1
|
Liang R, Yuan B, Zhang F, Feng W. Azopyridine Polymers in Organic Phase Change Materials for High Energy Density Photothermal Storage and Controlled Release. Angew Chem Int Ed Engl 2025; 64:e202419165. [PMID: 39564601 DOI: 10.1002/anie.202419165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/21/2024]
Abstract
Azo-compounds molecules and phase change materials offer potential applications for sustainable energy systems through the storage and controllable release photochemical and phase change energy. Developing novel and highly efficient Azo-based solar thermal fuels (STFs) for photothermal energy storage and synergistic cooperation with organic phase change materials present significant challenges. Herein, three types of (ortho-, meta-, and para-) azopyridine polymers hinged with flexible alkyl chain are synthesized, in which meta-azopyridine polymer exhibits striking photothermal storage capacity of 430 J/g, providing a feasibility solution for developing high energy density Azo-based STFs. Furthermore, a stable two-phase hybrid system was innovatively constructed by combining the meta-azopyridine polymer with organic phase change materials leveraging hydrogen bonds and van der Waals interactions to collectively harness phase change energy and photothermal energy. The organic phase change material not only supplies additional phase change latent heat but also serves as a solvent, offering abundant free volume for the photo-induced isomerization of the azopyridine chromophores, which successfully circumvents the low charging efficiency in the condensed state and reliance on solvent-assisted charging in traditional Azo-based STFs. This study demonstrates the energy distribution and utilization for household consumers and the photothermal-assisted insulation strategy, achieving more extensive potential implementation for STFs.
Collapse
Affiliation(s)
- Rihui Liang
- Beijing University of Chemical Technology Institute of Advanced Technology and Equipment, Beijing, 100029, China
| | - Bo Yuan
- Beijing University of Chemical Technology Institute of Advanced Technology and Equipment, Beijing, 100029, China
| | - Fei Zhang
- Institute of Flexible Electronics Technology of, Tsinghua University, Zhejiang, 314000, China
| | - Wei Feng
- Beijing University of Chemical Technology Institute of Advanced Technology and Equipment, Beijing, 100029, China
- Tianjin University, School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300072, China
| |
Collapse
|
2
|
Cué-Sampedro R, Sánchez-Fernández JA. Functional Post-Synthetic Chemistry of Metal-Organic Cages According to Molecular Architecture and Specific Geometry of Origin. Molecules 2025; 30:462. [PMID: 39942567 PMCID: PMC11820633 DOI: 10.3390/molecules30030462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Metal-organic cages (MOCs) are discrete supramolecular entities consisting of metal nodes and organic connectors or linkers; MOCs are noted for their high porosity and processability. Chemically, they can be post-synthetically modified (PSM) and new functional groups can be introduced, presenting attractive qualities, and it is expected that their new properties will differ from those of the original compound. This is why they are highly regarded in the fields of biology and chemistry. The present review deals with the current PSM strategies used for MOCs, including covalent, coordination, and noncovalent methods and their structural benefits. The main emphasis of this review is to show to what extent and under what circumstances a MOC can be designed to obtain a tailored geometric architecture. Although sometimes unclear when examining supramolecular systems, particularizing the design of and systematic approaches to the development and characterization of families of MOCs provides new insights into structure-function relationships, which will guide future developments.
Collapse
Affiliation(s)
- Rodrigo Cué-Sampedro
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - José Antonio Sánchez-Fernández
- Procesos de Polimerización, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, Saltillo 25294, Mexico
| |
Collapse
|
3
|
Gemen J, Stövesand B, Glorius F, Ravoo BJ. Surface Tension Manipulation with Visible Light through Sensitized Disequilibration of Photoswitchable Amphiphiles. Angew Chem Int Ed Engl 2024; 63:e202413209. [PMID: 39145431 DOI: 10.1002/anie.202413209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Azoarene isomerization lies at the heart of numerous applications, from catalysis or energy storage to photopharmacology. While efficient switching between their E and Z isomers predominantly relies on UV light, a recent study by Klajn and co-workers introduced visible light sensitization of E azoarenes and their subsequent isomerization as a tool coined disequilibration by sensitization under confinement (DESC) to obtain high yields of the Z isomer. This host-guest approach is, however, still constrained to minimally substituted azoarenes with limited applicability in advanced molecular systems. Herein, we expand DESC for the assembly of surfactants at the air-water interface. Leveraging our expertise with photoswitchable amphiphiles, we induce substantial alterations of the water surface tension through reversible arylazopyrazole isomerization. After studying the binding of charged surfactants to the host, we find that the surface activity differences upon visible light switching for both isomers are comparable to those obtained by UV light excitation. The method is demonstrated on a large concentration range and can be activated using green or red light, depending on the sensitizer chosen. The straightforward implementation of photoswitch sensitization in a complex molecular network showcases how DESC enables the improvement of existing systems and the development of novel applications driven by visible light.
