1
|
Guerrero-Barberà G, Burday N, Costell M. Shaping Oncogenic Microenvironments: Contribution of Fibronectin. Front Cell Dev Biol 2024; 12:1363004. [PMID: 38660622 PMCID: PMC11039881 DOI: 10.3389/fcell.2024.1363004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
The extracellular matrix (ECM) is a complex network of proteins and glycans, dynamically remodeled and specifically tailored to the structure/function of each organ. The malignant transformation of cancer cells is determined by both cell intrinsic properties, such as mutations, and extrinsic variables, such as the mixture of surrounding cells in the tumor microenvironment and the biophysics of the ECM. During cancer progression, the ECM undergoes extensive remodeling, characterized by disruption of the basal lamina, vascular endothelial cell invasion, and development of fibrosis in and around the tumor cells resulting in increased tissue stiffness. This enhanced rigidity leads to aberrant mechanotransduction and further malignant transformation potentiating the de-differentiation, proliferation and invasion of tumor cells. Interestingly, this fibrotic microenvironment is primarily secreted and assembled by non-cancerous cells. Among them, the cancer-associated fibroblasts (CAFs) play a central role. CAFs massively produce fibronectin together with type I collagen. This review delves into the primary interactions and signaling pathways through which fibronectin can support tumorigenesis and metastasis, aiming to provide critical molecular insights for better therapy response prediction.
Collapse
Affiliation(s)
| | | | - Mercedes Costell
- Departament of Biochemistry and Molecular Biology, Institut Universitari de Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| |
Collapse
|
2
|
Zhang P, Qi J, Zhang R, Zhao Y, Yan J, Gong Y, Liu X, Zhang B, Wu X, Wu X, Zhang C, Zhao B, Li B. Recent advances in composite hydrogels: synthesis, classification, and application in the treatment of bone defects. Biomater Sci 2024; 12:308-329. [PMID: 38108454 DOI: 10.1039/d3bm01795h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Bone defects are often difficult to treat due to their complexity and specificity, and therefore pose a serious threat to human life and health. Currently, the clinical treatment of bone defects is mainly surgical. However, this treatment is often more harmful to patients and there is a potential risk of rejection and infection. Hydrogels have a unique three-dimensional structure that can accommodate a variety of materials, including particles, polymers and small molecules, making them ideal for treating bone defects. Therefore, emerging composite hydrogels are considered one of the most promising candidates for the treatment of bone defects. This review describes the use of different types of composite hydrogel in the treatment of bone defects. We present the basic concepts of hydrogels, different preparation techniques (including chemical and physical crosslinking), and the clinical requirements for hydrogels used to treat bone defects. In addition, a review of numerous promising designs of different types of hydrogel doped with different materials (e.g., nanoparticles, polymers, carbon materials, drugs, and active factors) is also highlighted. Finally, the current challenges and prospects of composite hydrogels for the treatment of bone defects are presented. This review will stimulate research efforts in this field and promote the application of new methods and innovative ideas in the clinical field of composite hydrogels.
Collapse
Affiliation(s)
- Pengfei Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Jin Qi
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Ran Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Yifan Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Jingyu Yan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Yajuan Gong
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Xiaoming Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Binbin Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Xiao Wu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Xiuping Wu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Bing Zhao
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar 161006, China
| | - Bing Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| |
Collapse
|
3
|
Mierke CT. Extracellular Matrix Cues Regulate Mechanosensing and Mechanotransduction of Cancer Cells. Cells 2024; 13:96. [PMID: 38201302 PMCID: PMC10777970 DOI: 10.3390/cells13010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Extracellular biophysical properties have particular implications for a wide spectrum of cellular behaviors and functions, including growth, motility, differentiation, apoptosis, gene expression, cell-matrix and cell-cell adhesion, and signal transduction including mechanotransduction. Cells not only react to unambiguously mechanical cues from the extracellular matrix (ECM), but can occasionally manipulate the mechanical features of the matrix in parallel with biological characteristics, thus interfering with downstream matrix-based cues in both physiological and pathological processes. Bidirectional interactions between cells and (bio)materials in vitro can alter cell phenotype and mechanotransduction, as well as ECM structure, intentionally or unintentionally. Interactions between cell and matrix mechanics in vivo are of particular importance in a variety of diseases, including primarily cancer. Stiffness values between normal and cancerous tissue can range between 500 Pa (soft) and 48 kPa (stiff), respectively. Even the shear flow can increase from 0.1-1 dyn/cm2 (normal tissue) to 1-10 dyn/cm2 (cancerous tissue). There are currently many new areas of activity in tumor research on various biological length scales, which are highlighted in this review. Moreover, the complexity of interactions between ECM and cancer cells is reduced to common features of different tumors and the characteristics are highlighted to identify the main pathways of interaction. This all contributes to the standardization of mechanotransduction models and approaches, which, ultimately, increases the understanding of the complex interaction. Finally, both the in vitro and in vivo effects of this mechanics-biology pairing have key insights and implications for clinical practice in tumor treatment and, consequently, clinical translation.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Faculty of Physics and Earth Science, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| |
Collapse
|
4
|
Oliver-Cervelló L, Martin-Gómez H, Gonzalez-Garcia C, Salmeron-Sanchez M, Ginebra MP, Mas-Moruno C. Protease-degradable hydrogels with multifunctional biomimetic peptides for bone tissue engineering. Front Bioeng Biotechnol 2023; 11:1192436. [PMID: 37324414 PMCID: PMC10267393 DOI: 10.3389/fbioe.2023.1192436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Mimicking bone extracellular matrix (ECM) is paramount to develop novel biomaterials for bone tissue engineering. In this regard, the combination of integrin-binding ligands together with osteogenic peptides represents a powerful approach to recapitulate the healing microenvironment of bone. In the present work, we designed polyethylene glycol (PEG)-based hydrogels functionalized with cell instructive multifunctional biomimetic peptides (either with cyclic RGD-DWIVA or cyclic RGD-cyclic DWIVA) and cross-linked with matrix metalloproteinases (MMPs)-degradable sequences to enable dynamic enzymatic biodegradation and cell spreading and differentiation. The analysis of the intrinsic properties of the hydrogel revealed relevant mechanical properties, porosity, swelling and degradability to engineer hydrogels for bone tissue engineering. Moreover, the engineered hydrogels were able to promote human mesenchymal stem cells (MSCs) spreading and significantly improve their osteogenic differentiation. Thus, these novel hydrogels could be a promising candidate for applications in bone tissue engineering, such as acellular systems to be implanted and regenerate bone or in stem cells therapy.
Collapse
Affiliation(s)
- Lluís Oliver-Cervelló
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Helena Martin-Gómez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Cristina Gonzalez-Garcia
- Centre for the Cellular Microenvironment, Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| |
Collapse
|
5
|
Dey H, Vasudevan K, Doss C. GP, Kumar SU, El Allali A, Alsamman AM, Zayed H. Integrated gene network analysis sheds light on understanding the progression of Osteosarcoma. Front Med (Lausanne) 2023; 10:1154417. [PMID: 37081847 PMCID: PMC10110863 DOI: 10.3389/fmed.2023.1154417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Introduction Osteosarcoma is a rare disorder among cancer, but the most frequently occurring among sarcomas in children and adolescents. It has been reported to possess the relapsing capability as well as accompanying collateral adverse effects which hinder the development process of an effective treatment plan. Using networks of omics data to identify cancer biomarkers could revolutionize the field in understanding the cancer. Cancer biomarkers and the molecular mechanisms behind it can both be understood by studying the biological networks underpinning the etiology of the disease. Methods In our study, we aimed to highlight the hub genes involved in gene-gene interaction network to understand their interaction and how they affect the various biological processes and signaling pathways involved in Osteosarcoma. Gene interaction network provides a comprehensive overview of functional gene analysis by providing insight into how genes cooperatively interact to elicit a response. Because gene interaction networks serve as a nexus to many biological problems, their employment of it to identify the hub genes that can serve as potential biomarkers remain widely unexplored. A dynamic framework provides a clear understanding of biological complexity and a pathway from the gene level to interaction networks. Results Our study revealed various hub genes viz. TP53, CCND1, CDK4, STAT3, and VEGFA by analyzing various topological parameters of the network, such as highest number of interactions, average shortest path length, high cluster density, etc. Their involvement in key signaling pathways, such as the FOXM1 transcription factor network, FAK-mediated signaling events, and the ATM pathway, makes them significant candidates for studying the disease. The study also highlighted significant enrichment in GO terms (Biological Processes, Molecular Function, and Cellular Processes), such as cell cycle signal transduction, cell communication, kinase binding, transcription factor activity, nucleoplasm, PML body, nuclear body, etc. Conclusion To develop better therapeutics, a specific approach toward the disease targeting the hub genes involved in various signaling pathways must have opted to unravel the complexity of the disease. Our study has highlighted the candidate hub genes viz. TP53, CCND1 CDK4, STAT3, VEGFA. Their involvement in the major signaling pathways of Osteosarcoma makes them potential candidates to be targeted for drug development. The highly enriched signaling pathways include FOXM1 transcription pathway, ATM signal-ling pathway, FAK mediated signaling events, Arf6 signaling events, mTOR signaling pathway, and Integrin family cell surface interactions. Targeting the hub genes and their associated functional partners which we have reported in our studies may be efficacious in developing novel therapeutic targets.
Collapse
Affiliation(s)
- Hrituraj Dey
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, India
| | - Karthick Vasudevan
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, India
| | - George Priya Doss C.
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - S. Udhaya Kumar
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Alsamman M. Alsamman
- Agriculture Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Hatem Zayed
- Department of Biomedical Sciences College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
6
|
Xie W, Wei X, Kang H, Jiang H, Chu Z, Lin Y, Hou Y, Wei Q. Static and Dynamic: Evolving Biomaterial Mechanical Properties to Control Cellular Mechanotransduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204594. [PMID: 36658771 PMCID: PMC10037983 DOI: 10.1002/advs.202204594] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The extracellular matrix (ECM) is a highly dynamic system that constantly offers physical, biological, and chemical signals to embraced cells. Increasing evidence suggests that mechanical signals derived from the dynamic cellular microenvironment are essential controllers of cell behaviors. Conventional cell culture biomaterials, with static mechanical properties such as chemistry, topography, and stiffness, have offered a fundamental understanding of various vital biochemical and biophysical processes, such as cell adhesion, spreading, migration, growth, and differentiation. At present, novel biomaterials that can spatiotemporally impart biophysical cues to manipulate cell fate are emerging. The dynamic properties and adaptive traits of new materials endow them with the ability to adapt to cell requirements and enhance cell functions. In this review, an introductory overview of the key players essential to mechanobiology is provided. A biophysical perspective on the state-of-the-art manipulation techniques and novel materials in designing static and dynamic ECM-mimicking biomaterials is taken. In particular, different static and dynamic mechanical cues in regulating cellular mechanosensing and functions are compared. This review to benefit the development of engineering biomechanical systems regulating cell functions is expected.
