1
|
Miao ZY, Lin J, Chen WM. Natural sideromycins and siderophore-conjugated natural products as inspiration for novel antimicrobial agents. Eur J Med Chem 2025; 287:117333. [PMID: 39892091 DOI: 10.1016/j.ejmech.2025.117333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
The widespread emergence of multidrug-resistant (MDR) Gram-negative pathogens has posed a major challenge to clinical anti-infective therapy, and new effective treatments are urgently needed. A promising "Trojan horse" strategy involves conjugating antibiotics to siderophore molecules; the resulting siderophore-antibiotic conjugates (SACs) deliver antibiotics directly into cells by hijacking the sophisticated iron transport systems of Gram-negative bacteria, bypassing the outer membrane permeability barrier to enhance uptake and antibacterial efficacy. The clinical release of the first siderophore-antibiotic conjugate, cefiderocol, has aroused tremendous interest in the field among researchers and pharmaceutical companies. To date, most of the reported SACs have focused on the conjugation of siderophores to traditional antibacterial drugs. However, these antibacterial agents designed on the basis of the traditional antibiotic skeleton theoretically bear the risk of cross-resistance caused by shared molecular scaffolds. In this case, exploring novel natural product antibacterial conjugate scaffolds to circumvent the risk of early cross-resistance represents a presumably more sustainable approach for the development of SACs. In this review, we systematically summarize the research progress on siderophore-natural product conjugates as novel antimicrobial agents reported since 2010. Additionally, we propose challenges to be overcome and prospects for future development in this field.
Collapse
Affiliation(s)
- Zhi-Ying Miao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 511400, China
| | - Jing Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 511400, China.
| | - Wei-Min Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 511400, China.
| |
Collapse
|
2
|
Lee J, Hwang JY, Oh D, Oh DC, Park HG, Shin J, Oh KB. Tunicamycins from Marine-Derived Streptomyces bacillaris Inhibit MurNAc-Pentapeptide Translocase in Staphylococcus aureus. Mar Drugs 2024; 22:293. [PMID: 39057401 PMCID: PMC11277991 DOI: 10.3390/md22070293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Four tunicamycin class compounds, tunicamycin VII (1), tunicamycin VIII (2), corynetoxin U17a (3), and tunicamycin IX (4), were isolated from the culture broth of the marine-derived actinomycete Streptomyces sp. MBTG32. The strain was identified using the 16S rDNA sequencing technique, and the isolated strain was closely related to Streptomyces bacillaris. The structures of the isolated compounds were elucidated based on spectroscopic data and comparisons with previously reported NMR data. Compounds 1-4 showed potent antibacterial activities against Gram-positive bacteria, especially Staphylococcus aureus, with MIC values of 0.13-0.25 µg/mL. Through a recombinant enzyme assay and overexpression analysis, we found that the isolated compounds exerted potent inhibitory effects on S. aureus MurNAc-pentapeptide translocase (MraY), with IC50 values of 0.08-0.21 µg/mL. The present results support that the underlying mechanism of action of tunicamycins isolated from marine-derived Streptomyces sp. is also associated with the inhibition of MraY enzyme activity in S. aureus.
Collapse
Affiliation(s)
- Jayho Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea;
| | - Ji-Yeon Hwang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; (J.-Y.H.); (D.-C.O.)
| | - Daehyun Oh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; (D.O.); (H.-g.P.)
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; (J.-Y.H.); (D.-C.O.)
| | - Hyeung-geun Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; (D.O.); (H.-g.P.)
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; (J.-Y.H.); (D.-C.O.)
| | - Ki-Bong Oh
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea;
| |
Collapse
|
3
|
Kumar G, Engle K. Natural products acting against S. aureus through membrane and cell wall disruption. Nat Prod Rep 2023; 40:1608-1646. [PMID: 37326041 DOI: 10.1039/d2np00084a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Covering: 2015 to 2022Staphylococcus aureus (S. aureus) is responsible for several community and hospital-acquired infections with life-threatening complications such as bacteraemia, endocarditis, meningitis, liver abscess, and spinal cord epidural abscess. In recent decades, the abuse and misuse of antibiotics in humans, animals, plants, and fungi and the treatment of nonmicrobial diseases have led to the rapid emergence of multidrug-resistant pathogens. The bacterial wall is a complex structure consisting of the cell membrane, peptidoglycan cell wall, and various associated polymers. The enzymes involved in bacterial cell wall synthesis are established antibiotic targets and continue to be a central focus for antibiotic development. Natural products play a vital role in drug discovery and development. Importantly, natural products provide a starting point for active/lead compounds that sometimes need modification based on structural and biological properties to meet the drug criteria. Notably, microorganisms and plant metabolites have contributed as antibiotics for noninfectious diseases. In this study, we have summarized the recent advances in understanding the activity of the drugs or agents of natural origin that directly inhibit the bacterial membrane, membrane components, and membrane biosynthetic enzymes by targeting membrane-embedded proteins. We also discussed the unique aspects of the active mechanisms of established antibiotics or new agents.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| | - Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| |
Collapse
|
4
|
Manning D, Huang TY, Berida T, Roy S. The challenges and opportunities of developing small molecule inhibitors of MraY. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2023; 60:1-27. [PMID: 39015353 PMCID: PMC11250723 DOI: 10.1016/bs.armc.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Affiliation(s)
- Destinee Manning
- Department of BioMolecular Sciences, University of Mississippi, University, MS, United States
| | - Tzu-Yu Huang
- Department of BioMolecular Sciences, University of Mississippi, University, MS, United States
| | - Tomayo Berida
- Department of BioMolecular Sciences, University of Mississippi, University, MS, United States
| | - Sudeshna Roy
- Department of BioMolecular Sciences, University of Mississippi, University, MS, United States
| |
Collapse
|
5
|
Rohrbacher C, Zscherp R, Weck SC, Klahn P, Ducho C. Synthesis of an Antimicrobial Enterobactin-Muraymycin Conjugate for Improved Activity Against Gram-Negative Bacteria. Chemistry 2023; 29:e202202408. [PMID: 36222466 PMCID: PMC10107792 DOI: 10.1002/chem.202202408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 12/12/2022]
Abstract
Overcoming increasing antibiotic resistance requires the development of novel antibacterial agents that address new targets in bacterial cells. Naturally occurring nucleoside antibiotics (such as muraymycins) inhibit the bacterial membrane protein MraY, a clinically unexploited essential enzyme in peptidoglycan (cell wall) biosynthesis. Even though a range of synthetic muraymycin analogues has already been reported, they generally suffer from limited cellular uptake and a lack of activity against Gram-negative bacteria. We herein report an approach to overcome these hurdles: a synthetic muraymycin analogue has been conjugated to a siderophore, i. e. the enterobactin derivative EntKL , to increase the cellular uptake into Gram-negative bacteria. The resultant conjugate showed significantly improved antibacterial activity against an efflux-deficient E. coli strain, thus providing a proof-of-concept of this novel approach and a starting point for the future optimisation of such conjugates towards potent agents against Gram-negative pathogens.
Collapse
Affiliation(s)
- Christian Rohrbacher
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| | - Robert Zscherp
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Stefanie C Weck
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| | - Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany.,Department of Chemistry and Molecular Biology, Division of Organic and Medicinal Chemistry, University of Gothenburg, Kemigården 4, 412 96, Göteborg, Sweden
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| |
Collapse
|
6
|
New MraY AA Inhibitors with an Aminoribosyl Uridine Structure and an Oxadiazole. Antibiotics (Basel) 2022; 11:antibiotics11091189. [PMID: 36139968 PMCID: PMC9495235 DOI: 10.3390/antibiotics11091189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
New inhibitors of the bacterial transferase MraY from Aquifex aeolicus (MraYAA), based on the aminoribosyl uridine central core of known natural MraY inhibitors, have been designed to generate interaction of their oxadiazole linker with the key amino acids (H324 or H325) of the enzyme active site, as observed for the highly potent inhibitors carbacaprazamycin, muraymycin D2 and tunicamycin. A panel of ten compounds was synthetized notably thanks to a robust microwave-activated one-step sequence for the synthesis of the oxadiazole ring that involved the O-acylation of an amidoxime and subsequent cyclization. The synthetized compounds, with various hydrophobic substituents on the oxadiazole ring, were tested against the MraYAA transferase activity. Although with poor antibacterial activity, nine out of the ten compounds revealed the inhibition of the MraYAA activity in the range of 0.8 µM to 27.5 µM.