Collapse
Affiliation(s)
- Julius Gemen
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Bastian Stövesand
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Frank Glorius
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
4
|
Carbonell A, Izquierdo I, Guzmán Ríos DB, Norjmaa G, Ujaque G, Martínez-Martínez AJ, Pischel U. Synthesis, Characterization, and Photochemistry of a Ga 2L 3 Coordination Cage with Dithienylethene-Catecholate Ligands. Inorg Chem 2024; 63:19872-19884. [PMID: 39375865 PMCID: PMC11497204 DOI: 10.1021/acs.inorgchem.4c03279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
Two new photoswitchable dithienylethene (DTE)-catechol ligands, specifically designed for group 13 metal coordination, were synthesized via Suzuki coupling reactions from a dichloro-DTE building block, each with varying longitudinal extensions. The shorter DTE-catechol ligand did not efficiently assemble with Ga3+ metal ions; however, elongation with a phenylene-amide spacer group enabled the successful formation of a novel triply DTE-functionalized coordination [Ga2L3]6- cage. This cage represents a unique example of integrating DTE photoswitches with main group metals in a supramolecular coordination framework. The [Ga2L3]6- cage was thoroughly characterized by NMR spectroscopy, including DOSY hydrodynamic volumetric analyses, high-resolution mass spectrometry, computational DFT, and photochemical analyses. The DFT studies highlighted the structural integrity and dynamic interplay within the helicate and mesocate isomeric forms of the [Ga2L3]6- cage upon photoswitching. While the free ligands exhibited all-photonic reversible switching at up to mM concentrations upon alternating irradiation at 365 and >495 nm, the [Ga2L3]6- cage demonstrated these capabilities under dilute μM conditions, albeit with lower efficiency and fatigue resistance. This behavior highlights the intricate relationship between rigid coordination with main group metals and the flexibility of the photoswitchable DTE ligands within the [Ga2L3]6- cage.
Collapse
Affiliation(s)
- Adrián Carbonell
- Center
for Research in Sustainable Chemistry (CIQSO) and Department of Chemistry, University of Huelva, Campus El Carmen, Huelva 21071, Spain
| | - Ignacio Izquierdo
- Center
for Research in Sustainable Chemistry (CIQSO) and Department of Chemistry, University of Huelva, Campus El Carmen, Huelva 21071, Spain
| | - David B. Guzmán Ríos
- Center
for Research in Sustainable Chemistry (CIQSO) and Department of Chemistry, University of Huelva, Campus El Carmen, Huelva 21071, Spain
| | - Gantulga Norjmaa
- Departament
de Química and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Universitat
Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Gregori Ujaque
- Departament
de Química and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Universitat
Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Antonio J. Martínez-Martínez
- Center
for Research in Sustainable Chemistry (CIQSO) and Department of Chemistry, University of Huelva, Campus El Carmen, Huelva 21071, Spain
| | - Uwe Pischel
- Center
for Research in Sustainable Chemistry (CIQSO) and Department of Chemistry, University of Huelva, Campus El Carmen, Huelva 21071, Spain
| |
Collapse
|
5
|
Hema K, Grommet AB, Białek MJ, Wang J, Schneider L, Drechsler C, Yanshyna O, Diskin-Posner Y, Clever GH, Klajn R. Guest Encapsulation Alters the Thermodynamic Landscape of a Coordination Host. J Am Chem Soc 2023; 145. [PMID: 37917939 PMCID: PMC10655118 DOI: 10.1021/jacs.3c08666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
The architecture of self-assembled host molecules can profoundly affect the properties of the encapsulated guests. For example, a rigid cage with small windows can efficiently protect its contents from the environment; in contrast, tube-shaped, flexible hosts with large openings and an easily accessible cavity are ideally suited for catalysis. Here, we report a "Janus" nature of a Pd6L4 coordination host previously reported to exist exclusively as a tube isomer (T). We show that upon encapsulating various tetrahedrally shaped guests, T can reconfigure into a cage-shaped host (C) in quantitative yield. Extracting the guest affords empty C, which is metastable and spontaneously relaxes to T, and the T⇄C interconversion can be repeated for multiple cycles. Reversible toggling between two vastly different isomers paves the way toward controlling functional properties of coordination hosts "on demand".
Collapse
Affiliation(s)
- Kuntrapakam Hema
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Angela B. Grommet
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Michał J. Białek
- Department
of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50383 Wrocław, Poland
| | - Jinhua Wang
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Laura Schneider
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Christoph Drechsler
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Oksana Yanshyna
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Yael Diskin-Posner
- Chemical
Research Support, Weizmann Institute of
Science, Rehovot 76100, Israel
| | - Guido H. Clever
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Rafal Klajn
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
- Institute
of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| |
Collapse
|
6
|
Strugach D, Hadar D, Amiram M. Robust Photocontrol of Elastin-like Polypeptide Phase Transition with a Genetically Encoded Arylazopyrazole. ACS Synth Biol 2023; 12:2802-2811. [PMID: 37714526 PMCID: PMC10594652 DOI: 10.1021/acssynbio.3c00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Indexed: 09/17/2023]
Abstract
The rational design of light-responsive proteins and protein-based polymers requires both a photoswitch with suitable light-responsive properties and the ability to incorporate it at (multiple) defined positions in the protein chain. This Letter describes the evolution of high-performance aminoacyl-tRNA synthetases for recognizing a photoswitchable arylazopyrazole-bearing unnatural amino acid (AAP-uAA), which we then incorporated at multiple sites within elastin-like polypeptides (ELPs). The incorporation of AAP-uAA into ELPs yielded proteins capable of an isothermal, reversible, and robust light-mediated soluble-to-insoluble phase transition, which occurred faster (after only 1 min of light irradiation) and demonstrated a larger transition temperature difference (up to a 45 °C difference in the ELP transition temperature upon a cis to trans AAP isomerization) than similar azobenzene-containing ELPs. The evolved translation machinery can be used for the multisite incorporation of AAP at the polypeptide level; moreover, it constitutes a general methodology for designing light-responsive proteins and protein-based polymers with robust light-responsive behavior, made possible by the superior photoswitchable properties of AAP.