Collapse
Affiliation(s)
- Wenyan Xie
- Department of BiotherapyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610065China
| | - Xi Wei
- Department of Mechanical EngineeringThe University of Hong KongHong KongChina
| | - Heemin Kang
- Department of Materials Science and EngineeringKorea UniversitySeoul02841South Korea
| | - Hong Jiang
- Department of BiotherapyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610065China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering (Joint Appointment with School of Biomedical Sciences)The University of Hong KongHong KongChina
| | - Yuan Lin
- Department of Mechanical EngineeringThe University of Hong KongHong KongChina
| | - Yong Hou
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong KongChina
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Qiang Wei
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials and EngineeringSichuan UniversityChengdu610065China
| |
Collapse
|
7
|
Oliver‐Cervelló L, Martin‐Gómez H, Mandakhbayar N, Jo Y, Cavalcanti‐Adam EA, Kim H, Ginebra M, Lee J, Mas‐Moruno C. Mimicking Bone Extracellular Matrix: From BMP-2-Derived Sequences to Osteogenic-Multifunctional Coatings. Adv Healthc Mater 2022; 11:e2201339. [PMID: 35941083 PMCID: PMC11468143 DOI: 10.1002/adhm.202201339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 01/28/2023]
Abstract
Cell-material interactions are regulated by mimicking bone extracellular matrix on the surface of biomaterials. In this regard, reproducing the extracellular conditions that promote integrin and growth factor (GF) signaling is a major goal to trigger bone regeneration. Thus, the use of synthetic osteogenic domains derived from bone morphogenetic protein 2 (BMP-2) is gaining increasing attention, as this strategy is devoid of the clinical risks associated with this molecule. In this work, the wrist and knuckle epitopes of BMP-2 are screened to identify peptides with potential osteogenic properties. The most active sequences (the DWIVA motif and its cyclic version) are combined with the cell adhesive RGD peptide (linear and cyclic variants), to produce tailor-made biomimetic peptides presenting the bioactive cues in a chemically and geometrically defined manner. Such multifunctional peptides are next used to functionalize titanium surfaces. Biological characterization with mesenchymal stem cells demonstrates the ability of the biointerfaces to synergistically enhance cell adhesion and osteogenic differentiation. Furthermore, in vivo studies in rat calvarial defects prove the capacity of the biomimetic coatings to improve new bone formation and reduce fibrous tissue thickness. These results highlight the potential of mimicking integrin-GF signaling with synthetic peptides, without the need for exogenous GFs.
Collapse
Affiliation(s)
- Lluís Oliver‐Cervelló
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringUniversitat Politècnica de Catalunya (UPC)Barcelona08019Spain
- Barcelona Research Center in Multiscale Science and EngineeringUPCBarcelona08019Spain
| | - Helena Martin‐Gómez
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringUniversitat Politècnica de Catalunya (UPC)Barcelona08019Spain
- Barcelona Research Center in Multiscale Science and EngineeringUPCBarcelona08019Spain
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan330‐714Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook UniversityCheonan330‐714Republic of Korea
- Department of Biomaterials ScienceSchool of DentistryDankook UniversityCheonan330‐714Republic of Korea
| | - Young‐Woo Jo
- Neobiotech Co.Ltd R&D CenterSeoul08381Republic of Korea
| | - Elisabetta Ada Cavalcanti‐Adam
- Department of Cellular BiophysicsGrowth Factor Mechanobiology groupMax Planck Institute for Medical Research Jahnstraße 2969120HeidelbergGermany
| | - Hae‐Won Kim
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan330‐714Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook UniversityCheonan330‐714Republic of Korea
- Department of Biomaterials ScienceSchool of DentistryDankook UniversityCheonan330‐714Republic of Korea
| | - Maria‐Pau Ginebra
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringUniversitat Politècnica de Catalunya (UPC)Barcelona08019Spain
- Barcelona Research Center in Multiscale Science and EngineeringUPCBarcelona08019Spain
- Institute for Bioengineering of CataloniaBarcelona08028Spain
| | - Jung‐Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan330‐714Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook UniversityCheonan330‐714Republic of Korea
- Department of Biomaterials ScienceSchool of DentistryDankook UniversityCheonan330‐714Republic of Korea
| | - Carlos Mas‐Moruno
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringUniversitat Politècnica de Catalunya (UPC)Barcelona08019Spain
- Barcelona Research Center in Multiscale Science and EngineeringUPCBarcelona08019Spain
| |
Collapse
|
8
|
Abdel Nasser Atia G, Shalaby HK, Zehravi M, Ghobashy MM, Ahmad Z, Khan FS, Dey A, Rahman MH, Joo SW, Barai HR, Cavalu S. Locally Applied Repositioned Hormones for Oral Bone and Periodontal Tissue Engineering: A Narrative Review. Polymers (Basel) 2022; 14:polym14142964. [PMID: 35890740 PMCID: PMC9319147 DOI: 10.3390/polym14142964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 12/25/2022] Open
Abstract
Bone and periodontium are tissues that have a unique capacity to repair from harm. However, replacing or regrowing missing tissues is not always effective, and it becomes more difficult as the defect grows larger. Because of aging and the increased prevalence of debilitating disorders such as diabetes, there is a considerable increase in demand for orthopedic and periodontal surgical operations, and successful techniques for tissue regeneration are still required. Even with significant limitations, such as quantity and the need for a donor area, autogenous bone grafts remain the best solution. Topical administration methods integrate osteoconductive biomaterial and osteoinductive chemicals as hormones as alternative options. This is a promising method for removing the need for autogenous bone transplantation. Furthermore, despite enormous investigation, there is currently no single approach that can reproduce all the physiologic activities of autogenous bone transplants. The localized bioengineering technique uses biomaterials to administer different hormones to capitalize on the host’s regeneration capacity and capability, as well as resemble intrinsic therapy. The current study adds to the comprehension of the principle of hormone redirection and its local administration in both bone and periodontal tissue engineering.
Collapse
Affiliation(s)
- Gamal Abdel Nasser Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
- Correspondence: (G.A.N.A.); (H.K.S.); (H.R.B.); (S.C.)
| | - Hany K. Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez P.O. Box 43512, Egypt
- Correspondence: (G.A.N.A.); (H.K.S.); (H.R.B.); (S.C.)
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, P.O. Box 8029, Cairo 13759, Egypt;
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Sang Woo Joo
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Korea;
- Correspondence: (G.A.N.A.); (H.K.S.); (H.R.B.); (S.C.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Piata 1 Decembrie 10, 410087 Oradea, Romania
- Correspondence: (G.A.N.A.); (H.K.S.); (H.R.B.); (S.C.)
| |
Collapse
|
9
|
Oliver-Cervelló L, Martin-Gómez H, Mas-Moruno C. New trends in the development of multifunctional peptides to functionalize biomaterials. J Pept Sci 2021; 28:e3335. [PMID: 34031952 DOI: 10.1002/psc.3335] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022]
Abstract
Improving cell-material interactions is a major goal in tissue engineering. In this regard, functionalization of biomaterials with cell instructive molecules from the extracellular matrix stands out as a powerful strategy to enhance their bioactivity and achieve optimal tissue integration. However, current functionalization strategies, like the use of native full-length proteins, are associated with drawbacks, thus urging the need of developing new methodologies. In this regard, the use of synthetic peptides encompassing specific bioactive regions of proteins represents a promising alternative. In particular, the combination of peptide sequences with complementary or synergistic effects makes it possible to address more than one biological target at the biomaterial surface. In this review, an overview of the main strategies using peptides to install multifunctionality on biomaterials is presented, mostly focusing on the combination of the RGD motif with other peptides sequences. The evolution of these approaches, starting from simple methods, like using peptide mixtures, to more advanced systems of peptide presentation, with very well defined chemical properties, are explained. For each system of peptide's presentation, three main aspects of multifunctionality-improving receptor selectivity, mimicking the extracellular matrix and preventing bacterial colonization while improving cell adhesion-are highlighted.
Collapse
Affiliation(s)
- Lluís Oliver-Cervelló
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Helena Martin-Gómez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| |
Collapse
|
10
|
Oliver‐Cervelló L, Martin‐Gómez H, Reyes L, Noureddine F, Ada Cavalcanti‐Adam E, Ginebra M, Mas‐Moruno C. An Engineered Biomimetic Peptide Regulates Cell Behavior by Synergistic Integrin and Growth Factor Signaling. Adv Healthc Mater 2021; 10:e2001757. [PMID: 33336559 DOI: 10.1002/adhm.202001757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/02/2020] [Indexed: 01/04/2023]
Abstract
Recreating the healing microenvironment is essential to regulate cell-material interactions and ensure the integration of biomaterials. To repair bone, such bioactivity can be achieved by mimicking its extracellular matrix (ECM) and by stimulating integrin and growth factor (GF) signaling. However, current approaches relying on the use of GFs, such as bone morphogenetic protein 2 (BMP-2), entail clinical risks. Here, a biomimetic peptide integrating the RGD cell adhesive sequence and the osteogenic DWIVA motif derived from the wrist epitope of BMP-2 is presented. The approach offers the advantage of having a spatial control over the single binding of integrins and BMP receptors. Such multifunctional platform is designed to incorporate 3,4-dihydroxyphenylalanine to bind metallic oxides with high affinity in a one step process. Functionalization of glass substrates with the engineered peptide is characterized by physicochemical methods, proving a successful surface modification. The biomimetic interfaces significantly improve the adhesion of C2C12 cells, inhibit myotube formation, and activate the BMP-dependent signaling via p38. These effects are not observed on surfaces displaying only one bioactive motif, a mixture of both motifs or soluble DWIVA. These data prove the biological potential of recreating the ECM and engaging in integrin and GF crosstalk via molecular-based mimics.