Collapse
|
7
|
Singla RK, Dhir V, Madaan R, Kumar D, Singh Bola S, Bansal M, Kumar S, Dubey AK, Singla S, Shen B. The Genus Alternanthera: Phytochemical and Ethnopharmacological Perspectives. Front Pharmacol 2022; 13:769111. [PMID: 35479320 PMCID: PMC9036189 DOI: 10.3389/fphar.2022.769111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Ethnopharmacological relevance: The genus Alternanthera (Amaranthaceae) comprises 139 species including 14 species used traditionally for the treatment of various ailments such as hypertension, pain, inflammation, diabetes, cancer, microbial and mental disorders. Aim of the review: To search research gaps through critical assessment of pharmacological activities not performed to validate traditional claims of various species of Alternanthera. This review will aid natural product researchers in identifying Alternanthera species with therapeutic potential for future investigation. Materials and methods: Scattered raw data on ethnopharmacological, morphological, phytochemical, pharmacological, toxicological, and clinical studies of various species of the genus Alternanthera have been compiled utilizing search engines like SciFinder, Google Scholar, PubMed, Science Direct, and Open J-Gate for 100 years up to April 2021. Results: Few species of Alternanthera genus have been exhaustively investigated phytochemically, and about 129 chemical constituents related to different classes such as flavonoids, steroids, saponins, alkaloids, triterpenoids, glycosides, and phenolic compounds have been isolated from 9 species. Anticancer, antioxidant, antibacterial, CNS depressive, antidiabetic, analgesic, anti-inflammatory, and immunomodulator effects have been explored in the twelve species of the genus. A toxicity study has been conducted on 3 species and a clinical study on 2 species. Conclusions: The available literature on pharmacological studies of Alternanthera species reveals that few species have been selected based on ethnobotanical surveys for scientific validation of their traditional claims. But most of these studies have been conducted on uncharacterized and non-standardized crude extracts. A roadmap of research needs to be developed for the isolation of new bioactive compounds from Alternanthera species, which can emerge out as clinically potential medicines.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Vivek Dhir
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
- *Correspondence: Bairong Shen, ; Reecha Madaan,
| | - Deepak Kumar
- Department of Health and Family Welfare, Civil Hospital, Rampura Phul, India
| | - Simranjit Singh Bola
- Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, India
| | - Monika Bansal
- Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, India
| | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | | | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Bairong Shen, ; Reecha Madaan,
| |
Collapse
|
8
|
Shao X, Zheng C, Xu P, Shiraishi T, Kuzuyama T, Molinaro A, Silipo A, Yu B. Total Synthesis and Stereochemistry Assignment of Nucleoside Antibiotic A‐94964. Angew Chem Int Ed Engl 2022; 61:e202200818. [DOI: 10.1002/anie.202200818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaofei Shao
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou China
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
| | - Chang Zheng
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
| | - Taro Shiraishi
- Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo Tokyo Japan
| | - Antonio Molinaro
- Department of Chemical Sciences University of Naples Federico II Napoli Italy
| | - Alba Silipo
- Department of Chemical Sciences University of Naples Federico II Napoli Italy
| | - Biao Yu
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou China
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
| |
Collapse
|
9
|
Arbour CA, Imperiali B. Backbone-Anchoring, Solid-Phase Synthesis Strategy To Access a Library of Peptidouridine-Containing Small Molecules. Org Lett 2022; 24:2170-2174. [PMID: 35271284 DOI: 10.1021/acs.orglett.2c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nucleoside diphosphate sugar (NDP-sugar) substrates provide the inspiration for nucleoside analogue inhibitor scaffolds. By employing solid-phase synthesis, we provide a method to access a library of peptidouridine inhibitors with both minimal compound handling and purification steps. Specifically, this strategy is exemplified by generating uridine diphosphate sugar (UDP-sugar) mimics, which allow for compound elaboration by altering the dipeptide composition, the N-terminal linkage, and a pendant aryl group. To exemplify the versatility, 41 unique nucleoside analogues are presented.
Collapse
Affiliation(s)
- Christine A Arbour
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
A Sub-Micromolar MraY AA Inhibitor with an Aminoribosyl Uridine Structure and a ( S, S)-Tartaric Diamide: Synthesis, Biological Evaluation and Molecular Modeling. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061769. [PMID: 35335131 PMCID: PMC8954382 DOI: 10.3390/molecules27061769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 01/28/2023]
Abstract
New inhibitors of the bacterial tranferase MraY are described. Their structure is based on an aminoribosyl uridine scaffold, which is known to be important for the biological activity of natural MraY inhibitors. A decyl alkyl chain was introduced onto this scaffold through various linkers. The synthesized compounds were tested against the MraYAA transferase activity, and the most active compound with an original (S,S)-tartaric diamide linker inhibits MraY activity with an IC50 equal to 0.37 µM. Their antibacterial activity was also evaluated on a panel of Gram-positive and Gram-negative strains; however, the compounds showed no antibacterial activity. Docking and molecular dynamics studies revealed that this new linker established two stabilizing key interactions with N190 and H325, as observed for the highly potent inhibitors carbacaprazamycin, muraymycin D2 and tunicamycin.
Collapse
|
11
|
Shao X, Zheng C, Xu P, Shiraishi T, Kuzuyama T, Molinaro A, Silipo A, Yu B. Total Synthesis and Stereochemistry Assignment of Nucleoside Antibiotic A‐94964. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaofei Shao
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou China
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
| | - Chang Zheng
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
| | - Taro Shiraishi
- Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo Tokyo Japan
| | - Antonio Molinaro
- Department of Chemical Sciences University of Naples Federico II Napoli Italy
| | - Alba Silipo
- Department of Chemical Sciences University of Naples Federico II Napoli Italy
| | - Biao Yu
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou China
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
| |
Collapse
|
12
|
Abstract
This review deals with the synthesis of naturally occurring alkaloids containing partially or completely saturated pyrimidine nuclei. The interest in these compounds is associated with their structural diversity, high biological activity and toxicity. The review is divided into four parts, each of which describes a number of synthetic methodologies toward structurally different naturally occurring alkaloids containing saturated cyclic six-membered amidine, guanidine, aminal and urea (thiourea) moieties, respectively. The development of various synthetic strategies for the preparation of these compounds has remarkably increased during the past few decades. This is primarily due to the fact that some of these compounds are isolated only in limited quantities, which makes it practically impossible to study their full structural characteristics and biological activity.
Collapse
|
13
|
Oliver M, Le Corre L, Poinsot M, Corio A, Madegard L, Bosco M, Amoroso A, Joris B, Auger R, Touzé T, Bouhss A, Calvet-Vitale S, Gravier-Pelletier C. Synthesis, biological evaluation and molecular modeling of urea-containing MraY inhibitors. Org Biomol Chem 2021; 19:5844-5866. [PMID: 34115086 DOI: 10.1039/d1ob00710f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The straightforward synthesis of aminoribosyl uridines substituted by a 5'-methylene-urea is described. Their convergent synthesis involves the urea formation from various activated amides and an azidoribosyl uridine substituted at the 5' position by an aminomethyl group. This common intermediate resulted from the diastereoselective glycosylation of a phthalimido uridine derivative with a ribosyl fluoride as a ribosyl donor. The inhibition of the MraY transferase activity by the synthetized 11 urea-containing inhibitors was evaluated and 10 compounds revealed MraY inhibition with IC50 ranging from 1.9 μM to 16.7 μM. Their antibacterial activity was also evaluated on a panel of Gram-positive and Gram-negative bacteria. Four compounds exhibited a good activity against Gram-positive bacterial pathogens with MIC ranging from 8 to 32 μg mL-1, including methicillin resistant Staphylococcus aureus (MRSA) and Enterococcus faecium. Interestingly, one compound also revealed antibacterial activity against Pseudomonas aeruginosa with MIC equal to 64 μg mL-1. Docking experiments predicted two modes of positioning of the active compounds urea chain in different hydrophobic areas (HS2 and HS4) within the MraY active site from Aquifex aeolicus. However, molecular dynamics simulations showed that the urea chain adopts a binding mode similar to that observed in structural model and targets the hydrophobic area HS2.
Collapse
Affiliation(s)
- Martin Oliver
- Université de Paris, Faculté des Sciences, UMR CNRS 8601, LCBPT, F-75006 Paris, France.
| | - Laurent Le Corre
- Université de Paris, Faculté des Sciences, UMR CNRS 8601, LCBPT, F-75006 Paris, France.
| | - Mélanie Poinsot
- Université de Paris, Faculté des Sciences, UMR CNRS 8601, LCBPT, F-75006 Paris, France.
| | - Alessandra Corio
- Université de Paris, Faculté des Sciences, UMR CNRS 8601, LCBPT, F-75006 Paris, France.
| | - Léa Madegard
- Université de Paris, Faculté des Sciences, UMR CNRS 8601, LCBPT, F-75006 Paris, France.
| | - Michaël Bosco
- Université de Paris, Faculté des Sciences, UMR CNRS 8601, LCBPT, F-75006 Paris, France.
| | - Ana Amoroso
- Unité de Physiologie et Génétique Bactériennes, Centre d'Ingénierie des Protéines, Département des Sciences de la Vie, Université de Liège, Sart Tilman, B4000 Liège 1, Belgique
| | - Bernard Joris
- Unité de Physiologie et Génétique Bactériennes, Centre d'Ingénierie des Protéines, Département des Sciences de la Vie, Université de Liège, Sart Tilman, B4000 Liège 1, Belgique
| | - Rodolphe Auger
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris Sud, CEA, F-91405, Orsay, France
| | - Thierry Touzé
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris Sud, CEA, F-91405, Orsay, France
| | - Ahmed Bouhss
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | | | | |
Collapse
|
14
|
Mastering the Gram-negative bacterial barrier - Chemical approaches to increase bacterial bioavailability of antibiotics. Adv Drug Deliv Rev 2021; 172:339-360. [PMID: 33705882 DOI: 10.1016/j.addr.2021.02.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
To win the battle against resistant, pathogenic bacteria, novel classes of anti-infectives and targets are urgently needed. Bacterial uptake, distribution, metabolic and efflux pathways of antibiotics in Gram-negative bacteria determine what we here refer to as bacterial bioavailability. Understanding these mechanisms from a chemical perspective is essential for anti-infective activity and hence, drug discovery as well as drug delivery. A systematic and critical discussion of in bacterio, in vitro and in silico assays reveals that a sufficiently accurate holistic approach is still missing. We expect new findings based on Gram-negative bacterial bioavailability to guide future anti-infective research.