Collapse
Affiliation(s)
- Daniela
S. Strugach
- The Avram and Stella Goldstein Goren
Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel
| | - Dagan Hadar
- The Avram and Stella Goldstein Goren
Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel
| | - Miriam Amiram
- The Avram and Stella Goldstein Goren
Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel
| |
Collapse
|
7
|
Gemen J, Church JR, Ruoko TP, Durandin N, Białek MJ, Weißenfels M, Feller M, Kazes M, Odaybat M, Borin VA, Kalepu R, Diskin-Posner Y, Oron D, Fuchter MJ, Priimagi A, Schapiro I, Klajn R. Disequilibrating azobenzenes by visible-light sensitization under confinement. Science 2023; 381:1357-1363. [PMID: 37733864 DOI: 10.1126/science.adh9059] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Photoisomerization of azobenzenes from their stable E isomer to the metastable Z state is the basis of numerous applications of these molecules. However, this reaction typically requires ultraviolet light, which limits applicability. In this study, we introduce disequilibration by sensitization under confinement (DESC), a supramolecular approach to induce the E-to-Z isomerization by using light of a desired color, including red. DESC relies on a combination of a macrocyclic host and a photosensitizer, which act together to selectively bind and sensitize E-azobenzenes for isomerization. The Z isomer lacks strong affinity for and is expelled from the host, which can then convert additional E-azobenzenes to the Z state. In this way, the host-photosensitizer complex converts photon energy into chemical energy in the form of out-of-equilibrium photostationary states, including ones that cannot be accessed through direct photoexcitation.
Collapse
Affiliation(s)
- Julius Gemen
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jonathan R Church
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Tero-Petri Ruoko
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33101 Tampere, Finland
| | - Nikita Durandin
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33101 Tampere, Finland
| | - Michał J Białek
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50383 Wrocław, Poland
| | - Maren Weißenfels
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Moran Feller
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Miri Kazes
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Magdalena Odaybat
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, 82 Wood Lane, London W12 7SL, UK
| | - Veniamin A Borin
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Rishir Kalepu
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Diskin-Posner
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dan Oron
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Matthew J Fuchter
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, 82 Wood Lane, London W12 7SL, UK
| | - Arri Priimagi
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33101 Tampere, Finland
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Rafal Klajn
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
8
|
Arndt NB, Adolphs T, Arlinghaus HF, Heidrich B, Ravoo BJ. Arylazopyrazole-Modified Thiolactone Acrylate Copolymer Brushes for Tuneable and Photoresponsive Wettability of Glass Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5342-5351. [PMID: 37011284 DOI: 10.1021/acs.langmuir.2c03400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Photoswitches have long been employed in coatings for surfaces and substrates to harness light as a versatile stimulus to induce responsive behavior. We previously demonstrated the viability of arylazopyrazole (AAP) as a photoswitch in self-assembled monolayers (SAMs) on silicon and glass surfaces for photoresponsive wetting applications. We now aim to transfer the excellent photophysical properties of AAPs to polymer brush coatings. Compared to SAMs, polymer brushes offer enhanced stability and an increase of the thickness and density of the functional organic layer. In this work, we present thiolactone acrylate copolymer brushes which can be post-modified with AAP amines as well as hydrophobic acrylates, making use of the unique chemistry of the thiolactones. This strategy enables photoresponsive wetting with a tuneable range of contact angle change on glass substrates. We show the successful synthesis of thiolactone hydroxyethyl acrylate copolymer brushes by means of surface-initiated atom-transfer radical polymerization with the option to either prepare homogeneous brushes or to prepare micrometer-sized brush patterns by microcontact printing. The polymer brushes were analyzed by atomic force microscopy, time-of-flight secondary ion spectrometry, and X-ray photoelectron spectroscopy. Photoresponsive behavior imparted to the brushes by means of post-modification with AAP is monitored by UV/vis spectroscopy, and wetting behavior of homogeneous brushes is measured by static and dynamic contact angle measurements. The brushes show an average change in static contact angle of around 13° between E and Z isomer of the AAP photoswitch for at least five cycles, while the range of contact angle change can be fine-tuned between 53.5°/66.5° (E/Z) and 81.5°/94.8° (E/Z) by post-modification with hydrophobic acrylates.
Collapse
Affiliation(s)
- Niklas B Arndt
- Center for Soft Nanoscience and Organic Chemistry Institute, University of Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Thorsten Adolphs
- Center for Soft Nanoscience and Physics Institute, University of Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Heinrich F Arlinghaus
- Center for Soft Nanoscience and Physics Institute, University of Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Bastian Heidrich
- MEET Battery Research Center, University of Münster, Corrensstraße 46, 48149 Münster, Germany
- Institute of Physical Chemistry, University of Münster, Corrensstraße 29, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Center for Soft Nanoscience and Organic Chemistry Institute, University of Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| |
Collapse
|
9
|
Rybak CJ, Andjaba JM, Fan C, Zeller M, Uyeda C. Dinickel-Catalyzed N═N Bond Rotation. Inorg Chem 2023; 62:5886-5891. [PMID: 37018479 DOI: 10.1021/acs.inorgchem.3c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Azoarenes function as molecular switches that can be triggered by external stimuli, such as heat, light, and electrochemical potential. Here, we show that a dinickel catalyst can induce cis/trans isomerization in azoarenes through a N═N bond rotation mechanism. Catalytic intermediates containing azoarenes bound in both the cis and trans forms are characterized. Solid-state structures reveal the importance of π-back-bonding interactions from the dinickel active site in lowering the N═N bond order and accelerating bond rotation. The scope of the catalytic isomerization includes high-performance acyclic, cyclic, and polymeric azoarene switches.