Collapse
Affiliation(s)
- Lluís Oliver‐Cervelló
- Biomaterials, Biomechanics and Tissue Engineering Group Department of Materials Science and Engineering Universitat Politècnica de Catalunya (UPC) Barcelona 08019 Spain
- Barcelona Research Center in Multiscale Science and Engineering UPC Barcelona 08019 Spain
| | - Helena Martin‐Gómez
- Biomaterials, Biomechanics and Tissue Engineering Group Department of Materials Science and Engineering Universitat Politècnica de Catalunya (UPC) Barcelona 08019 Spain
- Barcelona Research Center in Multiscale Science and Engineering UPC Barcelona 08019 Spain
| | - Leslie Reyes
- Biomaterials, Biomechanics and Tissue Engineering Group Department of Materials Science and Engineering Universitat Politècnica de Catalunya (UPC) Barcelona 08019 Spain
| | - Fatima Noureddine
- Department of Cellular Biophysics Max Planck Institute for Medical Research Jahnstraße 29 Heidelberg 69120 Germany
| | | | - Maria‐Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group Department of Materials Science and Engineering Universitat Politècnica de Catalunya (UPC) Barcelona 08019 Spain
- Barcelona Research Center in Multiscale Science and Engineering UPC Barcelona 08019 Spain
- Institute for Bioengineering of Catalonia Barcelona 08028 Spain
| | - Carlos Mas‐Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group Department of Materials Science and Engineering Universitat Politècnica de Catalunya (UPC) Barcelona 08019 Spain
- Barcelona Research Center in Multiscale Science and Engineering UPC Barcelona 08019 Spain
| |
Collapse
|
11
|
Safari B, Davaran S, Aghanejad A. Osteogenic potential of the growth factors and bioactive molecules in bone regeneration. Int J Biol Macromol 2021; 175:544-557. [PMID: 33571587 DOI: 10.1016/j.ijbiomac.2021.02.052] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/06/2021] [Accepted: 02/06/2021] [Indexed: 12/14/2022]
Abstract
The growing need for treatment of the impaired bone tissue has resulted in the quest for the improvement of bone tissue regeneration strategies. Bone tissue engineering is trying to create bio-inspired systems with a coordinated combination of the cells, scaffolds, and bioactive factors to repair the damaged bone tissue. The scaffold provides a supportive matrix for cell growth, migration, and differentiation and also, acts as a delivery system for bioactive factors. Bioactive factors including a large group of cytokines, growth factors (GFs), peptides, and hormonal signals that regulate cellular behaviors. These factors stimulate osteogenic differentiation and proliferation of cells by activating the signaling cascades related to ossification and angiogenesis. GFs and bioactive peptides are significant parts of the bone tissue engineering systems. Besides, the use of the osteogenic potential of hormonal signals has been an attractive topic, particularly in osteoporosis-related bone defects. Due to the unstable nature of protein factors and non-specific effects of hormones, the engineering of scaffolds to the controlled delivery of these bioactive molecules has paramount importance. This review updates the growth factors, engineered peptides, and hormones that are used in bone tissue engineering systems. Also, discusses how these bioactive molecules may be linked to accelerating bone regeneration.
Collapse
Affiliation(s)
- Banafsheh Safari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Strontium substituted hydroxyapatite with β-lactam integrin agonists to enhance mesenchymal cells adhesion and to promote bone regeneration. Colloids Surf B Biointerfaces 2021; 200:111580. [PMID: 33493943 DOI: 10.1016/j.colsurfb.2021.111580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 11/23/2022]
Abstract
Multi-functionalization of calcium phosphates to get delivery systems of therapeutic agents is gaining increasing relevance for the development of functional biomaterials aimed to solve problems related to disorders of the muscolo-skeletal system. In this regard, we functionalized Strontium substituted hydroxyapatite (SrHA) with some β-lactam integrin agonists to develop materials with enhanced properties in promoting cell adhesion and activation of intracellular signaling as well as in counteracting abnormal bone resorption. For this purpose, we selected two monocyclic β-lactams on the basis of their activities towards specific integrins on promoting cell adhesion and signalling. The amount of β-lactams loaded on SrHA could be modulated on changing the polarity of the loading solution, from 3.5-24 wt% for compound 1 and from 3.2-8.4 wt% for compound 2. Studies on the release of the β-lactams from the functionalized SrHA in aqueous medium showed an initial burst followed by a steady-release that ensures a small but constant amount of the compounds over time. The new composites were fully characterized. Co-culture of human primary mesenchymal stem cells (hMSC) and human primary osteoclast (OC) demonstrated that the presence of β-lactams on SrHA favors hMSC adhesion and viability, as well as differentiation towards osteoblastic lineage. Moreover, the β-lactams were found to enhance the inhibitory role of Strontium on osteoclast viability and differentiation.
Collapse
|
13
|
Posa F, Baha-Schwab EH, Wei Q, Di Benedetto A, Neubauer S, Reichart F, Kessler H, Spatz JP, Albiges-Rizo C, Mori G, Cavalcanti-Adam EA. Surface Co-presentation of BMP-2 and integrin selective ligands at the nanoscale favors α 5β 1 integrin-mediated adhesion. Biomaterials 2020; 267:120484. [PMID: 33142116 DOI: 10.1016/j.biomaterials.2020.120484] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022]
Abstract
Here we present the use of surface nanopatterning of covalently immobilized BMP-2 and integrin selective ligands to determine the specificity of their interactions in regulating cell adhesion and focal adhesion assembly. Gold nanoparticle arrays carrying single BMP-2 dimers are prepared by block-copolymer micellar nanolithography and azide-functionalized integrin ligands (cyclic-RGD peptides or α5β1 integrin peptidomimetics) are immobilized on the surrounding polyethylene glycol alkyne by click chemistry. Compared to BMP-2 added to the media, surface immobilized BMP-2 (iBMP-2) favors the spatial segregation of adhesion clusters and enhances focal adhesion (FA) size in cells adhering to α5β1 integrin selective ligands. Moreover, iBMP-2 copresented with α5β1 integrin ligands induces the recruitment of αvβ3 integrins in FAs. When copresented with RGD, iBMP-2 induces the assembly of a higher number of FAs, which are not affected by α5β1 integrin blocking. Our dual-functionalized platforms offer the possibility to study the crosstalk between integrins and BMP receptors, and more in general they could be used to address the spatial regulation of growth factors and adhesion receptors crosstalk on biomimetic surfaces.
Collapse
Affiliation(s)
- Francesca Posa
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, Heidelberg, 69120, Germany
| | - Elisabeth H Baha-Schwab
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, Heidelberg, 69120, Germany
| | - Qiang Wei
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, Heidelberg, 69120, Germany
| | - Adriana Di Benedetto
- University of Foggia, Department of Clinical and Experimental Medicine, viale Pinto 1, Foggia, 71122, Italy
| | - Stefanie Neubauer
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, Garching, 85748, Germany
| | - Florian Reichart
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, Garching, 85748, Germany
| | - Horst Kessler
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, Garching, 85748, Germany
| | - Joachim P Spatz
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, Heidelberg, 69120, Germany
| | - Corinne Albiges-Rizo
- Institut Albert Bonniot, Université Joseph Fourier, INSERM U823, CNRS ERL 5284, Grenoble Alpessite Santé, Grenoble Cedex, 09, F38042, France
| | - Giorgio Mori
- University of Foggia, Department of Clinical and Experimental Medicine, viale Pinto 1, Foggia, 71122, Italy
| | - Elisabetta Ada Cavalcanti-Adam
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, Heidelberg, 69120, Germany.
| |
Collapse
|
14
|
Wei Q, Holle A, Li J, Posa F, Biagioni F, Croci O, Benk AS, Young J, Noureddine F, Deng J, Zhang M, Inman GJ, Spatz JP, Campaner S, Cavalcanti‐Adam EA. BMP-2 Signaling and Mechanotransduction Synergize to Drive Osteogenic Differentiation via YAP/TAZ. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902931. [PMID: 32775147 PMCID: PMC7404154 DOI: 10.1002/advs.201902931] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/28/2020] [Indexed: 05/15/2023]
Abstract
Growth factors and mechanical cues synergistically affect cellular functions, triggering a variety of signaling pathways. The molecular levels of such cooperative interactions are not fully understood. Due to its role in osteogenesis, the growth factor bone morphogenetic protein 2 (BMP-2) is of tremendous interest for bone regenerative medicine, osteoporosis therapeutics, and beyond. Here, contribution of BMP-2 signaling and extracellular mechanical cues to the osteogenic commitment of C2C12 cells is investigated. It is revealed that these two distinct pathways are integrated at the transcriptional level to provide multifactorial control of cell differentiation. The activation of osteogenic genes requires the cooperation of BMP-2 pathway-associated Smad1/5/8 heteromeric complexes and mechanosensitive YAP/TAZ translocation. It is further demonstrated that the Smad complexes remain bound onto and active on target genes, even after BMP-2 removal, suggesting that they act as a "molecular memory unit." Thus, synergistic stimulation with BMP-2 and mechanical cues drives osteogenic differentiation in a programmable fashion.