Collapse
|
15
|
Guo Z, Tang Y, Tang W, Chen Y. Heptose-containing bacterial natural products: structures, bioactivities, and biosyntheses. Nat Prod Rep 2021; 38:1887-1909. [PMID: 33704304 DOI: 10.1039/d0np00075b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to 2020Glycosylated natural products hold great potential as drugs for the treatment of human and animal diseases. Heptoses, known as seven-carbon-chain-containing sugars, are a group of saccharides that are rarely observed in natural products. Based on the structures of the heptoses, the heptose-containing natural products can be divided into four groups, characterized by heptofuranose, highly-reduced heptopyranose, d-heptopyranose, and l-heptopyranose. Many of them possess remarkable biological properties, including antibacterial, antifungal, antitumor, and pain relief activities, thereby attracting great interest in biosynthesis and chemical synthesis studies to understand their construction mechanisms and structure-activity relationships. In this review, we summarize the structural properties, biological activities, and recent progress in the biosynthesis of bacterial natural products featuring seven-carbon-chain-containing sugars. The biosynthetic origins of the heptose moieties are emphasized.
Collapse
Affiliation(s)
- Zhengyan Guo
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China. and University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yue Tang
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China. and University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Wei Tang
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China. and University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China. and University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
16
|
Niro G, Weck SC, Ducho C. Merging Natural Products: Muraymycin-Sansanmycin Hybrid Structures as Novel Scaffolds for Potential Antibacterial Agents. Chemistry 2020; 26:16875-16887. [PMID: 32897546 PMCID: PMC7756498 DOI: 10.1002/chem.202003387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/07/2020] [Indexed: 02/01/2023]
Abstract
To overcome bacterial resistances, the need for novel antimicrobial agents is urgent. The class of so-called nucleoside antibiotics furnishes promising candidates for the development of new antibiotics, as these compounds block a clinically unexploited bacterial target: the integral membrane protein MraY, a key enzyme in cell wall (peptidoglycan) biosynthesis. Nucleoside antibiotics exhibit remarkable structural diversity besides their uridine-derived core motifs. Some sub-classes also show specific selectivities towards different Gram-positive and Gram-negative bacteria, which are poorly understood so far. Herein, the synthesis of a novel hybrid structure is reported, derived from the 5'-defunctionalized uridine core moiety of muraymycins and the peptide chain of sansanmycin B, as a new scaffold for the development of antimicrobial agents. The reported muraymycin-sansanmycin hybrid scaffold showed nanomolar activity against the bacterial target enzyme MraY, but displayed no significant antibacterial activity against S. aureus, E. coli, and P. aeruginosa.
Collapse
Affiliation(s)
- Giuliana Niro
- Department of Pharmacy, Pharmaceutical and Medicinal ChemistrySaarland UniversityCampus C2 366123SaarbrückenGermany
| | - Stefanie C. Weck
- Department of Pharmacy, Pharmaceutical and Medicinal ChemistrySaarland UniversityCampus C2 366123SaarbrückenGermany
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal ChemistrySaarland UniversityCampus C2 366123SaarbrückenGermany
| |
Collapse
|
17
|
Wojtyniak M, Schmidtgall B, Kirsch P, Ducho C. Towards Zwitterionic Oligonucleotides with Improved Properties: the NAA/LNA-Gapmer Approach. Chembiochem 2020; 21:3234-3243. [PMID: 32662164 PMCID: PMC7754139 DOI: 10.1002/cbic.202000450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 01/21/2023]
Abstract
Oligonucleotides (ON) are promising therapeutic candidates, for instance by blocking endogenous mRNA (antisense mechanism). However, ON usually require structural modifications of the native nucleic acid backbone to ensure satisfying pharmacokinetic properties. One such strategy to design novel antisense oligonucleotides is to replace native phosphate diester units by positively charged artificial linkages, thus leading to (partially) zwitterionic backbone structures. Herein, we report a "gapmer" architecture comprised of one zwitterionic central segment ("gap") containing nucleosyl amino acid (NAA) modifications and two outer segments of locked nucleic acid (LNA). This NAA/LNA-gapmer approach furnished a partially zwitterionic ON with optimised properties: i) the formation of stable ON-RNA duplexes with base-pairing fidelity and superior target selectivity at 37 °C; and ii) excellent stability in complex biological media. Overall, the NAA/LNA-gapmer approach is thus established as a strategy to design partially zwitterionic ON for the future development of novel antisense agents.
Collapse
Affiliation(s)
- Melissa Wojtyniak
- Department of PharmacyPharmaceutical and Medicinal ChemistrySaarland UniversityCampus C2 366123SaarbrückenGermany
| | - Boris Schmidtgall
- Department of ChemistryUniversity of PaderbornWarburger Str. 10033098PaderbornGermany
| | - Philine Kirsch
- Department of PharmacyPharmaceutical and Medicinal ChemistrySaarland UniversityCampus C2 366123SaarbrückenGermany
| | - Christian Ducho
- Department of PharmacyPharmaceutical and Medicinal ChemistrySaarland UniversityCampus C2 366123SaarbrückenGermany
- Department of ChemistryUniversity of PaderbornWarburger Str. 10033098PaderbornGermany
| |
Collapse
|
18
|
Cheng WC, Liu WJ, Hu KH, Tan YL, Lin YT, Chen WA, Lo LC. Rapid Synthesis of a Natural Product-Inspired Uridine Containing Library. ACS COMBINATORIAL SCIENCE 2020; 22:600-607. [PMID: 32833425 DOI: 10.1021/acscombsci.0c00011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The preparation of natural product-inspired nucleoside analogs using solution-phase parallel synthesis is described. The key intermediates containing alkyne and N-protected amino moieties were developed to allow for further skeleton and substituent diversity using click chemistry and urea or amide bond formation. Rapid purification was accomplished using solid-phase extraction. The obtained library comprised 80 molecules incorporating two diversity positions and one chiral center, each of which was efficiently prepared in good purity and acceptable overall yield. A bacterial morphology study was also performed.
Collapse
Affiliation(s)
- Wei-Chieh Cheng
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Cheng-Kung University, Tainan 701, Taiwan
- Department of Applied Chemistry, National Chiayi University, Chiayi 600, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wan-Ju Liu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Kung-Hsiang Hu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yee-Ling Tan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yan-Ting Lin
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Wei-An Chen
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Lee-Chiang Lo
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
19
|
Malek Zadeh S, Astani EK, Wang ZC, Adhikari K, Rattinam R, Li TL. Theoretical Study of Intermolecular Interactions between Critical Residues of Membrane Protein MraY AA and Promising Antibiotic Muraymycin D2. ACS OMEGA 2020; 5:22739-22749. [PMID: 32954121 PMCID: PMC7495448 DOI: 10.1021/acsomega.0c01551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Phospho-N-acetylmuramoyl-pentapeptide translocase (MraYAA) from Aquifex aeolicus is the binding target for the nucleotide antibiotic muraymycin D2 (MD2). MraYAA in the presence of the MD2 ligand has been crystallized and released, while the interactions between the ligand and active-site residues remain less quantitatively and qualitatively defined. We characterized theoretically the key residues involved in noncovalent interactions with MD2 in the MraYAA active site. We applied the quantum theory of atoms in molecules and natural bond orbital analyses based on the density functional theory method on the solved crystal structure of MraY with the MD2 to quantitatively estimate the intermolecular interactions. The obtained results revealed the presence of multiple hydrogen bonds in the investigated active site with strength ranging from van der Waals to covalent limits. Lys70, Asp193, Gly194, Asp196, Gly264, Ala321, Gln305, and His325 are key active-site residues interacting with MD2. Conventional and unconventional hydrogen bonds in addition with charge-dipole and dipole-dipole interactions contribute significantly to stabilize the MD2 binding to the MraYAA active site. It was also found that water molecules inside the active site have substantial effects on its structure stability through hydrogen-bonding interactions with MD2 and the interacting residues.