Collapse
Affiliation(s)
- Christopher J Rybak
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - John M Andjaba
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Chengyi Fan
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Matthias Zeller
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Christopher Uyeda
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
10
|
Metal Organic Polygons and Polyhedra: Instabilities and Remedies. INORGANICS 2023. [DOI: 10.3390/inorganics11010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The field of coordination chemistry has undergone rapid transformation from preparation of monometallic complexes to multimetallic complexes. So far numerous multimetallic coordination complexes have been synthesized. Multimetallic coordination complexes with well-defined architectures are often called as metal organic polygons and polyhedra (MOPs). In recent past, MOPs have received tremendous attention due to their potential applicability in various emerging fields. However, the field of coordination chemistry of MOPs often suffer set back due to the instability of coordination complexes particularly in aqueous environment-mostly by aqueous solvent and atmospheric moisture. Accordingly, the fate of the field does not rely only on the water solubilities of newly synthesized MOPs but very much dependent on their stabilities both in solution and solid state. The present review discusses several methodologies to prepare MOPs and investigates their stabilities under various circumstances. Considering the potential applicability of MOPs in sustainable way, several methodologies (remedies) to enhance the stabilities of MOPs are discussed here.
Collapse
|
11
|
Thaggard GC, Haimerl J, Park KC, Lim J, Fischer RA, Maldeni Kankanamalage BKP, Yarbrough BJ, Wilson GR, Shustova NB. Metal-Photoswitch Friendship: From Photochromic Complexes to Functional Materials. J Am Chem Soc 2022; 144:23249-23263. [PMID: 36512744 DOI: 10.1021/jacs.2c09879] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cooperative metal-photoswitch interfaces comprise an application-driven field which is based on strategic coupling of metal cations and organic photochromic molecules to advance the behavior of both components, resulting in dynamic molecular and material properties controlled through external stimuli. In this Perspective, we highlight the ways in which metal-photoswitch interplay can be utilized as a tool to modulate a system's physicochemical properties and performance in a variety of structural motifs, including discrete molecular complexes or cages, as well as periodic structures such as metal-organic frameworks. This Perspective starts with photochromic molecular complexes as the smallest subunit in which metal-photoswitch interactions can occur, and progresses toward functional materials. In particular, we explore the role of the metal-photoswitch relationship for gaining fundamental knowledge of switchable electronic and magnetic properties, as well as in the design of stimuli-responsive sensors, optically gated memory devices, catalysts, and photodynamic therapeutic agents. The abundance of stimuli-responsive systems in the natural world only foreshadows the creative directions that will uncover the full potential of metal-photoswitch interactions in the coming years.
Collapse
Affiliation(s)
- Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Johanna Haimerl
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States.,Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Roland A Fischer
- Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Buddhima K P Maldeni Kankanamalage
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Brandon J Yarbrough
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
12
|
Wang J, Avram L, Diskin-Posner Y, Białek MJ, Stawski W, Feller M, Klajn R. Altering the Properties of Spiropyran Switches Using Coordination Cages with Different Symmetries. J Am Chem Soc 2022; 144:21244-21254. [DOI: 10.1021/jacs.2c08901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jinhua Wang
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Diskin-Posner
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michał J. Białek
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie Street, 50383 Wrocław, Poland
| | - Wojciech Stawski
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moran Feller
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rafal Klajn
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
13
|
Gemen J, Białek MJ, Kazes M, Shimon LJ, Feller M, Semenov SN, Diskin-Posner Y, Oron D, Klajn R. Ternary host-guest complexes with rapid exchange kinetics and photoswitchable fluorescence. Chem 2022; 8:2362-2379. [PMID: 36133801 PMCID: PMC9473544 DOI: 10.1016/j.chempr.2022.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/18/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022]
Abstract
Confinement within molecular cages can dramatically modify the physicochemical properties of the encapsulated guest molecules, but such host-guest complexes have mainly been studied in a static context. Combining confinement effects with fast guest exchange kinetics could pave the way toward stimuli-responsive supramolecular systems-and ultimately materials-whose desired properties could be tailored "on demand" rapidly and reversibly. Here, we demonstrate rapid guest exchange between inclusion complexes of an open-window coordination cage that can simultaneously accommodate two guest molecules. Working with two types of guests, anthracene derivatives and BODIPY dyes, we show that the former can substantially modify the optical properties of the latter upon noncovalent heterodimer formation. We also studied the light-induced covalent dimerization of encapsulated anthracenes and found large effects of confinement on reaction rates. By coupling the photodimerization with the rapid guest exchange, we developed a new way to modulate fluorescence using external irradiation.