Collapse
Affiliation(s)
- Qiang Wei
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials and EngineeringSichuan UniversityChengdu610065China
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 29Heidelberg69120Germany
- Department of Biophysical ChemistryHeidelberg UniversityINF 253Heidelberg69120Germany
| | - Andrew Holle
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 29Heidelberg69120Germany
- Department of Biophysical ChemistryHeidelberg UniversityINF 253Heidelberg69120Germany
| | - Jie Li
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 29Heidelberg69120Germany
- Department of Biophysical ChemistryHeidelberg UniversityINF 253Heidelberg69120Germany
| | - Francesca Posa
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 29Heidelberg69120Germany
- Department of Biophysical ChemistryHeidelberg UniversityINF 253Heidelberg69120Germany
- Department of Clinical and Experimental MedicineMedical SchoolUniversity of FoggiaFoggia71122Italy
| | - Francesca Biagioni
- Center for Genomic Science of IIT@SEMMIstituto Italiano di Tecnologia (IIT)Via Adamello 16Milan20139Italy
| | - Ottavio Croci
- Center for Genomic Science of IIT@SEMMIstituto Italiano di Tecnologia (IIT)Via Adamello 16Milan20139Italy
| | - Amelie S. Benk
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 29Heidelberg69120Germany
- Department of Biophysical ChemistryHeidelberg UniversityINF 253Heidelberg69120Germany
| | - Jennifer Young
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 29Heidelberg69120Germany
- Department of Biophysical ChemistryHeidelberg UniversityINF 253Heidelberg69120Germany
| | - Fatima Noureddine
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 29Heidelberg69120Germany
- Department of Biophysical ChemistryHeidelberg UniversityINF 253Heidelberg69120Germany
| | - Jie Deng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials and EngineeringSichuan UniversityChengdu610065China
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 29Heidelberg69120Germany
- Department of Biophysical ChemistryHeidelberg UniversityINF 253Heidelberg69120Germany
| | - Man Zhang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials and EngineeringSichuan UniversityChengdu610065China
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 29Heidelberg69120Germany
- Department of Biophysical ChemistryHeidelberg UniversityINF 253Heidelberg69120Germany
| | - Gareth J. Inman
- Growth Factor Signalling and Squamous CancersCancer Research UK Beatson InstituteGarscube EstateGlasgowG61 1BDUK
- Institute of Cancer SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Joachim P. Spatz
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 29Heidelberg69120Germany
- Department of Biophysical ChemistryHeidelberg UniversityINF 253Heidelberg69120Germany
| | - Stefano Campaner
- Center for Genomic Science of IIT@SEMMIstituto Italiano di Tecnologia (IIT)Via Adamello 16Milan20139Italy
| | - Elisabetta A. Cavalcanti‐Adam
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 29Heidelberg69120Germany
- Department of Biophysical ChemistryHeidelberg UniversityINF 253Heidelberg69120Germany
- Central Scientific Facility “Cellular Biotechnology,”MPI for Medical ResearchJahnstr. 29Heidelberg69120Germany
| |
Collapse
|
15
|
Kim BS, Das S, Jang J, Cho DW. Decellularized Extracellular Matrix-based Bioinks for Engineering Tissue- and Organ-specific Microenvironments. Chem Rev 2020; 120:10608-10661. [PMID: 32786425 DOI: 10.1021/acs.chemrev.9b00808] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biomaterials-based biofabrication methods have gained much attention in recent years. Among them, 3D cell printing is a pioneering technology to facilitate the recapitulation of unique features of complex human tissues and organs with high process flexibility and versatility. Bioinks, combinations of printable hydrogel and cells, can be utilized to create 3D cell-printed constructs. The bioactive cues of bioinks directly trigger cells to induce tissue morphogenesis. Among the various printable hydrogels, the tissue- and organ-specific decellularized extracellular matrix (dECM) can exert synergistic effects in supporting various cells at any component by facilitating specific physiological properties. In this review, we aim to discuss a new paradigm of dECM-based bioinks able to recapitulate the inherent microenvironmental niche in 3D cell-printed constructs. This review can serve as a toolbox for biomedical engineers who want to understand the beneficial characteristics of the dECM-based bioinks and a basic set of fundamental criteria for printing functional human tissues and organs.
Collapse
Affiliation(s)
- Byoung Soo Kim
- Future IT Innovation Laboratory, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu,, Pohang, Kyungbuk 37673, Republic of Korea.,POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Sanskrita Das
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Jinah Jang
- Future IT Innovation Laboratory, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu,, Pohang, Kyungbuk 37673, Republic of Korea.,Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
16
|
Xie Y, Hu C, Feng Y, Li D, Ai T, Huang Y, Chen X, Huang L, Tan J. Osteoimmunomodulatory effects of biomaterial modification strategies on macrophage polarization and bone regeneration. Regen Biomater 2020; 7:233-245. [PMID: 32523726 PMCID: PMC7266668 DOI: 10.1093/rb/rbaa006] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/02/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Biomaterials as bone substitutes are always considered as foreign bodies that can trigger host immune responses. Traditional designing principles have been always aimed at minimizing the immune reactions by fabricating inert biomaterials. However, clinical evidence revealed that those methods still have limitations and many of which were only feasible in the laboratory. Currently, osteoimmunology, the very pioneering concept is drawing more and more attention-it does not simply regard the immune response as an obstacle during bone healing but emphasizes the intimate relationship of the immune and skeletal system, which includes diverse cells, cytokines, and signaling pathways. Properties of biomaterials like topography, wettability, surface charge, the release of cytokines, mediators, ions and other bioactive molecules can impose effects on immune responses to interfere with the skeletal system. Based on the bone formation mechanisms, the designing methods of the biomaterials change from immune evasive to immune reprogramming. Here, we discuss the osteoimmunomodulatory effects of the new modification strategies-adjusting properties of bone biomaterials to induce a favorable osteoimmune environment. Such strategies showed potential to benefit the development of bone materials and lay a solid foundation for the future clinical application.
Collapse
Affiliation(s)
- Yajuan Xie
- Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, P. R. China
| | - Cheng Hu
- Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, P. R. China
| | - Yi Feng
- Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, P. R. China
| | - Danfeng Li
- Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, P. R. China
| | - Tingting Ai
- Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, P. R. China
| | - Yulei Huang
- Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, P. R. China
| | - Xiaodan Chen
- Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, P. R. China
| | - Lijia Huang
- Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, P. R. China
| | - Jiali Tan
- Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, P. R. China
| |
Collapse
|
17
|
Kim HJ, You SJ, Yang DH, Eun J, Park HK, Kim MS, Chun HJ. Injectable hydrogels based on MPEG–PCL–RGD and BMSCs for bone tissue engineering. Biomater Sci 2020; 8:4334-4345. [DOI: 10.1039/d0bm00588f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aim of this study was to investigate the osteogenic potential of BMSCs seeded on RGD-conjugated methoxy polyethylene glycol-polycaprolactone (MP–RGD) in vitro and in vivo.
Collapse
Affiliation(s)
- Hyun Joo Kim
- Department of Biomedicine & Health Sciences
- The Catholic University of Korea
- Seoul 06591
- Republic of Korea
- Institute of Cell and Tissue Engineering
| | - Su Jung You
- Institute of Cell and Tissue Engineering
- The Catholic University of Korea
- Seoul 06591
- Republic of Korea
| | - Dae Hyeok Yang
- Institute of Cell and Tissue Engineering
- The Catholic University of Korea
- Seoul 06591
- Republic of Korea
| | - Jin Eun
- Department of neurosurgery
- Eunpyeong St. Mary's Hospital
- College of Medicine
- The Catholic University of Korea
- Seoul 03312
| | - Hae Kwan Park
- Department of neurosurgery
- Eunpyeong St. Mary's Hospital
- College of Medicine
- The Catholic University of Korea
- Seoul 03312
| | - Moon Suk Kim
- Department of Molecular Science and Technology
- Ajou University
- Suwon
- Republic of Korea
| | - Heung Jae Chun
- Department of Biomedicine & Health Sciences
- The Catholic University of Korea
- Seoul 06591
- Republic of Korea
- Institute of Cell and Tissue Engineering
| |
Collapse
|
18
|
Posa F, Grab AL, Martin V, Hose D, Seckinger A, Mori G, Vukicevic S, Cavalcanti-Adam EA. Copresentation of BMP-6 and RGD Ligands Enhances Cell Adhesion and BMP-Mediated Signaling. Cells 2019; 8:E1646. [PMID: 31847477 PMCID: PMC6953040 DOI: 10.3390/cells8121646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022] Open
Abstract
We report on the covalent immobilization of bone morphogenetic protein 6 (BMP-6) and its co-presentation with integrin ligands on a nanopatterned platform to study cell adhesion and signaling responses which regulate the transdifferentiation of myoblasts into osteogenic cells. To immobilize BMP-6, the heterobifunctional linker MU-NHS is coupled to amine residues of the growth factor; this prevents its internalization while ensuring that its biological activity is maintained. Additionally, to allow cells to adhere to such platform and study signaling events arising from the contact to the surface, we used click-chemistry to immobilize cyclic-RGD carrying an azido group reacting with PEG-alkyne spacers via copper-catalyzed 1,3-dipolar cycloaddition. We show that the copresentation of BMP-6 and RGD favors focal adhesion formation and promotes Smad 1/5/8 phosphorylation. When presented in low amounts, BMP-6 added to culture media of cells adhering to the RGD ligands is less effective than BMP-6 immobilized on the surfaces in inducing Smad complex activation and in inhibiting myotube formation. Our results suggest that a local control of ligand density and cell signaling is crucial for modulating cell response.
Collapse
Affiliation(s)
- Francesca Posa
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
- Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto, 71122 Foggia, Italy
| | - Anna Luise Grab
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
- Genome Biology Unit, EMBL, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Volker Martin
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Dirk Hose
- Laboratory for Myeloma Research and Medical Clinic V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Anja Seckinger
- Laboratory for Myeloma Research and Medical Clinic V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto, 71122 Foggia, Italy
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Šalata 11, 10000 Zagreb, Croatia
| | - Elisabetta Ada Cavalcanti-Adam
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
Hiepen C, Jatzlau J, Hildebrandt S, Kampfrath B, Goktas M, Murgai A, Cuellar Camacho JL, Haag R, Ruppert C, Sengle G, Cavalcanti-Adam EA, Blank KG, Knaus P. BMPR2 acts as a gatekeeper to protect endothelial cells from increased TGFβ responses and altered cell mechanics. PLoS Biol 2019; 17:e3000557. [PMID: 31826007 PMCID: PMC6927666 DOI: 10.1371/journal.pbio.3000557] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 12/23/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
Balanced transforming growth factor-beta (TGFβ)/bone morphogenetic protein (BMP)-signaling is essential for tissue formation and homeostasis. While gain in TGFβ signaling is often found in diseases, the underlying cellular mechanisms remain poorly defined. Here we show that the receptor BMP type 2 (BMPR2) serves as a central gatekeeper of this balance, highlighted by its deregulation in diseases such as pulmonary arterial hypertension (PAH). We show that BMPR2 deficiency in endothelial cells (ECs) does not abolish pan-BMP-SMAD1/5 responses but instead favors the formation of mixed-heteromeric receptor complexes comprising BMPR1/TGFβR1/TGFβR2 that enable enhanced cellular responses toward TGFβ. These include canonical TGFβ-SMAD2/3 and lateral TGFβ-SMAD1/5 signaling as well as formation of mixed SMAD complexes. Moreover, BMPR2-deficient cells express genes indicative of altered biophysical properties, including up-regulation of extracellular matrix (ECM) proteins such as fibrillin-1 (FBN1) and of integrins. As such, we identified accumulation of ectopic FBN1 fibers remodeled with fibronectin (FN) in junctions of BMPR2-deficient ECs. Ectopic FBN1 deposits were also found in proximity to contractile intimal cells in pulmonary artery lesions of BMPR2-deficient heritable PAH (HPAH) patients. In BMPR2-deficient cells, we show that ectopic FBN1 is accompanied by active β1-integrin highly abundant in integrin-linked kinase (ILK) mechano-complexes at cell junctions. Increased integrin-dependent adhesion, spreading, and actomyosin-dependent contractility facilitates the retrieval of active TGFβ from its latent fibrillin-bound depots. We propose that loss of BMPR2 favors endothelial-to-mesenchymal transition (EndMT) allowing cells of myo-fibroblastic character to create a vicious feed-forward process leading to hyperactivated TGFβ signaling. In summary, our findings highlight a crucial role for BMPR2 as a gatekeeper of endothelial homeostasis protecting cells from increased TGFβ responses and integrin-mediated mechano-transduction.