Collapse
Affiliation(s)
- Saeid Malek Zadeh
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
- Chemical
Biology and Molecular Biophysics Program, Taiwan International Graduate
Program, Academia Sinica, Taipei 11529, Taiwan
- Institute
of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Elahe K. Astani
- Department
of Chemistry, Faculty of Science, Tarbiat
Modares University, Tehran 14115-175, Iran
| | - Zhe-Chong Wang
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Kamal Adhikari
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
- Molecular
and Biological Agricultural Sciences Program, Taiwan International
Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Graduate
Institute of Biotechnology, National Chung
Hsing University, Taichung 40227, Taiwan
| | - Rajesh Rattinam
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
- Chemical
Biology and Molecular Biophysics Program, Taiwan International Graduate
Program, Academia Sinica, Taipei 11529, Taiwan
- Institute
of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tsung-Lin Li
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
- Chemical
Biology and Molecular Biophysics Program, Taiwan International Graduate
Program, Academia Sinica, Taipei 11529, Taiwan
- Molecular
and Biological Agricultural Sciences Program, Taiwan International
Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Graduate
Institute of Biotechnology, National Chung
Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
20
|
Terasawa Y, Sataka C, Sato T, Yamamoto K, Fukushima Y, Nakajima C, Suzuki Y, Katsuyama A, Matsumaru T, Yakushiji F, Yokota SI, Ichikawa S. Elucidating the Structural Requirement of Uridylpeptide Antibiotics for Antibacterial Activity. J Med Chem 2020; 63:9803-9827. [PMID: 32787111 DOI: 10.1021/acs.jmedchem.0c00973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The synthesis and biological evaluation of analogues of uridylpeptide antibiotics were described, and the molecular interaction between the 3'-hydroxy analogue of mureidomycin A (3'-hydroxymureidomycin A) and its target enzyme, phospho-MurNAc-pentapeptide transferase (MraY), was analyzed in detail. The structure-activity relationship (SAR) involving MraY inhibition suggests that the side chain at the urea-dipeptide moiety does not affect the MraY inhibition. However, the anti-Pseudomonas aeruginosa activity is in great contrast and the urea-dipeptide motif is a key contributor. It is also suggested that the nucleoside peptide permease NppA1A2BCD is responsible for the transport of 3'-hydroxymureidomycin A into the cytoplasm. A systematic SAR analysis of the urea-dipeptide moiety of 3'-hydroxymureidomycin A was further conducted and the antibacterial activity was determined. This study provides a guide for the rational design of analogues based on uridylpeptide antibiotics.
Collapse
Affiliation(s)
- Yuma Terasawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Chisato Sataka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Toyotaka Sato
- Department of Microbiology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Kazuki Yamamoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yukari Fukushima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020, Japan.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-20, Nishi-10, Kita-ku, Sapporo 001-0020, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020, Japan.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-20, Nishi-10, Kita-ku, Sapporo 001-0020, Japan
| | - Akira Katsuyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.,Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takanori Matsumaru
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.,Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Fumika Yakushiji
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.,Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Shin-Ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.,Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
21
|
Arbour CA, Imperiali B. Uridine natural products: Challenging targets and inspiration for novel small molecule inhibitors. Bioorg Med Chem 2020; 28:115661. [PMID: 32828427 DOI: 10.1016/j.bmc.2020.115661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/18/2020] [Indexed: 12/16/2022]
Abstract
Nucleoside derivatives, in particular those featuring uridine, are familiar components of the nucleoside family of bioactive natural products. The structural complexity and biological activities of these compounds have inspired research from organic chemistry and chemical biology communities seeking to develop novel approaches to assemble the challenging molecular targets, to gain inspiration for enzyme inhibitor development and to fuel antibiotic discovery efforts. This review will present recent case studies describing the total synthesis and biosynthesis of uridine natural products, and de novo synthetic efforts exploiting features of the natural products to produce simplified scaffolds. This research has culminated in the development of complementary strategies that can lead to effective uridine-based inhibitors and antibiotics. The strengths and challenges of the juxtaposing methods will be illustrated by examining select uridine natural products. Moreover, structure-activity relationships (SAR) for each natural product-inspired scaffold will be discussed, highlighting the impact on inhibitor development, with the aim of future uridine-based small molecule expansion.
Collapse
Affiliation(s)
- Christine A Arbour
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
22
|
Salunke RV, Mishra PK, Sanghvi YS, Ramesh NG. Synthesis of novel homoazanucleosides and their peptidyl analogs. Org Biomol Chem 2020; 18:5639-5651. [PMID: 32724966 DOI: 10.1039/d0ob01046d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Synthesis of novel homoazanucleosides and their peptidyl analogs as hybrid molecules comprised of amino acids, an iminosugar and natural nucleobases is reported for the first time. A pluripotent amino-substituted chiral polyhydroxypyrrolidine, possessing orthogonally different functional groups on either arm of the pyrrolidine ring, served as an ideal substrate for the synthesis of the proposed peptidyl homoazanucleosides. The acid sensitive primary benzyloxy group, on one arm of the pyrrolidine ring, after selective deprotection, was utilized for the introduction of nucleobases to obtain the homoazanucleosides. The amino group on the other side offered the opportunity to be coupled with amino acids to deliver the desired peptidyl homoazanucleosides. Glycosidase inhibition studies revealed that the acetamido derivatives of homoazanucleosides were found to be sub-millimolar inhibitors of β-N-acetyl-glucosaminidase.
Collapse
Affiliation(s)
- Rahul Vilas Salunke
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 110016, India.
| | - Pawan Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 110016, India.
| | - Yogesh S Sanghvi
- Rasayan Inc., 2802 Crystal Ridge Road, Encinitas, CA 92024-6615, USA
| | - Namakkal G Ramesh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 110016, India.
| |
Collapse
|
23
|
Patel B, Kerr RV, Malde AK, Zunk M, Bugg TDH, Grant G, Rudrawar S. Simplified Novel Muraymycin Analogues; using a Serine Template Strategy for Linking Key Pharmacophores. ChemMedChem 2020; 15:1429-1438. [PMID: 32476294 DOI: 10.1002/cmdc.202000033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/25/2020] [Indexed: 12/15/2022]
Abstract
The present status of antibiotic research requires the urgent invention of novel agents that act on multidrug-resistant bacteria. The World Health Organization has classified antibiotic-resistant bacteria into critical, high and medium priority according to the urgency of need for new antibiotics. Naturally occurring uridine-derived "nucleoside antibiotics" have shown promising activity against numerous priority resistant organisms by inhibiting the transmembrane protein MraY (translocase I), which is yet to be explored in a clinical context. The catalytic activity of MraY is an essential process for bacterial cell viability and growth including that of priority organisms. Muraymycins are one subclass of naturally occurring MraY inhibitors. Despite having potent antibiotic properties, the structural complexity of muraymycins advocates for simplified analogues as potential lead structures. Herein, we report a systematic structure-activity relationship (SAR) study of serine template-linked, simplified muraymycin-type analogues. This preliminary SAR lead study of serine template analogues successfully revealed that the complex structure of naturally occurring muraymycins could be easily simplified to afford bioactive scaffolds against resistant priority organisms. This study will pave the way for the development of novel antibacterial lead compounds based on a simplified serine template.
Collapse
Affiliation(s)
- Bhautikkumar Patel
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia.,School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia.,Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia
| | - Rachel V Kerr
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Alpeshkumar K Malde
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia.,MaldE Scientific, Australia
| | - Matthew Zunk
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia.,School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia.,Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Gary Grant
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia.,School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia.,Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia
| | - Santosh Rudrawar
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia.,School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia.,Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
24
|
Shetye GS, Franzblau SG, Cho S. New tuberculosis drug targets, their inhibitors, and potential therapeutic impact. Transl Res 2020; 220:68-97. [PMID: 32275897 DOI: 10.1016/j.trsl.2020.03.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 11/18/2022]
Abstract
The current tuberculosis (TB) predicament poses numerous challenges and therefore every incremental scientific work and all positive socio-political engagements, are steps taken in the right direction to eradicate TB. Progression of the late stage TB-drug pipeline into the clinics is an immediate deliverable of this global effort. At the same time, fueling basic research and pursuing early discovery work must be sustained to maintain a healthy TB-drug pipeline. This review encompasses a broad analysis of chemotherapeutic strategies that target the DNA replication, protein synthesis, cell wall biosynthesis, energy metabolism and proteolysis of Mycobacterium tuberculosis (Mtb). It includes a status check of the current TB-drug pipeline with a focus on the associated biology, emerging targets, and their promising chemical inhibitors. Potential synergies and/or gaps within or across different chemotherapeutic strategies are systematically reviewed as well.
Collapse
Affiliation(s)
- Gauri S Shetye
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Sanghyun Cho
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
25
|
Kido M, Idogaki H, Nishikawa K, Motoishi K, Omasa T. Screening of new cell cycle suppressive compounds from marine-derived microorganisms in Chinese hamster ovary cells. J Biosci Bioeng 2020; 130:106-113. [PMID: 32253091 DOI: 10.1016/j.jbiosc.2020.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Monoclonal antibodies (mAbs) are active pharmaceutical ingredients in antibody drugs, produced mainly using recombinant Chinese hamster ovary (CHO) cells. The regulation of recombinant CHO cell proliferation can improve the productivity of heterologous proteins. Chemical compound approaches for cell cycle regulation have the advantages of simplicity and ease of use in industrial processes. However, CHO cells have genetic and phenotypic diversity, and the effects of such compounds might depend on cell line and culture conditions. Increasing the variety of cell cycle inhibitors is a promising strategy to overcome the dependency. Marine microorganisms are a vast and largely undeveloped source of secondary metabolites with physiological activity. In this study, we focused on secondary metabolites of marine microorganisms and evaluated their effectiveness as cell cycle inhibitory compounds. Of 720 extracts from microorganisms (400 actinomycetes and 320 filamentous fungi) collected from the Okinawan Sea, we identified nine extracts that decreased the specific growth rate and increased the specific production rate without reducing cell viability. After fractionating the extracts, the components of active fractions were estimated using time-of-flight mass spectrometry analysis. Then, four compounds, including staurosporine and undecylprodigiosin were deduced to be active compounds. These compounds have been reported to exert a cell cycle inhibitory effect on mammalian cells. These compounds might serve as additives to improve mAb production in CHO cells. This study indicates that secondary metabolites of marine microorganisms are a useful source for new cell cycle inhibitory compounds that can increase mAb production in CHO cells.