Collapse
Affiliation(s)
- Julius Gemen
- Department of Molecular Chemistry & Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michał J. Białek
- Department of Molecular Chemistry & Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50383 Wrocław, Poland
| | - Miri Kazes
- Department of Molecular Chemistry & Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Linda J.W. Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moran Feller
- Department of Molecular Chemistry & Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sergey N. Semenov
- Department of Molecular Chemistry & Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Diskin-Posner
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dan Oron
- Department of Molecular Chemistry & Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rafal Klajn
- Department of Molecular Chemistry & Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
14
|
Santamaria-Garcia VJ, Flores-Hernandez DR, Contreras-Torres FF, Cué-Sampedro R, Sánchez-Fernández JA. Advances in the Structural Strategies of the Self-Assembly of Photoresponsive Supramolecular Systems. Int J Mol Sci 2022; 23:7998. [PMID: 35887350 PMCID: PMC9317886 DOI: 10.3390/ijms23147998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/11/2022] Open
Abstract
Photosensitive supramolecular systems have garnered attention due to their potential to catalyze highly specific tasks through structural changes triggered by a light stimulus. The tunability of their chemical structure and charge transfer properties provides opportunities for designing and developing smart materials for multidisciplinary applications. This review focuses on the approaches reported in the literature for tailoring properties of the photosensitive supramolecular systems, including MOFs, MOPs, and HOFs. We discuss relevant aspects regarding their chemical structure, action mechanisms, design principles, applications, and future perspectives.
Collapse
Affiliation(s)
- Vivian J. Santamaria-Garcia
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - Domingo R. Flores-Hernandez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - Flavio F. Contreras-Torres
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - Rodrigo Cué-Sampedro
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - José Antonio Sánchez-Fernández
- Procesos de Polimerización, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, Saltillo 25294, Mexico
| |
Collapse
|
15
|
Encapsulation within a coordination cage modulates the reactivity of redox-active dyes. Commun Chem 2022; 5:44. [PMID: 36697669 PMCID: PMC9814915 DOI: 10.1038/s42004-022-00658-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/18/2022] [Indexed: 02/08/2023] Open
Abstract
Confining molecules within well-defined nanosized spaces can profoundly alter their physicochemical characteristics. For example, the controlled aggregation of chromophores into discrete oligomers has been shown to tune their optical properties whereas encapsulation of reactive species within molecular hosts can increase their stability. The resazurin/resorufin pair has been widely used for detecting redox processes in biological settings; yet, how tight confinement affects the properties of these two dyes remains to be explored. Here, we show that a flexible PdII6L4 coordination cage can efficiently encapsulate both resorufin and resazurin in the form of dimers, dramatically modulating their optical properties. Furthermore, binding within the cage significantly decreases the reduction rate of resazurin to resorufin, and the rate of the subsequent reduction of resorufin to dihydroresorufin. During our studies, we also found that upon dilution, the PdII6L4 cage disassembles to afford PdII2L2 species, which lacks the ability to form inclusion complexes - a process that can be reversed upon the addition of the strongly binding resorufin/resazurin guests. We expect that the herein disclosed ability of a water-soluble cage to reversibly modulate the optical and chemical properties of a molecular redox probe will expand the versatility of synthetic fluorescent probes in biologically relevant environments.
Collapse
|
16
|
Kennedy ADW, DiNardi RG, Fillbrook LL, Donald WA, Beves JE. Visible-Light Switching of Metallosupramolecular Assemblies. Chemistry 2022; 28:e202104461. [PMID: 35102616 PMCID: PMC9302685 DOI: 10.1002/chem.202104461] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/11/2022]
Abstract
A photoswitchable ligand and palladium(II) ions form a dynamic mixture of self-assembled metallosupramolecular structures. The photoswitching ligand is an ortho-fluoroazobenzene with appended pyridyl groups. Combining the E-isomer with palladium(II) salts affords a double-walled triangle with composition [Pd3 L6 ]6+ and a distorted tetrahedron [Pd4 L8 ]8+ (1 : 2 ratio at 298 K). Irradiation with 410 nm light generates a photostationary state with approximately 80 % of the E-isomer of the ligand and results in the selective disassembly of the tetrahedron, the more thermodynamically stable structure, and the formation of the triangle, the more kinetically inert product. The triangle is then slowly transformed back into the tetrahedron over 2 days at 333 K. The Z-isomer of the ligand does not form any well-defined structures and has a thermal half-life of 25 days at 298 K. This approach shows how a thermodynamically preferred self-assembled structure can be reversibly pumped to a kinetic trap by small perturbations of the isomer distribution using non-destructive visible light.