Collapse
Affiliation(s)
- Christian Hiepen
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Jerome Jatzlau
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Germany
| | - Susanne Hildebrandt
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Germany
| | - Branka Kampfrath
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Melis Goktas
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Potsdam, Germany
| | - Arunima Murgai
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Rainer Haag
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Clemens Ruppert
- Universities of Giessen and Marburg Lung Center (UGMLC), Medical Clinic II, Justus Liebig University, Giessen, Germany
| | - Gerhard Sengle
- University of Cologne, Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | | | - Kerstin G. Blank
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Potsdam, Germany
| | - Petra Knaus
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| |
Collapse
|
20
|
Grab AL, Seckinger A, Horn P, Hose D, Cavalcanti-Adam EA. Hyaluronan hydrogels delivering BMP-6 for local targeting of malignant plasma cells and osteogenic differentiation of mesenchymal stromal cells. Acta Biomater 2019; 96:258-270. [PMID: 31302300 DOI: 10.1016/j.actbio.2019.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022]
Abstract
Multiple myeloma is a malignant disease characterized by accumulation of clonal plasma cells in the bone marrow. Uncoupling of bone formation and resorption by myeloma cells leads to osteolytic lesions. These are prone to fracture and represent a possible survival space for myeloma cells under treatment causing disease relapse. Here we report on a novel approach suitable for local treatment of multiple myeloma based on hyaluronic acid (HA) hydrogels mimicking the physical properties of the bone marrow. The HA hydrogels are complexed with heparin to achieve sustained presentation and controlled release of bone morphogenetic protein 6 (BMP-6). Others and we have shown that BMP-6 induces myeloma cell apoptosis and bone formation. Using quartz crystal microbalance and enzyme-linked immunosorbent assay, we measured an initial surface density of 400 ng BMP6/cm2, corresponding to two BMP-6 per heparin molecule, with 50% release within two weeks. HA-hydrogels presenting BMP-6 enhanced the phosphorylation of Smad 1/5 while reducing the activity of BMP-6 antagonist sclerostin. These materials induced osteogenic differentiation of mesenchymal stromal cells and decreased the viability of myeloma cell lines and primary myeloma cells. BMP-6 functionalized HA-hydrogels represent a promising material for local treatment of myeloma-induced bone disease and residual myeloma cells within lesions to minimize disease relapse or fractures. STATEMENT OF SIGNIFICANCE: Multiple myeloma is a hematological cancer characterized by the accumulation of clonal plasma cells in the bone marrow and local suppression of bone formation, resulting in osteolytic lesions and fractures. Despite recent advances in systemic treatment of multiple myeloma, it is rare to achieve a targeted suppression of myeloma cells and healing of bone lesions. Here we present hydrogels which mimic the physico-chemical properties of the bone marrow, consisting of hyaluronic acid with crosslinked heparin for the controlled presentation of bioactive BMP-6. The hydrogels decrease the viability of myeloma cell lines and primary myeloma cells and induces osteogenic differentiation of mesenchymal stromal cells. The presentation of BMP-6 in the hyaluronan hydrogels enhances the phosphorylation of Smad1/5 while reducing the activity of the BMP-6 antagonist sclerostin. As such, BMP-6 functionalized hyaluronan hydrogels represent a promising material for the localized eradication of myeloma cells.
Collapse
Affiliation(s)
- Anna Luise Grab
- Labor für Myelomforschung, Medizinische Klinik V, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; Institute of Physical Chemistry, Department of Biophysical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany; Max Planck Institute for Medical Research, Department of Cellular Biophysics and Central Scientific Facility "Cellular Biotechnology", Jahnstr. 29, 69120 Heidelberg, Germany
| | - Anja Seckinger
- Labor für Myelomforschung, Medizinische Klinik V, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Patrick Horn
- Medizinische Klinik V, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
| | - Dirk Hose
- Labor für Myelomforschung, Medizinische Klinik V, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| | - Elisabetta Ada Cavalcanti-Adam
- Institute of Physical Chemistry, Department of Biophysical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany; Max Planck Institute for Medical Research, Department of Cellular Biophysics and Central Scientific Facility "Cellular Biotechnology", Jahnstr. 29, 69120 Heidelberg, Germany.
| |
Collapse
|
21
|
Ranganathan S, Balagangadharan K, Selvamurugan N. Chitosan and gelatin-based electrospun fibers for bone tissue engineering. Int J Biol Macromol 2019; 133:354-364. [DOI: 10.1016/j.ijbiomac.2019.04.115] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/06/2019] [Accepted: 04/16/2019] [Indexed: 12/29/2022]
|
22
|
Singhatanadgit W, Sungkhaphan P, Theerathanagorn T, Patntirapong S, Janvikul W. Analysis of sequential dual immobilization of type I collagen and BMP-2 short peptides on hydrolyzed poly(buthylene succinate)/ β-tricalcium phosphate composites for bone tissue engineering. J Biomater Appl 2019; 34:351-364. [PMID: 31137998 DOI: 10.1177/0885328219852820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Weerachai Singhatanadgit
- 1 Craniofacial Reconstruction Cluster, Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand
| | | | | | - Somying Patntirapong
- 3 Department of Oral Biology, Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand
| | - Wanida Janvikul
- 2 National Metal and Materials Technology Center, Pathum Thani, Thailand
| |
Collapse
|
23
|
Guillem-Marti J, Gelabert M, Heras-Parets A, Pegueroles M, Ginebra MP, Manero JM. RGD Mutation of the Heparin Binding II Fragment of Fibronectin for Guiding Mesenchymal Stem Cell Behavior on Titanium Surfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3666-3678. [PMID: 30607934 DOI: 10.1021/acsami.8b17138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Installing bioactivity on metallic biomaterials by mimicking the extracellular matrix (ECM) is crucial for stimulating specific cellular responses to ultimately promote tissue regeneration. Fibronectin is an ECM protein commonly used for biomaterial functionalization. The use of fibronectin recombinant fragments is an attractive alternate to the use of full-length fibronectin because of the relatively low cost and facility of purification. However, it is necessary to combine more than one fragment, for example, the cell attachment site and the heparin binding II (HBII), either mixed or in one molecule, to obtain complete activity. In the present study, we proposed to install adhesion capacity to the HBII fragment by an RGD gain-of-function DNA mutation, retaining its cell differentiation capacity and thereby producing a small and very active protein fragment. The novel molecule, covalently immobilized onto titanium surfaces, maintained the growth factor-binding capacity and stimulated cell spreading, osteoblastic cell differentiation, and mineralization of human mesenchymal stem cells compared to the HBII native protein. These results highlight the potential capacity of gain-of-function DNA mutations in the design of novel molecules for the improvement of osseointegration properties of metallic implant surfaces.
Collapse
Affiliation(s)
| | | | | | | | - Maria-Pau Ginebra
- Institute for Bioengineering of Catalonia (IBEC) , Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona , Spain
| | | |
Collapse
|
24
|
Mas-Moruno C, Su B, Dalby MJ. Multifunctional Coatings and Nanotopographies: Toward Cell Instructive and Antibacterial Implants. Adv Healthc Mater 2019; 8:e1801103. [PMID: 30468010 DOI: 10.1002/adhm.201801103] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/15/2018] [Indexed: 01/02/2023]
Abstract
In biomaterials science, it is nowadays well accepted that improving the biointegration of dental and orthopedic implants with surrounding tissues is a major goal. However, implant surfaces that support osteointegration may also favor colonization of bacterial cells. Infection of biomaterials and subsequent biofilm formation can have devastating effects and reduce patient quality of life, representing an emerging concern in healthcare. Conversely, efforts toward inhibiting bacterial colonization may impair biomaterial-tissue integration. Therefore, to improve the long-term success of medical implants, biomaterial surfaces should ideally discourage the attachment of bacteria without affecting eukaryotic cell functions. However, most current strategies seldom investigate a combined goal. This work reviews recent strategies of surface modification to simultaneously address implant biointegration while mitigating bacterial infections. To this end, two emerging solutions are considered, multifunctional chemical coatings and nanotopographical features.