Collapse
Affiliation(s)
- Masahide Kido
- Research and Development Division of OSAKA SODA Co., Ltd., Amagasaki, Hyogo 660-0842, Japan; Graduate School of Engineering. Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hideaki Idogaki
- Research and Development Division of OSAKA SODA Co., Ltd., Amagasaki, Hyogo 660-0842, Japan
| | - Kouji Nishikawa
- Research and Development Division of OSAKA SODA Co., Ltd., Amagasaki, Hyogo 660-0842, Japan
| | - Kana Motoishi
- Research and Development Division of OSAKA SODA Co., Ltd., Amagasaki, Hyogo 660-0842, Japan
| | - Takeshi Omasa
- Graduate School of Engineering. Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
26
|
Heib A, Niro G, Weck SC, Koppermann S, Ducho C. Muraymycin Nucleoside Antibiotics: Structure-Activity Relationship for Variations in the Nucleoside Unit. Molecules 2019; 25:molecules25010022. [PMID: 31861655 PMCID: PMC6983020 DOI: 10.3390/molecules25010022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/04/2022] Open
Abstract
Muraymycins are a subclass of naturally occurring nucleoside antibiotics with promising antibacterial activity. They inhibit the bacterial enzyme translocase I (MraY), a clinically yet unexploited target mediating an essential intracellular step of bacterial peptidoglycan biosynthesis. Several structurally simplified muraymycin analogues have already been synthesized for structure–activity relationship (SAR) studies. We now report on novel derivatives with unprecedented variations in the nucleoside unit. For the synthesis of these new muraymycin analogues, we employed a bipartite approach facilitating the introduction of different nucleosyl amino acid motifs. This also included thymidine- and 5-fluorouridine-derived nucleoside core structures. Using an in vitro assay for MraY activity, it was found that the introduction of substituents in the 5-position of the pyrimidine nucleobase led to a significant loss of inhibitory activity towards MraY. The loss of nucleobase aromaticity (by reduction of the uracil C5-C6 double bond) resulted in a ca. tenfold decrease in inhibitory potency. In contrast, removal of the 2′-hydroxy group furnished retained activity, thus demonstrating that modifications of the ribose moiety might be well-tolerated. Overall, these new SAR insights will guide the future design of novel muraymycin analogues for their potential development towards antibacterial drug candidates.
Collapse
|
27
|
Leyerer K, Koppermann S, Ducho C. Solid Phase‐Supported Synthesis of Muraymycin Analogues. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kristin Leyerer
- Department of Pharmacy Pharmaceutical and Medicinal Chemistry Saarland University Campus C2 3 66123 Saarbrücken Germany
| | - Stefan Koppermann
- Department of Pharmacy Pharmaceutical and Medicinal Chemistry Saarland University Campus C2 3 66123 Saarbrücken Germany
| | - Christian Ducho
- Department of Pharmacy Pharmaceutical and Medicinal Chemistry Saarland University Campus C2 3 66123 Saarbrücken Germany
| |
Collapse
|
28
|
Patel B, Grant G, Zunk M, Rudrawar S. Stereoselective Approaches toward the Synthesis of Nucleoside Antibiotic Core Aminoribosyl Glycyluridine. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Bhautikkumar Patel
- School of Pharmacy and Pharmacology Griffith University Gold Coast QLD 4222 Australia
- Quality Use of Medicines Network Griffith University Gold Coast QLD 4222 Australia
| | - Gary Grant
- School of Pharmacy and Pharmacology Griffith University Gold Coast QLD 4222 Australia
- Quality Use of Medicines Network Griffith University Gold Coast QLD 4222 Australia
| | - Matthew Zunk
- School of Pharmacy and Pharmacology Griffith University Gold Coast QLD 4222 Australia
- Quality Use of Medicines Network Griffith University Gold Coast QLD 4222 Australia
- Menzies Health Institute Queensland Griffith University Gold Coast QLD 4222 Australia
| | - Santosh Rudrawar
- School of Pharmacy and Pharmacology Griffith University Gold Coast QLD 4222 Australia
- Quality Use of Medicines Network Griffith University Gold Coast QLD 4222 Australia
- Menzies Health Institute Queensland Griffith University Gold Coast QLD 4222 Australia
| |
Collapse
|
29
|
Patel B, Ryan P, Makwana V, Zunk M, Rudrawar S, Grant G. Caprazamycins: Promising lead structures acting on a novel antibacterial target MraY. Eur J Med Chem 2019; 171:462-474. [DOI: 10.1016/j.ejmech.2019.01.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 11/29/2022]
|
30
|
Linder R, Ducho C. Unified Synthesis of Densely Functionalized Amino Acid Building Blocks for the Preparation of Caprazamycin Nucleoside Antibiotics. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ruth Linder
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry; Saarland University; Campus C2 3 66123 Saarbrücken Germany
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry; Saarland University; Campus C2 3 66123 Saarbrücken Germany
| |
Collapse
|
31
|
Catalão MJ, Filipe SR, Pimentel M. Revisiting Anti-tuberculosis Therapeutic Strategies That Target the Peptidoglycan Structure and Synthesis. Front Microbiol 2019; 10:190. [PMID: 30804921 PMCID: PMC6378297 DOI: 10.3389/fmicb.2019.00190] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/23/2019] [Indexed: 12/27/2022] Open
Abstract
Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), is one of the leading cause of death by an infectious diseases. The biosynthesis of the mycobacterial cell wall (CW) is an area of increasing research significance, as numerous antibiotics used to treat TB target biosynthesis pathways of essential CW components. The main feature of the mycobacterial cell envelope is an intricate structure, the mycolyl-arabinogalactan-peptidoglycan (mAGP) complex responsible for its innate resistance to many commonly used antibiotics and involved in virulence. A hallmark of mAGP is its unusual peptidoglycan (PG) layer, which has subtleties that play a key role in virulence by enabling pathogenic species to survive inside the host and resist antibiotic pressure. This dynamic and essential structure is not a target of currently used therapeutics as Mtb is considered naturally resistant to most β-lactam antibiotics due to a highly active β-lactamase (BlaC) that efficiently hydrolyses many β-lactam drugs to render them ineffective. The emergence of multidrug- and extensive drug-resistant strains to the available antibiotics has become a serious health threat, places an immense burden on health care systems, and poses particular therapeutic challenges. Therefore, it is crucial to explore additional Mtb vulnerabilities that can be used to combat TB. Remodeling PG enzymes that catalyze biosynthesis and recycling of the PG are essential to the viability of Mtb and are therefore attractive targets for novel antibiotics research. This article reviews PG as an alternative antibiotic target for TB treatment, how Mtb has developed resistance to currently available antibiotics directed to PG biosynthesis, and the potential of targeting this essential structure to tackle TB by attacking alternative enzymatic activities involved in Mtb PG modifications and metabolism.
Collapse
Affiliation(s)
- Maria João Catalão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sérgio R. Filipe
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Caparica, Portugal
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Madalena Pimentel
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
32
|
Wiegmann D, Koppermann S, Ducho C. Aminoribosylated Analogues of Muraymycin Nucleoside Antibiotics. Molecules 2018; 23:molecules23123085. [PMID: 30486316 PMCID: PMC6320880 DOI: 10.3390/molecules23123085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 01/15/2023] Open
Abstract
Nucleoside antibiotics are uridine-derived natural products that inhibit the bacterial membrane protein MraY. MraY is a key enzyme in the membrane-associated intracellular stages of peptidoglycan biosynthesis and therefore considered to be a promising, yet unexploited target for novel antibacterial agents. Muraymycins are one subclass of such naturally occurring MraY inhibitors. As part of structure-activity relationship (SAR) studies on muraymycins and their analogues, we now report on novel derivatives with different attachment of one characteristic structural motif, i.e., the aminoribose moiety normally linked to the muraymycin glycyluridine core unit. Based on considerations derived from an X-ray co-crystal structure, we designed and synthesised muraymycin analogues having the aminoribose attached (via a linker) to either the glycyluridine amino group or to the uracil nucleobase. Reference compounds bearing the non-aminoribosylated linker units were also prepared. It was found that the novel aminoribosylated analogues were inactive as MraY inhibitors in vitro, but that the glycyluridine-modified reference compound retained most of the inhibitory potency relative to the unmodified parent muraymycin analogue. These results point to 6′-N-alkylated muraymycin analogues as a potential novel variation of the muraymycin scaffold for future SAR optimisation.