Collapse
Affiliation(s)
| | - Ray G. DiNardi
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| | - Lucy L. Fillbrook
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| | - William A. Donald
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| | - Jonathon E. Beves
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
17
|
Yanshyna O, Avram L, Shimon LJW, Klajn R. Coexistence of 1 : 1 and 2 : 1 inclusion complexes of indigo carmine. Chem Commun (Camb) 2022; 58:3461-3464. [PMID: 35064258 PMCID: PMC8908503 DOI: 10.1039/d1cc07081a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We show that the optical properties of indigo carmine can be modulated by encapsulation within a coordination cage. Depending on the host/guest molar ratio, the cage can predominantly encapsulate either one or two dye molecules. The 1 : 1 complex is fluorescent, unique for an indigo dye in an aqueous solution. We have also found that binding two dye molecules stabilizes a previously unknown conformation of the cage. We show that the optical properties of indigo carmine can be modulated by encapsulation within a coordination cage.![]()
Collapse
Affiliation(s)
- Oksana Yanshyna
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Linda J W Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rafal Klajn
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
18
|
Leistner AL, Pianowski Z. Smart photochromic materials triggered with visible light. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Anna-Lena Leistner
- KIT: Karlsruher Institut fur Technologie Institute of Organic Chemistry Fritz-Haber-Weg 6 76131 Karlsruhe GERMANY
| | - Zbigniew Pianowski
- Karlsruher Institut fur Technologie Fakultat fur Chemie und Biowissenschaften Institute of Organic Chemistry Fritz-Haber-Weg 6 76131 Karlsruhe GERMANY
| |
Collapse
|
19
|
Gupta D, Gaur AK, Chauhan D, Thakur SK, Jeyapalan V, Singh S, Rajaraman G, Venkataramani S. Solid-state photochromic arylazopyrazole based transition metal complexes. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00325b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new class of photoactive and chelating ligands L1-3 have been designed and synthesized by incorporating arylazo-3,5-dimethylpyrazole units in the ligand frameworks. Significantly they are designed in such a way...
Collapse
|
20
|
Küng R, Pausch T, Rasch D, Göstl R, Schmidt BM. Mechanochemische Freisetzung nichtkovalent gebundener Gäste aus einem mit Polymerketten dekorierten supramolekularen Käfig. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Robin Küng
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Deutschland
| | - Tobias Pausch
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Deutschland
| | - Dustin Rasch
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstraße 50 52056 Aachen Deutschland
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringerweg 1 52074 Aachen Deutschland
| | - Robert Göstl
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstraße 50 52056 Aachen Deutschland
| | - Bernd M. Schmidt
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Deutschland
| |
Collapse
|
21
|
Küng R, Pausch T, Rasch D, Göstl R, Schmidt BM. Mechanochemical Release of Non-Covalently Bound Guests from a Polymer-Decorated Supramolecular Cage. Angew Chem Int Ed Engl 2021; 60:13626-13630. [PMID: 33729649 PMCID: PMC8251918 DOI: 10.1002/anie.202102383] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Indexed: 12/21/2022]
Abstract
Supramolecular coordination cages show a wide range of useful properties including, but not limited to, complex molecular machine-like operations, confined space catalysis, and rich host-guest chemistries. Here we report the uptake and release of non-covalently encapsulated, pharmaceutically-active cargo from an octahedral Pd cage bearing polymer chains on each vertex. Six poly(ethylene glycol)-decorated bipyridine ligands are used to assemble an octahedral PdII6 (TPT)4 cage. The supramolecular container encapsulates progesterone and ibuprofen within its hydrophobic nanocavity and is activated by shear force produced by ultrasonication in aqueous solution entailing complete cargo release upon rupture, as shown by NMR and GPC analyses.
Collapse
Affiliation(s)
- Robin Küng
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstrasse 140225DüsseldorfGermany
| | - Tobias Pausch
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstrasse 140225DüsseldorfGermany
| | - Dustin Rasch
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstrasse 5052056AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
| | - Robert Göstl
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstrasse 5052056AachenGermany
| | - Bernd M. Schmidt
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstrasse 140225DüsseldorfGermany
| |
Collapse
|
22
|
Percástegui E, Ronson TK, Nitschke JR. Design and Applications of Water-Soluble Coordination Cages. Chem Rev 2020; 120:13480-13544. [PMID: 33238092 PMCID: PMC7760102 DOI: 10.1021/acs.chemrev.0c00672] [Citation(s) in RCA: 305] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Indexed: 12/23/2022]
Abstract
Compartmentalization of the aqueous space within a cell is necessary for life. In similar fashion to the nanometer-scale compartments in living systems, synthetic water-soluble coordination cages (WSCCs) can isolate guest molecules and host chemical transformations. Such cages thus show promise in biological, medical, environmental, and industrial domains. This review highlights examples of three-dimensional synthetic WSCCs, offering perspectives so as to enhance their design and applications. Strategies are presented that address key challenges for the preparation of coordination cages that are soluble and stable in water. The peculiarities of guest binding in aqueous media are examined, highlighting amplified binding in water, changing guest properties, and the recognition of specific molecular targets. The properties of WSCC hosts associated with biomedical applications, and their use as vessels to carry out chemical reactions in water, are also presented. These examples sketch a blueprint for the preparation of new metal-organic containers for use in aqueous solution, as well as guidelines for the engineering of new applications in water.