Collapse
Affiliation(s)
- Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group; Department of Materials Science and Engineering & Center in Multiscale Science and Engineering; Universitat Politècnica de Catalunya (UPC); Barcelona 08019 Spain
| | - Bo Su
- Bristol Dental School; University of Bristol; Bristol BS1 2LY UK
| | - Matthew J. Dalby
- Centre for Cell Engineering; University of Glasgow; Glasgow G12 UK
| |
Collapse
|
25
|
Hou Y, Xie W, Achazi K, Cuellar-Camacho JL, Melzig MF, Chen W, Haag R. Injectable degradable PVA microgels prepared by microfluidic technology for controlled osteogenic differentiation of mesenchymal stem cells. Acta Biomater 2018; 77:28-37. [PMID: 29981495 DOI: 10.1016/j.actbio.2018.07.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/23/2018] [Accepted: 07/02/2018] [Indexed: 12/25/2022]
Abstract
The direct injection of bone marrow mesenchymal stem cells (hMSCs) is a promising strategy for bone tissue engineering applications. Herein, we have developed injectable degradable poly(vinyl alcohol) (PVA) microgels loaded with hMSCs and growth factors and prepared by a high-throughput microfluidic technology. The PVA-based microgels with tunable mechanical and degradable properties were composed of vinyl ether acrylate-functionalized PVA (PVA-VEA) and thiolated PVA-VEA (PVA-VEA-SH) through a Michael-type crosslinking reaction under mild conditions. The hMSCs sustain high viability in PVA microgels, and cell proliferation and migration behaviors can easily be adjusted by varying crosslinking densities of PVA microgels. Additionally, bone morphogenetic protein-2 (BMP-2) co-encapsulated into the microgel environments enhanced osteogenic differentiation of hMSCs as indicated by a significant increase in alkaline phosphatase activity, calcium content, and Runx2 and OPN gene expression levels. These results demonstrate the degradable PVA microgels with tailored stem cell microenvironments and controlled release profile of the growth factor to promote and direct differentiation. These PVA-based microgels have promising potential as ideal cell vehicles for applications in regenerative medicine. STATEMENT OF SIGNIFICANCE Stem cell transplantation by an injectable, minimally invasive method has great and promising potential for various injuries, diseases, and tissue regeneration. However, its applications are largely limited owing to the low cell retention and engraftment at the lesion location after administration. We have developed an injectable degradable poly(vinyl alcohol) (PVA) microgel prepared by a high-throughput microfluidic technology and co-loaded with bone marrow mesenchymal stem cells (hMSCs) and growth factor to protect the stem cells from harsh environmental stress and realize controlled cell differentiation in well-defined microenvironments for bone regeneration. We demonstrated that these degradable PVA microgels can be used as stem cell scaffolds with tailored cell microenvironments and controlled release profile of growth factor to promote and direct differentiation. We are convinced that these PVA-based microgels have promising potential in the future as cellular scaffolds for applications in regenerative medicine.
Collapse
Affiliation(s)
- Yong Hou
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Wenyan Xie
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Stasse 2-4, 14195 Berlin, Germany
| | - Katharina Achazi
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Jose Luis Cuellar-Camacho
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Matthias F Melzig
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Stasse 2-4, 14195 Berlin, Germany
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany.
| |
Collapse
|
26
|
Kaczmarek M, Jurczyk K, Purwin D, Koper JK, Romaniuk A, Lipinska N, Jakubowicz J, Jurczyk MU. Molecular analysis of biocompatibility of anodized titanium with deposited silver nanodendrites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:437-444. [PMID: 30274076 DOI: 10.1016/j.msec.2018.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 07/03/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022]
Abstract
Titanium (>99.6% purity) and its anodically oxidized modifications, with and without deposited silver nanodendrites regarding its biocompatibility were evaluated. In human gingival fibroblasts and osteoblast cell lines grown on tested samples, the level of expression of genes encoding αV (ITGAV) and β1 (ITGB1) integrin subunits also genes encoding focal adhesion (FAK) and extracellular-signal regulated (ERK) kinases was assessed. For this purpose, the qualitative and quantitative PCR technique was used. The expression of studied genes was dependent on the origin of cell lines and the type of evaluated material. The high expression of PBGD and ITGAV genes in fibroblasts grown on the surface of anodically modified titanium with deposited silver nanodendrites indicates potentially high biocompatibility of these samples for soft tissue cells. The high expression of the ITGB1 and ERK1 genes and the enhanced expression of the FAK gene in osteoblasts cells grown on the tested material was also observed. Summarizing, the nanocrystalline Ti modified with silver deposits showed higher biocompatibility in comparison with the conventional pure Ti samples.
Collapse
Affiliation(s)
- Mariusz Kaczmarek
- Department of Immunology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland.
| | - Karolina Jurczyk
- Department of Conservative Dentistry and Periodontology, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Dominika Purwin
- Department of Immunology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Jeremiasz K Koper
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan, Poland
| | - Aleksandra Romaniuk
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
| | - Natalia Lipinska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
| | - Jarosław Jakubowicz
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan, Poland
| | - Mieczyslawa U Jurczyk
- Division Mother's and Child's Health, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland
| |
Collapse
|
27
|
Tu Z, Guday G, Adeli M, Haag R. Multivalent Interactions between 2D Nanomaterials and Biointerfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706709. [PMID: 29900600 DOI: 10.1002/adma.201706709] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/15/2018] [Indexed: 05/20/2023]
Abstract
2D nanomaterials, particularly graphene, offer many fascinating physicochemical properties that have generated exciting visions of future biological applications. In order to capitalize on the potential of 2D nanomaterials in this field, a full understanding of their interactions with biointerfaces is crucial. The uptake pathways, toxicity, long-term fate of 2D nanomaterials in biological systems, and their interactions with the living systems are fundamental questions that must be understood. Here, the latest progress is summarized, with a focus on pathogen, mammalian cell, and tissue interactions. The cellular uptake pathways of graphene derivatives will be discussed, along with health risks, and interactions with membranes-including bacteria and viruses-and the role of chemical structure and modifications. Other novel 2D nanomaterials with potential biomedical applications, such as transition-metal dichalcogenides, transition-metal oxide, and black phosphorus will be discussed at the end of this review.
Collapse
Affiliation(s)
- Zhaoxu Tu
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Guy Guday
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Mohsen Adeli
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
- Department of Chemistry, Faculty of Science, Lorestan University, 68151-44316, Khoramabad, Iran
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| |
Collapse
|
28
|
Morochnik S, Zhu Y, Duan C, Cai M, Reid RR, He TC, Koh J, Szleifer I, Ameer GA. A thermoresponsive, citrate-based macromolecule for bone regenerative engineering. J Biomed Mater Res A 2018; 106:1743-1752. [PMID: 29396921 DOI: 10.1002/jbm.a.36358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/08/2018] [Accepted: 01/24/2018] [Indexed: 11/09/2022]
Abstract
There is a need in orthopaedic and craniomaxillofacial surgeries for materials that are easy to handle and apply to a surgical site, can fill and fully conform to the bone defect, and can promote the formation of new bone tissue. Thermoresponsive polymers that undergo liquid to gel transition at physiological temperature can potentially be used to meet these handling and shape-conforming requirements. However, there are no reports on their capacity to induce in vivo bone formation. The objective of this research was to investigate whether the functionalization of the thermoresponsive, antioxidant macromolecule poly(poly-ethyleneglycol citrate-co-N-isopropylacrylamide) (PPCN), with strontium, phosphate, and/or the cyclic RGD peptide would render it a hydrogel with osteoinductive properties. We show that all formulations of functionalized PPCN retain thermoresponsive properties and can induce osteodifferentiation of human mesenchymal stem cells without the need for exogenous osteogenic supplements. PPCN-Sr was the most osteoinductive formulation in vitro and produced robust localized mineralization and osteogenesis in subcutaneous and intramuscular tissue in a mouse model. Strontium was not detected in any of the major organs. Our results support the use of functionalized PPCN as a valuable tool for the recruitment, survival, and differentiation of cells critical to the development of new bone and the induction of bone formation in vivo. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1743-1752, 2018.
Collapse
Affiliation(s)
- Simona Morochnik
- Biomedical Engineering Department and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Yunxiao Zhu
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois, USA
| | - Chongwen Duan
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois, USA
| | - Michelle Cai
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois, USA
| | - Russell R Reid
- Department of Surgery, Plastic and Reconstructive Surgery, The University of Chicago Medical Center, Chicago, Illinois, 60637, USA
| | - Tong-Chuan He
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, 60637, USA
| | - Jason Koh
- NorthShore Orthopaedic Institute, NorthShore University HealthSystem, 2650 Ridge Avenue Suite 2505, Evanston, Illinois, 60201, USA
| | - Igal Szleifer
- Biomedical Engineering Department and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA.,Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Guillermo A Ameer
- Biomedical Engineering Department and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA.,Department of Surgery, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
29
|
Tew LS, Ching JY, Ngalim SH, Khung YL. Driving mesenchymal stem cell differentiation from self-assembled monolayers. RSC Adv 2018; 8:6551-6564. [PMID: 35540392 PMCID: PMC9078311 DOI: 10.1039/c7ra12234a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/27/2018] [Indexed: 12/26/2022] Open
Abstract
The utilization of self-assembled monolayer (SAM) systems to direct Mesenchymal Stem Cell (MSC) differentiation has been covered in the literature for years, but finding a general consensus pertaining to its exact role over the differentiation of stem cells had been rather challenging. Although there are numerous reports on surface functional moieties activating and inducing differentiation, the results are often different between reports due to the varying surface conditions, such as topography or surface tension. Herein, in view of the complexity of the subject matter, we have sought to catalogue the recent developments around some of the more common functional groups on predominantly hard surfaces and how these chemical groups may influence the overall outcome of the mesenchymal stem cells (MSC) differentiation so as to better establish a clearer underlying relationship between stem cells and their base substratum interactions. Graphical illustration showing the functional groups that drive MSC differentiation without soluble bioactive cues within the first 14 days.![]()
Collapse
Affiliation(s)
- L. S. Tew
- Regenerative Medicine Cluster
- Advanced Medical and Dental Institute (AMDI)
- Universiti Sains Malaysia
- Malaysia
| | - J. Y. Ching
- Institute of Biological Science and Technology
- China Medical University
- Taichung
- Republic of China
| | - S. H. Ngalim
- Regenerative Medicine Cluster
- Advanced Medical and Dental Institute (AMDI)
- Universiti Sains Malaysia
- Malaysia
| | - Y. L. Khung
- Institute of New Drug Development
- China Medical University
- Taichung
- Republic of China
| |
Collapse
|
30
|
Bilem I, Plawinski L, Chevallier P, Ayela C, Sone ED, Laroche G, Durrieu MC. The spatial patterning of RGD and BMP-2 mimetic peptides at the subcellular scale modulates human mesenchymal stem cells osteogenesis. J Biomed Mater Res A 2017; 106:959-970. [DOI: 10.1002/jbm.a.36296] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/06/2017] [Accepted: 11/10/2017] [Indexed: 11/10/2022]
Affiliation(s)
- I. Bilem
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, de la Métallurgie et des Matériaux; Université Laval, 1065 Avenue de la médecine; Québec G1V 0A6 Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay; Québec G1L 3L5 Canada
- CNRS, Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN 5248); Pessac F-33600 France
- Bordeaux INP, CBMN, UMR 5248; Pessac F-33600 France
| | - L. Plawinski
- CNRS, Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN 5248); Pessac F-33600 France
- Bordeaux INP, CBMN, UMR 5248; Pessac F-33600 France
| | - P. Chevallier
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, de la Métallurgie et des Matériaux; Université Laval, 1065 Avenue de la médecine; Québec G1V 0A6 Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay; Québec G1L 3L5 Canada
| | - C. Ayela
- Université de Bordeaux, IMS, UMR CNRS 5218; Talence F-33400 France
| | - E. D. Sone
- Institute of Biomaterials and Biomedical Engineering, Department of Materials Science and Engineering, and Faculty of Dentistry; University of Toronto; Toronto ON M5S 3G9 Canada
| | - G. Laroche
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, de la Métallurgie et des Matériaux; Université Laval, 1065 Avenue de la médecine; Québec G1V 0A6 Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay; Québec G1L 3L5 Canada
| | - M. C. Durrieu
- CNRS, Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN 5248); Pessac F-33600 France
- Bordeaux INP, CBMN, UMR 5248; Pessac F-33600 France
| |
Collapse
|
31
|
Zhou Y, Zimber M, Yuan H, Naughton GK, Fernan R, Li WJ. Effects of Human Fibroblast-Derived Extracellular Matrix on Mesenchymal Stem Cells. Stem Cell Rev Rep 2017; 12:560-572. [PMID: 27342267 DOI: 10.1007/s12015-016-9671-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stem cell fate is largely determined by the microenvironment called niche. The extracellular matrix (ECM), as a key component in the niche, is responsible for maintaining structural stability and regulating cell proliferation, differentiation, migration and other cellular activities. Each tissue has a unique ECM composition for its needs. Here we investigated the effect of a bioengineered human dermal fibroblast-derived ECM (hECM) on the regulation of human mesenchymal stem cell (hMSC) proliferation and multilineage differentiation. Human MSCs were maintained on hECM for two passages followed by the analysis of mRNA expression levels of potency- and lineage-specific markers to determine the capacity of MSC stemness and differentiation, respectively. Mesenchymal stem cells pre-cultured with or without hECM were then induced and analyzed for osteogenesis, adipogenesis and chondrogenesis. Our results showed that compared to MSCs maintained on control culture plates without hECM coating, cells on hECM-coated plates proliferated more rapidly with a higher percentage of cells in S phase of the cell cycle, resulting in an increase in the CD90+/CD105+/CD73+/CD45- subpopulation. In addition, hECM downregulated osteogenesis and adipogenesis of hMSCs but significantly upregulated chondrogenesis with increased production of collagen type 2. In sum, our findings suggest that hECM may be used to culture hMSCs for the application of cartilage tissue engineering.