Collapse
Affiliation(s)
- Daniel Wiegmann
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany.
| | - Stefan Koppermann
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany.
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany.
| |
Collapse
|
33
|
Meng M, Schmidtgall B, Ducho C. Enhanced Stability of DNA Oligonucleotides with Partially Zwitterionic Backbone Structures in Biological Media. Molecules 2018; 23:molecules23112941. [PMID: 30423832 PMCID: PMC6278555 DOI: 10.3390/molecules23112941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 11/16/2022] Open
Abstract
Deficient stability towards nuclease-mediated degradation is one of the most relevant tasks in the development of oligonucleotide-derived biomedical agents. This hurdle can be overcome through modifications to the native oligonucleotide backbone structure, with the goal of simultaneously retaining the unique hybridization properties of nucleic acids. The nucleosyl amino acid (NAA)-modification is a recently introduced artificial cationic backbone linkage. Partially zwitterionic NAA-modified oligonucleotides had previously shown hybridization with DNA strands with retained base-pairing fidelity. In this study, we report the significantly enhanced stability of NAA-modified oligonucleotides towards 3′- and 5′-exonuclease-mediated degradation as well as in complex biological media such as human plasma and whole cell lysate. This demonstrates the potential versatility of the NAA-motif as a backbone modification for the development of biomedically active oligonucleotide analogues.
Collapse
Affiliation(s)
- Melissa Meng
- Saarland University, Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Campus C2 3, 66123 Saarbrücken, Germany.
| | - Boris Schmidtgall
- Saarland University, Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Campus C2 3, 66123 Saarbrücken, Germany.
- University of Paderborn, Department of Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Christian Ducho
- Saarland University, Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Campus C2 3, 66123 Saarbrücken, Germany.
- University of Paderborn, Department of Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| |
Collapse
|
34
|
Analogues of Muraymycin Nucleoside Antibiotics with Epimeric Uridine-Derived Core Structures. Molecules 2018; 23:molecules23112868. [PMID: 30400295 PMCID: PMC6278576 DOI: 10.3390/molecules23112868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 11/17/2022] Open
Abstract
Nucleoside analogues have found widespread application as antiviral and antitumor agents, but not yet as antibacterials. Naturally occurring uridine-derived ‘nucleoside antibiotics’ target the bacterial membrane protein MraY, an enzyme involved in peptidoglycan biosynthesis and a promising target for the development of novel antibacterial agents. Muraymycins represent a nucleoside-peptide subgroup of such MraY-inhibiting natural products. As part of detailed structure-activity relationship (SAR) studies on muraymycins and their analogues, we now report novel insights into the effects of stereochemical variations in the nucleoside core structure. Using a simplified version of the muraymycin scaffold, it was shown that some formal inversions of stereochemistry led to about one order of magnitude loss in inhibitory potency towards the target enzyme MraY. In contrast, epimers of the core motif with retained inhibitory activity were also identified. These 5′,6′-anti-configured analogues might serve as novel chemically tractable variations of the muraymycin scaffold for the future development of uridine-derived drug candidates.
Collapse
|
35
|
Raghavendra T, Patil S, Mukherjee R. Peptidoglycan in Mycobacteria: chemistry, biology and intervention. Glycoconj J 2018; 35:421-432. [DOI: 10.1007/s10719-018-9842-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/20/2018] [Accepted: 09/05/2018] [Indexed: 01/07/2023]
|
36
|
Cui Z, Liu X, Overbay J, Cai W, Wang X, Lemke A, Wiegmann D, Niro G, Thorson JS, Ducho C, Van Lanen SG. Enzymatic Synthesis of the Ribosylated Glycyl-Uridine Disaccharide Core of Peptidyl Nucleoside Antibiotics. J Org Chem 2018; 83:7239-7249. [PMID: 29768920 PMCID: PMC6291243 DOI: 10.1021/acs.joc.8b00855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Muraymycins belong to a family of nucleoside antibiotics that have a distinctive disaccharide core consisting of 5-amino-5-deoxyribofuranose (ADR) attached to 6'- N-alkyl-5'- C-glycyluridine (GlyU). Here, we functionally assign and characterize six enzymes from the muraymycin biosynthetic pathway involved in the core assembly that starts from uridine monophosphate (UMP). The biosynthesis is initiated by Mur16, a nonheme Fe(II)- and α-ketoglutarate-dependent dioxygenase, followed by four transferase enzymes: Mur17, a pyridoxal-5'-phosphate (PLP)-dependent transaldolase; Mur20, an aminotransferase; Mur26, a pyrimidine phosphorylase; and Mur18, a nucleotidylyltransferase. The pathway culminates in glycosidic bond formation in a reaction catalyzed by an additional transferase enzyme, Mur19, a ribosyltransferase. Analysis of the biochemical properties revealed several noteworthy discoveries including that (i) Mur16 and downstream enzymes can also process 2'-deoxy-UMP to generate a 2-deoxy-ADR, which is consistent with the structure of some muraymycin congeners; (ii) Mur20 prefers l-Tyr as the amino donor source; (iii) Mur18 activity absolutely depends on the amine functionality of the ADR precursor consistent with the nucleotidyltransfer reaction occurring after the Mur20-catalyzed aminotransfer reaction; and (iv) the bona fide sugar acceptor for Mur19 is (5' S,6' S)-GlyU, suggesting that ribosyltransfer occurs prior to N-alkylation of GlyU. Finally, a one-pot, six-enzyme reaction was utilized to generate the ADR-GlyU disaccharide core starting from UMP.
Collapse
Affiliation(s)
- Zheng Cui
- Department of Pharmaceutical Sciences College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Xiaodong Liu
- Department of Pharmaceutical Sciences College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jonathan Overbay
- Department of Pharmaceutical Sciences College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Wenlong Cai
- Department of Pharmaceutical Sciences College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Xiachang Wang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Anke Lemke
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Daniel Wiegmann
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Giuliana Niro
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Jon S. Thorson
- Department of Pharmaceutical Sciences College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Steven G. Van Lanen
- Department of Pharmaceutical Sciences College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|
37
|
Hering J, Dunevall E, Ek M, Brändén G. Structural basis for selective inhibition of antibacterial target MraY, a membrane-bound enzyme involved in peptidoglycan synthesis. Drug Discov Today 2018; 23:1426-1435. [DOI: 10.1016/j.drudis.2018.05.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/13/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022]
|
38
|
Self-Resistance during Muraymycin Biosynthesis: a Complementary Nucleotidyltransferase and Phosphotransferase with Identical Modification Sites and Distinct Temporal Order. Antimicrob Agents Chemother 2018; 62:AAC.00193-18. [PMID: 29735559 DOI: 10.1128/aac.00193-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/29/2018] [Indexed: 11/20/2022] Open
Abstract
Muraymycins are antibacterial natural products from Streptomyces spp. that inhibit translocase I (MraY), which is involved in cell wall biosynthesis. Structurally, muraymycins consist of a 5'-C-glycyluridine (GlyU) appended to a 5″-amino-5″-deoxyribose (ADR), forming a disaccharide core that is found in several peptidyl nucleoside inhibitors of MraY. For muraymycins, the GlyU-ADR disaccharide is further modified with an aminopropyl-linked peptide to generate the simplest structures, annotated as the muraymycin D series. Two enzymes encoded in the muraymycin biosynthetic gene cluster, Mur29 and Mur28, were functionally assigned in vitro as a Mg·ATP-dependent nucleotidyltransferase and a Mg·ATP-dependent phosphotransferase, respectively, both modifying the 3″-OH of the disaccharide. Biochemical characterization revealed that both enzymes can utilize several nucleotide donors as cosubstrates and the acceptor substrate muraymycin also behaves as an inhibitor. Single-substrate kinetic analyses revealed that Mur28 preferentially phosphorylates a synthetic GlyU-ADR disaccharide, a hypothetical biosynthetic precursor of muraymycins, while Mur29 preferentially adenylates the D series of muraymycins. The adenylated or phosphorylated products have significantly reduced (170-fold and 51-fold, respectively) MraY inhibitory activities and reduced antibacterial activities, compared with the respective unmodified muraymycins. The results are consistent with Mur29-catalyzed adenylation and Mur28-catalyzed phosphorylation serving as complementary self-resistance mechanisms, with a distinct temporal order during muraymycin biosynthesis.
Collapse
|
39
|
Meng M, Ducho C. Oligonucleotide analogues with cationic backbone linkages. Beilstein J Org Chem 2018; 14:1293-1308. [PMID: 29977397 PMCID: PMC6009206 DOI: 10.3762/bjoc.14.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/26/2018] [Indexed: 12/28/2022] Open
Abstract
Their unique ability to selectively bind specific nucleic acid sequences makes oligonucleotides promising bioactive agents. However, modifications of the nucleic acid structure are an essential prerequisite for their application in vivo or even in cellulo. The oligoanionic backbone structure of oligonucleotides mainly hampers their ability to penetrate biological barriers such as cellular membranes. Hence, particular attention has been given to structural modifications of oligonucleotides which reduce their overall number of negative charges. One such approach is the site-specific replacement of the negatively charged phosphate diester linkage with alternative structural motifs which are positively charged at physiological pH, thus resulting in zwitterionic or even oligocationic backbone structures. This review provides a general overview of this concept and summarizes research on four according artificial backbone linkages: aminoalkylated phosphoramidates (and related systems), guanidinium groups, S-methylthiourea motifs, and nucleosyl amino acid (NAA)-derived modifications. The synthesis and properties of the corresponding oligonucleotide analogues are described.