Collapse
Affiliation(s)
- Edmundo
G. Percástegui
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Instituto
de Química, Ciudad UniversitariaUniversidad
Nacional Autónoma de México, Ciudad de México 04510, México
- Centro
Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Toluca, 50200 Estado de México, México
| | - Tanya K. Ronson
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Jonathan R. Nitschke
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| |
Collapse
|
23
|
Abstract
![]()
In nature, light is harvested by photoactive proteins to drive
a range of biological processes, including photosynthesis, phototaxis,
vision, and ultimately life. Bacteriorhodopsin, for example, is a
protein embedded within archaeal cell membranes that binds the chromophore
retinal within its hydrophobic pocket. Exposure to light triggers
regioselective photoisomerization of the confined retinal, which in
turn initiates a cascade of conformational changes within the protein,
triggering proton flux against the concentration gradient, providing
the microorganisms with the energy to live. We are inspired by these
functions in nature to harness light energy using synthetic photoswitches
under confinement. Like retinal, synthetic photoswitches require some
degree of conformational flexibility to isomerize. In nature, the
conformational change associated with retinal isomerization is accommodated
by the structural flexibility of the opsin host, yet it results in
steric communication between the chromophore and the protein. Similarly,
we strive to design systems wherein isomerization of confined photoswitches
results in steric communication between a photoswitch and its confining
environment. To achieve this aim, a balance must be struck between
molecular crowding and conformational freedom under confinement: too
much crowding prevents switching, whereas too much freedom resembles
switching of isolated molecules in solution, preventing communication. In this Account, we discuss five classes of synthetic light-switchable
compounds—diarylethenes, anthracenes, azobenzenes, spiropyrans,
and donor–acceptor Stenhouse adducts—comparing their
behaviors under confinement and in solution. The environments employed
to confine these photoswitches are diverse, ranging from planar surfaces
to nanosized cavities within coordination cages, nanoporous frameworks,
and nanoparticle aggregates. The trends that emerge are primarily
dependent on the nature of the photoswitch and not on the material
used for confinement. In general, we find that photoswitches requiring
less conformational freedom for switching are, as expected, more straightforward
to isomerize reversibly under confinement. Because these compounds
undergo only small structural changes upon isomerization, however,
switching does not propagate into communication with their environment.
Conversely, photoswitches that require more conformational freedom
are more challenging to switch under confinement but also can influence
system-wide behavior. Although we are primarily interested in
the effects of geometric
constraints on photoswitching under confinement, additional effects
inevitably emerge when a compound is removed from solution and placed
within a new, more crowded environment. For instance, we have found
that compounds that convert to zwitterionic isomers upon light irradiation
often experience stabilization of these forms under confinement. This
effect results from the mutual stabilization of zwitterions that are
brought into close proximity on surfaces or within cavities. Furthermore,
photoswitches can experience preorganization under confinement, influencing
the selectivity and efficiency of their photoreactions. Because intermolecular
interactions arising from confinement cannot be considered independently
from the effects of geometric constraints, we describe all confinement
effects concurrently throughout this Account.
Collapse
Affiliation(s)
- Angela B. Grommet
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lucia M. Lee
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rafal Klajn
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
24
|
Ludwanowski S, Ari M, Parison K, Kalthoum S, Straub P, Pompe N, Weber S, Walter M, Walther A. pH Tuning of Water-Soluble Arylazopyrazole Photoswitches. Chemistry 2020; 26:13203-13212. [PMID: 32427368 PMCID: PMC7693175 DOI: 10.1002/chem.202000659] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/28/2020] [Indexed: 11/12/2022]
Abstract
Arylazopyrazoles are an emerging class of photoswitches with redshifted switching wavelength, high photostationary states, long thermal half-lives and facile synthetic access. Understanding pathways for a simple modulation of the thermal half-lives, while keeping other parameters of interest constant, is an important aspect for out-of-equilibrium systems design and applications. Here, it is demonstrated that the thermal half-life of a water-soluble PEG-tethered arylazo-bis(o-methylated)pyrazole (AAP) can be tuned by more than five orders of magnitude using simple pH adjustment, which is beyond the tunability of azobenzenes. The mechanism of thermal relaxation is investigated by thorough spectroscopic analyses and density functional theory (DFT) calculations. Finally, the concepts of a tunable half-life are transferred from the molecular scale to the material scale. Based on the photochromic characteristics of E- and Z-AAP, transient information storage is showcased in form of light-written patterns inside films cast from different pH, which in turn leads to different times of storage. With respect to prospective precisely tunable materials and time-programmed out-of-equilibrium systems, an externally tunable half-life is likely advantageous over changing the entire system by the replacement of the photoswitch.
Collapse
Affiliation(s)
- Simon Ludwanowski
- Institute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Straße 3179104FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan-Meier-Straße 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| | - Meral Ari
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| | - Karsten Parison
- Institute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Straße 3179104FreiburgGermany
| | - Somar Kalthoum
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| | - Paula Straub
- Institute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Straße 3179104FreiburgGermany
| | - Nils Pompe
- Institute for Physical ChemistryUniversity of FreiburgAlbertstraße 2179104FreiburgGermany
| | - Stefan Weber
- Institute for Physical ChemistryUniversity of FreiburgAlbertstraße 2179104FreiburgGermany
| | - Michael Walter
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
- Cluster of Excellence livMatS @ FIT, Freiburg Center for, Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| | - Andreas Walther
- Institute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Straße 3179104FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan-Meier-Straße 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
- Cluster of Excellence livMatS @ FIT, Freiburg Center for, Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| |
Collapse
|
25
|
Gemen J, Ahrens J, Shimon LJW, Klajn R. Modulating the Optical Properties of BODIPY Dyes by Noncovalent Dimerization within a Flexible Coordination Cage. J Am Chem Soc 2020; 142:17721-17729. [PMID: 33006898 PMCID: PMC7564082 DOI: 10.1021/jacs.0c08589] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/25/2022]
Abstract
Aggregation of organic molecules can drastically affect their physicochemical properties. For instance, the optical properties of BODIPY dyes are inherently related to the degree of aggregation and the mutual orientation of BODIPY units within these aggregates. Whereas the noncovalent aggregation of various BODIPY dyes has been studied in diverse media, the ill-defined nature of these aggregates has made it difficult to elucidate the structure-property relationships. Here, we studied the encapsulation of three structurally simple BODIPY derivatives within the hydrophobic cavity of a water-soluble, flexible PdII6L4 coordination cage. The cavity size allowed for the selective encapsulation of two dye molecules, irrespective of the substitution pattern on the BODIPY core. Working with a model, a pentamethyl-substituted derivative, we found that the mutual orientation of two BODIPY units in the cage's cavity was remarkably similar to that in the crystalline state of the free dye, allowing us to isolate and characterize the smallest possible noncovalent H-type BODIPY aggregate, namely, an H-dimer. Interestingly, a CF3-substituted BODIPY, known for forming J-type aggregates, was also encapsulated as an H-dimer. Taking advantage of the dynamic nature of encapsulation, we developed a system in which reversible switching between H- and J-aggregates can be induced for multiple cycles simply by addition and subsequent destruction of the cage. We expect that the ability to rapidly and reversibly manipulate the optical properties of supramolecular inclusion complexes in aqueous media will open up avenues for developing detection systems that operate within biological environments.