Collapse
Affiliation(s)
- Yaxian Zhou
- Department of Orthopedics and Rehabilitation, Laboratory of Musculoskeletal Biology and Regenerative Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5051, Madison, WI, 53705-2275, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Huihua Yuan
- Department of Orthopedics and Rehabilitation, Laboratory of Musculoskeletal Biology and Regenerative Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5051, Madison, WI, 53705-2275, USA.,College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai, China
| | | | | | - Wan-Ju Li
- Department of Orthopedics and Rehabilitation, Laboratory of Musculoskeletal Biology and Regenerative Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5051, Madison, WI, 53705-2275, USA. .,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
32
|
Bilem I, Chevallier P, Plawinski L, Sone ED, Durrieu MC, Laroche G. Interplay of Geometric Cues and RGD/BMP-2 Crosstalk in Directing Stem Cell Fate. ACS Biomater Sci Eng 2017; 3:2514-2523. [PMID: 33465907 DOI: 10.1021/acsbiomaterials.7b00279] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Within the native microenvironment, extracellular matrix (ECM) components are thought to display a complex and heterogeneous distribution, spanning several length scales. Herein, the objective is to mimic, in vitro, the hierarchical organization of proteins and growth factors as well as their crosstalk. Photolithography technique was used to adjacently pattern geometrically defined regions of RGD and BMP-2 mimetic peptides onto glass substrates. These ECM-derived ligands are known to jointly regulate mesenchymal stem cells (MSCs) osteogenic differentiation. By manipulating the spatial distribution of dually grafted peptides, the extent of human MSCs osteogenic differentiation was significantly affected, depending on the shape of peptide micropatterns. Our data highlight the existence of a strong interplay between geometric cues and biochemical signals. Such in vitro systems provide a valuable tool to investigate mechanisms by which multiple ECM cues overlap to regulate stem cell fate, thereby contributing to the design of bioinspired biomaterials for bone tissue engineering applications.
Collapse
Affiliation(s)
- Ibrahim Bilem
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, 1065 Avenue de la médecine, Québec G1V 0A6, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec G1L 3L5, Canada.,CBMN, UMR 5248, Université de Bordeaux, Pessac F-33600, France.,Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN 5248), Centre National de la Recherche Scientifique (CNRS), Pessac F-33600, France.,CBMN, UMR 5248, Bordeaux INP, F-33600, Pessac, France
| | - Pascale Chevallier
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, 1065 Avenue de la médecine, Québec G1V 0A6, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec G1L 3L5, Canada
| | - Laurent Plawinski
- CBMN, UMR 5248, Université de Bordeaux, Pessac F-33600, France.,Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN 5248), Centre National de la Recherche Scientifique (CNRS), Pessac F-33600, France.,CBMN, UMR 5248, Bordeaux INP, F-33600, Pessac, France
| | - Eli D Sone
- Institute of Biomaterials and Biomedical Engineering, Department of Materials Science and Engineering, and Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Marie-Christine Durrieu
- CBMN, UMR 5248, Université de Bordeaux, Pessac F-33600, France.,Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN 5248), Centre National de la Recherche Scientifique (CNRS), Pessac F-33600, France.,CBMN, UMR 5248, Bordeaux INP, F-33600, Pessac, France
| | - Gaétan Laroche
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, 1065 Avenue de la médecine, Québec G1V 0A6, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec G1L 3L5, Canada
| |
Collapse
|
33
|
Exploring the Role of RGD-Recognizing Integrins in Cancer. Cancers (Basel) 2017; 9:cancers9090116. [PMID: 28869579 PMCID: PMC5615331 DOI: 10.3390/cancers9090116] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 12/18/2022] Open
Abstract
Integrins are key regulators of communication between cells and with their microenvironment. Eight members of the integrin superfamily recognize the tripeptide motif Arg-Gly-Asp (RGD) within extracelluar matrix (ECM) proteins. These integrins constitute an important subfamily and play a major role in cancer progression and metastasis via their tumor biological functions. Such transmembrane adhesion and signaling receptors are thus recognized as promising and well accessible targets for novel diagnostic and therapeutic applications for directly attacking cancer cells and their fatal microenvironment. Recently, specific small peptidic and peptidomimetic ligands as well as antibodies binding to distinct integrin subtypes have been developed and synthesized as new drug candidates for cancer treatment. Understanding the distinct functions and interplay of integrin subtypes is a prerequisite for selective intervention in integrin-mediated diseases. Integrin subtype-specific ligands labelled with radioisotopes or fluorescent molecules allows the characterization of the integrin patterns in vivo and later the medical intervention via subtype specific drugs. The coating of nanoparticles, larger proteins, or encapsulating agents by integrin ligands are being explored to guide cytotoxic reagents directly to the cancer cell surface. These ligands are currently under investigation in clinical studies for their efficacy in interference with tumor cell adhesion, migration/invasion, proliferation, signaling, and survival, opening new treatment approaches in personalized medicine.
Collapse
|
34
|
Deng J, Zhao C, Spatz JP, Wei Q. Nanopatterned Adhesive, Stretchable Hydrogel to Control Ligand Spacing and Regulate Cell Spreading and Migration. ACS NANO 2017; 11:8282-8291. [PMID: 28696653 DOI: 10.1021/acsnano.7b03449] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Spatial molecular patterning enables the regulation of adhesion receptor clustering and can thus play a pivotal role in multiple biological activities such as cell adhesion, viability, proliferation, and differentiation. A wide range of nanopatterned, adhesive interfaces have been designed to decipher the essence of molecular-scale interactions between cells and the adhesive interface. Although an interligand spacing of less than 70 nm is a proven prerequisite for the formation of stable focal adhesions, there is a paucity of data concerning how cells behave on substrates featuring heterogeneous adhesiveness. In this study, a stretchable hydrogel functionalized with a quasi-hexagonally arranged nanoarray was stretched along one direction, resulting in ligands periodically arranged in a pattern resembling a centered rectangular lattice with an interligand spacing smaller than 70 nm in one direction and greater than 70 nm in the orthogonal direction. This substrate was utilized to modulate interligand spacing and investigate cell adhesion and migration. An interligand spacing larger than 70 nm-even in just one direction-prevented the establishment of stable focal adhesions. The stretched interface promoted dynamic remodeling at cell contacts, resulting in higher cellular mobility. Our nanopatterned stretchable hydrogel permits reversible control over cell adhesion and migration on nanopatterned ligand interfaces.