Collapse
Affiliation(s)
- Melissa Meng
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| |
Collapse
|
40
|
Cui Z, Wang X, Koppermann S, Thorson JS, Ducho C, Van Lanen SG. Antibacterial Muraymycins from Mutant Strains of Streptomyces sp. NRRL 30471. JOURNAL OF NATURAL PRODUCTS 2018; 81:942-948. [PMID: 29553733 PMCID: PMC6434714 DOI: 10.1021/acs.jnatprod.7b01054] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Muraymycins are nucleoside antibiotics isolated from Streptomyces sp. NRRL 30471 and several mutant strains thereof that were generated by random, chemical mutagenesis. Reinvestigation of two mutant strains using new media conditions led to the isolation of three new muraymycin congeners, named B8, B9, and C6 (1-3), as well as a known muraymycin, C1. Structures of the compounds were elucidated by HRMS and 1D and 2D NMR spectroscopic analyses. Complete 2D NMR assignments for the known muraymycin C1 are also provided for the first time. Compounds 1 and 2, which differ from other muraymycins by having an elongated, terminally branched fatty acid side chain, had picomolar IC50 values against Staphylococcus aureus and Aquifex aeolicus MraY and showed good antibacterial activity against S. aureus (MIC = 2 and 6 μg/mL, respectively) and Escherichia coli Δ tolC (MIC = 4 and 2 μg/mL, respectively). Compound 3, which is characterized by an N-acetyl modification of the primary amine of the dissacharide core that is shared among nearly all of the reported muraymycin congeners, greatly reduced its inhibitory and antibacterial activity compared to nonacylated muraymycin C1, which possibly indicates this modification is used for self-resistance.
Collapse
Affiliation(s)
- Zheng Cui
- Department of Pharmaceutical Sciences, College of
Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Xiachang Wang
- Center for Pharmaceutical Research and Innovation,
College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United
States
- Jiangsu Key Laboratory for Functional Substance of
Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine,
Nanjing 210023, People’s Republic of China
| | - Stefan Koppermann
- Department of Pharmacy, Pharmaceutical and Medicinal
Chemistry, Saarland University Campus C2 3, 66123 Saarbrücken, Germany
| | - Jon S. Thorson
- Department of Pharmaceutical Sciences, College of
Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Center for Pharmaceutical Research and Innovation,
College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United
States
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal
Chemistry, Saarland University Campus C2 3, 66123 Saarbrücken, Germany
| | - Steven G. Van Lanen
- Department of Pharmaceutical Sciences, College of
Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|
41
|
Lukose V, Walvoort MTC, Imperiali B. Bacterial phosphoglycosyl transferases: initiators of glycan biosynthesis at the membrane interface. Glycobiology 2018; 27:820-833. [PMID: 28810664 DOI: 10.1093/glycob/cwx064] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/13/2017] [Indexed: 12/18/2022] Open
Abstract
Phosphoglycosyl transferases (PGTs) initiate the biosynthesis of both essential and virulence-associated bacterial glycoconjugates including lipopolysaccharide, peptidoglycan and glycoproteins. PGTs catalyze the transfer of a phosphosugar moiety from a nucleoside diphosphate sugar to a polyprenol phosphate, to form a membrane-bound polyprenol diphosphosugar product. PGTs are integral membrane proteins, which include between 1 and 11 predicted transmembrane domains. Despite this variation, common motifs have been identified in PGT families through bioinformatics and mutagenesis studies. Bacterial PGTs represent important antibacterial and virulence targets due to their significant role in initiating the biosynthesis of key bacterial glycoconjugates. Considerable effort has gone into mechanistic and inhibition studies for this class of enzymes, both of which depend on reliable, high-throughput assays for easy quantification of activity. This review summarizes recent advances made in the characterization of this challenging but important class of enzymes.
Collapse
Affiliation(s)
- Vinita Lukose
- Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marthe T C Walvoort
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Barbara Imperiali
- Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
42
|
Koppermann S, Cui Z, Fischer PD, Wang X, Ludwig J, Thorson JS, Van Lanen SG, Ducho C. Insights into the Target Interaction of Naturally Occurring Muraymycin Nucleoside Antibiotics. ChemMedChem 2018; 13:779-784. [PMID: 29438582 PMCID: PMC6019934 DOI: 10.1002/cmdc.201700793] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/02/2018] [Indexed: 11/08/2022]
Abstract
Muraymycins are a subclass of antimicrobially active uridine-derived natural products. Biological data on several muraymycin analogues have been reported, including some inhibitory in vitro activities toward their target protein, the bacterial membrane enzyme MraY. However, a structure-activity relationship (SAR) study on naturally occurring muraymycins based on such in vitro data has been missing so far. In this work, we report a detailed SAR investigation on representatives of the four muraymycin subgroups A-D using a fluorescence-based in vitro MraY assay. For some muraymycins, inhibition of MraY with IC50 values in the low-picomolar range was observed. These inhibitory potencies were compared with antibacterial activities and were correlated to modelling data derived from a previously reported X-ray crystal structure of MraY in complex with a muraymycin inhibitor. Overall, these results will pave the way for the development of muraymycin analogues with optimized properties as antibacterial drug candidates.
Collapse
Affiliation(s)
- Stefan Koppermann
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| | - Zheng Cui
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone Street, Lexington, KY, 40536, USA
| | - Patrick D Fischer
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| | - Xiachang Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R. China
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 S. Limestone Street, Lexington, KY, 40536, USA
| | - Jannine Ludwig
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| | - Jon S Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone Street, Lexington, KY, 40536, USA
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 S. Limestone Street, Lexington, KY, 40536, USA
| | - Steven G Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone Street, Lexington, KY, 40536, USA
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| |
Collapse
|
43
|
Temburnikar K, Seley-Radtke KL. Recent advances in synthetic approaches for medicinal chemistry of C-nucleosides. Beilstein J Org Chem 2018; 14:772-785. [PMID: 29719574 PMCID: PMC5905277 DOI: 10.3762/bjoc.14.65] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/06/2018] [Indexed: 12/13/2022] Open
Abstract
C-nucleosides have intrigued biologists and medicinal chemists since their discovery in 1950's. In that regard, C-nucleosides and their synthetic analogues have resulted in promising leads in drug design. Concurrently, advances in chemical syntheses have contributed to structural diversity and drug discovery efforts. Convergent and modular approaches to synthesis have garnered much attention in this regard. Among them nucleophilic substitution at C1' has seen wide applications providing flexibility in synthesis, good yields, the ability to maneuver stereochemistry as well as to incorporate structural modifications. In this review, we describe recent reports on the modular synthesis of C-nucleosides with a focus on D-ribonolactone and sugar modifications that have resulted in potent lead molecules.
Collapse
Affiliation(s)
- Kartik Temburnikar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe St. Baltimore, MD 21205, United States
| | - Katherine L Seley-Radtke
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| |
Collapse
|
44
|
Schmidtgall B, Kuepper A, Meng M, Grossmann TN, Ducho C. Oligonucleotides with Cationic Backbone and Their Hybridization with DNA: Interplay of Base Pairing and Electrostatic Attraction. Chemistry 2017; 24:1544-1553. [PMID: 29048135 PMCID: PMC5814856 DOI: 10.1002/chem.201704338] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Indexed: 01/01/2023]
Abstract
Non‐natural oligonucleotides represent important (bio)chemical tools and potential therapeutic agents. Backbone modifications altering hybridization properties and biostability can provide useful analogues. Here, we employ an artificial nucleosyl amino acid (NAA) motif for the synthesis of oligonucleotides containing a backbone decorated with primary amines. An oligo‐T sequence of this cationic DNA analogue shows significantly increased affinity for complementary DNA. Notably, hybridization with DNA is still governed by Watson–Crick base pairing. However, single base pair mismatches are tolerated and some degree of sequence‐independent interactions between the cationic NAA backbone and fully mismatched DNA are observed. These findings demonstrate that a high density of positive charges directly connected to the oligonucleotide backbone can affect Watson–Crick base pairing. This provides a paradigm for the design of therapeutic oligonucleotides with altered backbone charge patterns.
