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Mirko Prato
- Materials
Characterization Facility, Istituto Italiano
di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Reinier Oropesa-Nuñez
- BeDimensional
S.p.a., Via Lungotorrente
secca 3D, 16163 Genova, Italy
- Department
of Materials Science and Engineering, Uppsala
University, Box 534, 751
03 Uppsala, Sweden
| | - Beatriz Martín-García
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- CIC nanoGUNE, 20018 Donostia-San Sebastian, Basque, Spain
| | - Luca Gagliani
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Elisa Mantero
- BeDimensional
S.p.a., Via Lungotorrente
secca 3D, 16163 Genova, Italy
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Luigi Marasco
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Gabriele Bianca
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, via Dodecaneso 31, 16146 Genoa, Italy
| | - Marilena I. Zappia
- BeDimensional
S.p.a., Via Lungotorrente
secca 3D, 16163 Genova, Italy
- Department
of Physics, University of Calabria, via P. Bucci cubo 31/C, 87036 Rende, Cosenza, Italy
| | - Cansunur Demirci
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, via Dodecaneso 31, 16146 Genoa, Italy
- NanoChemistry, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Silvia Olivotto
- Wind
Technology Innovation, Enel Global Power
Generation, https://www.enel.com/
| | - Giacomo Mariucci
- Storage
and New Business Design, Engineering & Construction, Enel Green Power S.p.A., https://www.enel.com/
| | - Vittorio Pellegrini
- BeDimensional
S.p.a., Via Lungotorrente
secca 3D, 16163 Genova, Italy
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Massimo Schiavetti
- Thermal &
Industry 4.0 Innovation, Enel Global Power
Generation, https://www.enel.com/
| | - Francesco Bonaccorso
- BeDimensional
S.p.a., Via Lungotorrente
secca 3D, 16163 Genova, Italy
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- (F.B.)
| |
Collapse
|