Collapse
Affiliation(s)
- Jie Deng
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, and Laboratory of Biophysical Chemistry, University of Heidelberg , Jahnstraße 29, 69120 Heidelberg, Germany
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University , Chengdu 610065, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University , Chengdu 610065, China
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, and Laboratory of Biophysical Chemistry, University of Heidelberg , Jahnstraße 29, 69120 Heidelberg, Germany
| | - Qiang Wei
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, and Laboratory of Biophysical Chemistry, University of Heidelberg , Jahnstraße 29, 69120 Heidelberg, Germany
| |
Collapse
|
35
|
Xing J, Mei T, Luo K, Li Z, Yang A, Li Z, Xie Z, Zhang Z, Dong S, Hou T, Xu J, Luo F. A nano-scaled and multi-layered recombinant fibronectin/cadherin chimera composite selectively concentrates osteogenesis-related cells and factors to aid bone repair. Acta Biomater 2017; 53:470-482. [PMID: 28193541 DOI: 10.1016/j.actbio.2017.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/05/2017] [Accepted: 02/09/2017] [Indexed: 01/06/2023]
Abstract
Easily accessible and effective bone grafts are in urgent need in clinic. The selective cell retention (SCR) strategy, by which osteogenesis-related cells and factors are enriched from bone marrow into bio-scaffolds, holds great promise. However, the retention efficacy is limited by the relatively low densities of osteogenesis-related cells and factors in marrow; in addition, a lack of satisfactory surface modifiers for scaffolds further exacerbates the dilemma. To address this issue, a multi-layered construct consisting of a recombinant fibronectin/cadherin chimera was established via a layer-by-layer self-assembly technique (LBL-rFN/CDH) and used to modify demineralised bone matrix (DBM) scaffolds. The modification was proven stable and effective. By the mechanisms of physical interception and more importantly, chemical recognition (fibronectin/integrins), the LBL-rFN/CDH modification significantly improved the retention efficacy and selectivity for osteogenesis-related cells, e.g., monocytes, mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs), and bioactive factors, e.g., bFGF, BMP-2 and SDF-1α. Moreover, the resulting composite (designated as DBM-LBL-rFN/CDH) not only exhibited a strong MSC-recruiting capacity after SCR, but also provided favourable microenvironments for the proliferation and osteogenic differentiation of MSCs. Eventually, bone repair was evidently improved. Collectively, DBM-LBL-rFN/CDH presented a suitable biomaterial for SCR and a promising solution for tremendous need for bone grafts. STATEMENT OF SIGNIFICANCE There is an urgent need for effective bone grafts. With the potential of integrating osteogenicity, osteoinductivity and osteoconductivity, selective cell retention (SCR) technology brings hope for developing ideal grafts. However, it is constrained by low efficacy and selectivity. Thus, we modified demineralized bone matrix with nano-scaled and multi-layered recombinant fibronectin/cadherin chimera (DBM-rFN/CDH-LBL), and evaluate its effects on SCR and bone repair. DBM-rFN/CDH-LBL significantly improved the efficacy and selectivity of SCR via physical interception and chemical recognition. The post-enriched DBM-rFN/CDH-LBL provided favourable microenvironments to facilitate the migration, proliferation and osteogenic differentiation of MSCs, thus accelerating bone repair. Conclusively, DBM-rFN/CDH-LBL presents a novel biomaterial with advantages including high cost-effectiveness, more convenience for storage and transport and can be rapidly constructed intraoperatively.
Collapse
Affiliation(s)
- Junchao Xing
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China; Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China; Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Tieniu Mei
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China; Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China; Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Keyu Luo
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China; Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China; Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Zhiqiang Li
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China; Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China; Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Aijun Yang
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China; Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China; Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Zhilin Li
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China; Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China; Tissue Engineering Laboratory of Chongqing City, Chongqing, China; Department of Spine, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, China
| | - Zhao Xie
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China; Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China; Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Zehua Zhang
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China; Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China; Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Shiwu Dong
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China; Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China; Tissue Engineering Laboratory of Chongqing City, Chongqing, China; Department of Biomedical Materials Science, College of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Tianyong Hou
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China; Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China; Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Jianzhong Xu
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China; Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China; Tissue Engineering Laboratory of Chongqing City, Chongqing, China.
| | - Fei Luo
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China; Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China; Tissue Engineering Laboratory of Chongqing City, Chongqing, China.
| |
Collapse
|
36
|
Yu L, Cheng C, Ran Q, Schlaich C, Noeske PLM, Li W, Wei Q, Haag R. Bioinspired Universal Monolayer Coatings by Combining Concepts from Blood Protein Adsorption and Mussel Adhesion. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6624-6633. [PMID: 28118539 DOI: 10.1021/acsami.6b15834] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Despite the increasing need for universal polymer coating strategies, only a few approaches have been successfully developed, and most of them are suffering from color, high thickness, or high roughness. In this paper, we present for the first time a universal monolayer coating that is only a few nanometers thick and independent of the composition, size, shape, and structure of the substrate. The coating is based on a bioinspired synthetic amphiphilic block copolymer that combines two concepts from blood protein adsorption and mussel adhesion. This polymer can be rapidly tethered on various substrates including both planar surfaces and nanosystems with high grafting density. The resulting monolayer coatings are, on the one hand, inert to the adsorption of multiple polymer layers and prevent biofouling. On the other hand, they are chemically active for secondary functionalization and provide a new platform for selective material surface modification.
Collapse
Affiliation(s)
- Leixiao Yu
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Chong Cheng
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Qidi Ran
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
- Multifunctional Biomaterials for Medicine, Helmholtz Virtual Institute , Kantstrasse 55, 14513 Teltow-Seehof, Germany
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Christoph Schlaich
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Paul-Ludwig Michael Noeske
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials , Wiener Strasse 12, 28359 Bremen, Germany
| | - Wenzhong Li
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Qiang Wei
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
- Multifunctional Biomaterials for Medicine, Helmholtz Virtual Institute , Kantstrasse 55, 14513 Teltow-Seehof, Germany
- Department of Biointerface Science & Technology, Max-Planck Institute for Medical Research , Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
- Multifunctional Biomaterials for Medicine, Helmholtz Virtual Institute , Kantstrasse 55, 14513 Teltow-Seehof, Germany
| |
Collapse
|
37
|
Signal mingle: Micropatterns of BMP-2 and fibronectin on soft biopolymeric films regulate myoblast shape and SMAD signaling. Sci Rep 2017; 7:41479. [PMID: 28134270 PMCID: PMC5278375 DOI: 10.1038/srep41479] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 12/20/2016] [Indexed: 12/25/2022] Open
Abstract
In vivo, bone morphogenetic protein 2 (BMP-2) exists both in solution and bound to the extracellular matrix (ECM). While these two modes of presentation are known to influence cell behavior distinctly, their role in the niche microenvironment and their functional relevance in the genesis of a biological response has sparsely been investigated at a cellular level. Here we used the natural affinity of BMP-2 for fibronectin (FN) to engineer cell-sized micropatterns of BMP-2. This technique allowed the simultaneous control of the spatial presentation of fibronectin-bound BMP-2 and cell spreading. These micropatterns induced a specific actin and adhesion organization around the nucleus, and triggered the phosphorylation and nuclear translocation of SMAD1/5/8 in C2C12 myoblasts and mesenchymal stem cells, an early indicator of their osteoblastic trans-differentiation. We found that cell spreading itself potentiated a BMP-2-dependent phosphorylation of SMAD1/5/8. Finally, we demonstrated that FN/BMP-2-mediated early SMAD signaling depended on LIM kinase 2 and ROCK, rather than myosin II activation. Altogether, our results show that FN/BMP-2 micropatterns are a useful tool to study the mechanisms underlying BMP-2-mediated mechanotransduction. More broadly, our approach could be adapted to other combinations of ECM proteins and growth factors, opening an exciting avenue to recreate tissue-specific niches in vitro.
Collapse
|
38
|
McBeth C, Lauer J, Ottersbach M, Campbell J, Sharon A, Sauer-Budge AF. 3D bioprinting of GelMA scaffolds triggers mineral deposition by primary human osteoblasts. Biofabrication 2017; 9:015009. [PMID: 28071596 DOI: 10.1088/1758-5090/aa53bd] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Due to its relatively low level of antigenicity and high durability, titanium has successfully been used as the major material for biological implants. However, because the typical interface between titanium and tissue precludes adequate transmission of load into the surrounding bone, over time, load-bearing implants tend to loosen and revision surgeries are required. Osseointegration of titanium implants requires presentation of both biological and mechanical cues that promote attachment of and trigger mineral deposition by osteoblasts. While many factors contribute to differentiation, the relative importance of the various cues is unclear. To substantially improve osseointegration of titanium implants, we generated a gelatin methacryloyl (GelMA) scaffold, using an extrusion-based 3D bioprinter, which can be directly printed on and grafted to the titanium implant surface. We demonstrate that this scaffold is able to trigger mineral deposition of both MG63 osteoblasts and primary normal human osteoblasts in the absence of any exogenous osteogenic factors. Films of the same formulation failed to promote mineral deposition suggesting that the three dimensional scaffold was able to tip the balance in favor of differentiation despite other potentially unfavorable differentiation cues of the material. We further show that these GelMA lattices can be directly grafted to titanium alloy and are secure in vitro over a period of seven weeks. When grafted within a groove system, the GelMA hydrogel is protected from shearing forces in a marrow implantation model. This prepares the way for osteogenic coatings to be directly manufactured on the implant surface and packaged for surgery.
Collapse
Affiliation(s)
- Christine McBeth
- Center for Manufacturing Innovation, Fraunhofer USA, Brookline, MA 02446, USA
| | | | | | | | | | | |
Collapse
|
39
|
Bianconi D, Unseld M, Prager GW. Integrins in the Spotlight of Cancer. Int J Mol Sci 2016; 17:ijms17122037. [PMID: 27929432 PMCID: PMC5187837 DOI: 10.3390/ijms17122037] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/17/2016] [Accepted: 11/28/2016] [Indexed: 02/07/2023] Open
Abstract
Integrins are heterodimeric cell surface receptors that bind to different extracellular ligands depending on their composition and regulate all processes which enable multicellular life. In cancer, integrins trigger and play key roles in all the features that were once described as the Hallmarks of Cancer. In this review, we will discuss the contribution of integrins to these hallmarks, including uncontrolled and limitless proliferation, invasion of tumor cells, promotion of tumor angiogenesis and evasion of apoptosis and resistance to growth suppressors, by highlighting the latest findings. Further on, given the paramount role of integrins in cancer, we will present novel strategies for integrin inhibition that are starting to emerge, promising a hopeful future regarding cancer treatment.
Collapse
Affiliation(s)
- Daniela Bianconi
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Matthias Unseld
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Gerald W Prager
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
40
|
Liyanage W, Vats K, Rajbhandary A, Benoit DSW, Nilsson BL. Multicomponent dipeptide hydrogels as extracellular matrix-mimetic scaffolds for cell culture applications. Chem Commun (Camb) 2016; 51:11260-3. [PMID: 26081605 DOI: 10.1039/c5cc03162a] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fmoc-3F-Phe-Arg-NH2 and Fmoc-3F-Phe-Asp-OH dipeptides undergo coassembly to form two-component nanofibril hydrogels. These hydrogels support the viability and growth of NIH 3T3 fibroblast cells. The supramolecular display of Arg and Asp at the nanofibril surface effectively mimics the integrin-binding RGD peptide of fibronectin, without covalent connection between the Arg and Asp functionality.
Collapse
Affiliation(s)
- Wathsala Liyanage
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.
| | | | | | | | | |
Collapse
|
41
|
Haag R. Multivalency as a chemical organization and action principle. Beilstein J Org Chem 2015; 11:848-9. [PMID: 26124885 PMCID: PMC4464320 DOI: 10.3762/bjoc.11.94] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 12/16/2022] Open
Affiliation(s)
- Rainer Haag
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|