Collapse
Affiliation(s)
- Boris Schmidtgall
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany.,Department of Chemistry, University of Paderborn, Warburger Strasse 100, 33098, Paderborn, Germany
| | - Arne Kuepper
- Chemical Genomics Centre (CGC) of the Max Planck Society, Otto-Hahn-Str. 15, 44227, Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Melissa Meng
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| | - Tom N Grossmann
- Chemical Genomics Centre (CGC) of the Max Planck Society, Otto-Hahn-Str. 15, 44227, Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany.,Department of Chemistry & Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany.,Department of Chemistry, University of Paderborn, Warburger Strasse 100, 33098, Paderborn, Germany
| |
Collapse
|
45
|
Bugg TDH. Nucleoside Natural Product Antibiotics Targetting Microbial Cell Wall Biosynthesis. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/7355_2017_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
46
|
Wohnig S, Spork AP, Koppermann S, Mieskes G, Gisch N, Jahn R, Ducho C. Total Synthesis of Dansylated Park's Nucleotide for High-Throughput MraY Assays. Chemistry 2016; 22:17813-17819. [PMID: 27791327 DOI: 10.1002/chem.201604279] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Indexed: 11/11/2022]
Abstract
The membrane protein translocase I (MraY) is a key enzyme in bacterial peptidoglycan biosynthesis. It is therefore frequently discussed as a target for the development of novel antibiotics. The screening of compound libraries for the identification of MraY inhibitors is enabled by an established fluorescence-based MraY assay. However, this assay requires a dansylated derivative of the bacterial biosynthetic intermediate Park's nucleotide as the MraY substrate. Isolation of Park's nucleotide from bacteria and subsequent dansylation only furnishes limited amounts of this substrate, thus hampering the high-throughput screening for MraY inhibitors. Accordingly, the efficient provision of dansylated Park's nucleotide is a major bottleneck in the exploration of this promising drug target. In this work, we present the first total synthesis of dansylated Park's nucleotide, affording an unprecedented amount of the target compound for high-throughput MraY assays.
Collapse
Affiliation(s)
- Stephanie Wohnig
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany.,Department of Chemistry, Institute of Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Anatol P Spork
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany.,Department of Chemistry, Institute of Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany.,Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Stefan Koppermann
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany.,Department of Chemistry, Institute of Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Gottfried Mieskes
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 1-40, 23845, Borstel, Germany
| | - Reinhard Jahn
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany.,Department of Chemistry, Institute of Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| |
Collapse
|
47
|
Graef F, Vukosavljevic B, Michel JP, Wirth M, Ries O, De Rossi C, Windbergs M, Rosilio V, Ducho C, Gordon S, Lehr CM. The bacterial cell envelope as delimiter of anti-infective bioavailability - An in vitro permeation model of the Gram-negative bacterial inner membrane. J Control Release 2016; 243:214-224. [PMID: 27769806 DOI: 10.1016/j.jconrel.2016.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/11/2016] [Accepted: 10/15/2016] [Indexed: 11/26/2022]
Abstract
Gram-negative bacteria possess a unique and complex cell envelope, composed of an inner and outer membrane separated by an intermediate cell wall-containing periplasm. This tripartite structure acts intrinsically as a significant biological barrier, often limiting the permeation of anti-infectives, and so preventing such drugs from reaching their target. Furthermore, identification of the specific permeation-limiting envelope component proves difficult in the case of many anti-infectives, due to the challenges associated with isolation of individual cell envelope structures in bacterial culture. The development of an in vitro permeation model of the Gram-negative inner membrane, prepared by repeated coating of physiologically-relevant phospholipids on Transwell® filter inserts, is therefore reported, as a first step in the development of an overall cell envelope model. Characterization and permeability investigations of model compounds as well as anti-infectives confirmed the suitability of the model for quantitative and kinetically-resolved permeability assessment, and additionally confirmed the importance of employing bacteria-specific base materials for more accurate mimicking of the inner membrane lipid composition - both advantages compared to the majority of existing in vitro approaches. Additional incorporation of further elements of the Gram-negative bacterial cell envelope could ultimately facilitate model application as a screening tool in anti-infective drug discovery or formulation development.
Collapse
Affiliation(s)
- Florian Graef
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Department of Drug Delivery, Campus E8 1, 66123 Saarbrücken, Germany.
| | - Branko Vukosavljevic
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Department of Drug Delivery, Campus E8 1, 66123 Saarbrücken, Germany.
| | - Jean-Philippe Michel
- Institut Galien Paris Sud, UMR 8612, Univ Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.B. Clément, F-92290 Châtenay-Malabry, France.
| | - Marius Wirth
- Saarland University, Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Campus C2 3, 66123 Saarbrücken, Germany.
| | - Oliver Ries
- Saarland University, Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Campus C2 3, 66123 Saarbrücken, Germany
| | - Chiara De Rossi
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Department of Drug Delivery, Campus E8 1, 66123 Saarbrücken, Germany.
| | - Maike Windbergs
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Department of Drug Delivery, Campus E8 1, 66123 Saarbrücken, Germany.
| | - Véronique Rosilio
- Institut Galien Paris Sud, UMR 8612, Univ Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.B. Clément, F-92290 Châtenay-Malabry, France.
| | - Christian Ducho
- Saarland University, Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Campus C2 3, 66123 Saarbrücken, Germany.
| | - Sarah Gordon
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Department of Drug Delivery, Campus E8 1, 66123 Saarbrücken, Germany.
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Department of Drug Delivery, Campus E8 1, 66123 Saarbrücken, Germany; Saarland University, Department of Pharmacy, Biopharmacy and Pharmaceutical Technology, Campus E8 1, 66123 Saarbrücken, Germany.
| |
Collapse
|
48
|
Merino P, Delso I, Tejero T, Ghirardello M, Juste-Navarro V. Nucleoside Diphosphate Sugar Analogues that Target Glycosyltransferases. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Pedro Merino
- Department of Synthesis and Structure of Biomolecules; Institute of Chemical Synthesis and Homogeneous Catalysis (ISQCH); University of Zaragoza, CSIC; Zaragoza, Aragón 50009 Spain
| | - Ignacio Delso
- NMR Service, Center of Chemistry and Materials of Aragon (CEQMA); University of Zaragoza, CSIC; Zaragoza, Aragón 50009 Spain
| | - Tomás Tejero
- Department of Synthesis and Structure of Biomolecules; Institute of Chemical Synthesis and Homogeneous Catalysis (ISQCH); University of Zaragoza, CSIC; Zaragoza, Aragón 50009 Spain
| | - Mattia Ghirardello
- Department of Synthesis and Structure of Biomolecules; Institute of Chemical Synthesis and Homogeneous Catalysis (ISQCH); University of Zaragoza, CSIC; Zaragoza, Aragón 50009 Spain
| | - Verónica Juste-Navarro
- Department of Synthesis and Structure of Biomolecules; Institute of Chemical Synthesis and Homogeneous Catalysis (ISQCH); University of Zaragoza, CSIC; Zaragoza, Aragón 50009 Spain
| |
Collapse
|
49
|
Mitachi K, Aleiwi BA, Schneider CM, Siricilla S, Kurosu M. Stereocontrolled Total Synthesis of Muraymycin D1 Having a Dual Mode of Action against Mycobacterium tuberculosis. J Am Chem Soc 2016; 138:12975-12980. [PMID: 27617631 DOI: 10.1021/jacs.6b07395] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A stereocontrolled first total synthesis of muraymycin D1 (1) has been achieved. The synthetic route is highly stereoselective, featuring (1) selective β-ribosylation of the C2-methylated amino ribose, (2) selective Strecker reaction, and (3) ring-opening reaction of a diastereomeric mixture of a diaminolactone to synthesize muraymycidine (epi-capreomycidine). The acid-cleavable protecting groups for secondary alcohol and uridine ureido nitrogen are applied for simultaneous deprotections with the Boc and tBu groups. Muraymycin D1 (1) and its amide derivatives (2 and 3) exhibited growth inhibitory activity against Mycobacterium tuberculosis (MIC50 = 1.56-6.25 μg/mL) and strong enzyme inhibitory activities against the bacterial phosphotransferases (MurX and WecA) (IC50 = 0.096-0.69 μM).
Collapse
Affiliation(s)
- Katsuhiko Mitachi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Bilal A Aleiwi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Christopher M Schneider
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Shajila Siricilla
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Michio Kurosu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , 881 Madison Avenue, Memphis, Tennessee 38163, United States
| |
Collapse
|
50
|
The Membrane Steps of Bacterial Cell Wall Synthesis as Antibiotic Targets. Antibiotics (Basel) 2016; 5:antibiotics5030028. [PMID: 27571111 PMCID: PMC5039524 DOI: 10.3390/antibiotics5030028] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/15/2016] [Accepted: 08/19/2016] [Indexed: 11/23/2022] Open
Abstract
Peptidoglycan is the major component of the cell envelope of virtually all bacteria. It has structural roles and acts as a selective sieve for molecules from the outer environment. Peptidoglycan synthesis is therefore one of the most important biogenesis pathways in bacteria and has been studied extensively over the last twenty years. The pathway starts in the cytoplasm, continues in the cytoplasmic membrane and finishes in the periplasmic space, where the precursor is polymerized into the peptidoglycan layer. A number of proteins involved in this pathway, such as the Mur enzymes and the penicillin binding proteins (PBPs), have been studied and regarded as good targets for antibiotics. The present review focuses on the membrane steps of peptidoglycan synthesis that involve two enzymes, MraY and MurG, the inhibitors of these enzymes and the inhibition mechanisms. We also discuss the challenges of targeting these two cytoplasmic membrane (associated) proteins in bacterial cells and the perspectives on how to overcome the issues.
Collapse
|