Collapse
Affiliation(s)
- Julius Gemen
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Johannes Ahrens
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
- BASF
SE, Carl-Bosch-Straße
38, 67056 Ludwigshafen
am Rhein, Germany
| | - Linda J. W. Shimon
- Chemical
Research Support, Weizmann Institute of
Science, Rehovot 76100, Israel
| | - Rafal Klajn
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| |
Collapse
|
26
|
Canton M, Grommet AB, Pesce L, Gemen J, Li S, Diskin-Posner Y, Credi A, Pavan GM, Andréasson J, Klajn R. Improving Fatigue Resistance of Dihydropyrene by Encapsulation within a Coordination Cage. J Am Chem Soc 2020; 142:14557-14565. [PMID: 32791832 PMCID: PMC7453400 DOI: 10.1021/jacs.0c06146] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Photochromic
molecules undergo reversible isomerization upon irradiation
with light at different wavelengths, a process that can alter their
physical and chemical properties. For instance, dihydropyrene (DHP)
is a deep-colored compound that isomerizes to light-brown cyclophanediene
(CPD) upon irradiation with visible light. CPD can then isomerize
back to DHP upon irradiation with UV light or thermally in the dark.
Conversion between DHP and CPD is thought to proceed via a biradical
intermediate; bimolecular events involving this unstable intermediate
thus result in rapid decomposition and poor cycling performance. Here,
we show that the reversible isomerization of DHP can be stabilized
upon confinement within a PdII6L4 coordination cage. By protecting this reactive intermediate using
the cage, each isomerization reaction proceeds to higher yield, which
significantly decreases the fatigue experienced by the system upon
repeated photocycling. Although molecular confinement is known to
help stabilize reactive species, this effect is not typically employed
to protect reactive intermediates and thus improve reaction yields.
We envisage that performing reactions under confinement will not only
improve the cyclic performance of photochromic molecules, but may
also increase the amount of product obtainable from traditionally
low-yielding organic reactions.
Collapse
Affiliation(s)
- Martina Canton
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.,Center for Light-Activated Nanostructures (CLAN) and Dipartimento di Chimica Industriale, Università di Bologna, Bologna 40136, Italy
| | - Angela B Grommet
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Luca Pesce
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2C, Manno CH-6928, Switzerland
| | - Julius Gemen
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shiming Li
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Yael Diskin-Posner
- Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alberto Credi
- Center for Light-Activated Nanostructures (CLAN) and Dipartimento di Chimica Industriale, Università di Bologna, Bologna 40136, Italy
| | - Giovanni M Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2C, Manno CH-6928, Switzerland.,Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Joakim Andréasson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Rafal Klajn
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
27
|
Affiliation(s)
- Sander J. Wezenberg
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
28
|
Pesce L, Perego C, Grommet AB, Klajn R, Pavan GM. Molecular Factors Controlling the Isomerization of Azobenzenes in the Cavity of a Flexible Coordination Cage. J Am Chem Soc 2020; 142:9792-9802. [PMID: 32353237 PMCID: PMC7644116 DOI: 10.1021/jacs.0c03444] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Photoswitchable
molecules are employed for many applications, from
the development of active materials to the design of stimuli-responsive
molecular systems and light-powered molecular machines. To fully exploit
their potential, we must learn ways to control the mechanism and kinetics
of their photoinduced isomerization. One possible strategy involves
confinement of photoresponsive switches such as azobenzenes or spiropyrans
within crowded molecular environments, which may allow control over
their light-induced conversion. However, the molecular factors that
influence and control the switching process under realistic conditions
and within dynamic molecular regimes often remain difficult to ascertain.
As a case study, here we have employed molecular models to probe the
isomerization of azobenzene guests within a Pd(II)-based coordination
cage host in water. Atomistic molecular dynamics and metadynamics
simulations allow us to characterize the flexibility of the cage in
the solvent, the (rare) guest encapsulation and release events, and
the relative probability/kinetics of light-induced isomerization of
azobenzene analogues in these host–guest systems. In this way,
we can reconstruct the mechanism of azobenzene switching inside the
cage cavity and explore key molecular factors that may control this
event. We obtain a molecular-level insight on the effects of crowding
and host–guest interactions on azobenzene isomerization. The
detailed picture elucidated by this study may enable the rational
design of photoswitchable systems whose reactivity can be controlled
via host–guest interactions.
Collapse
Affiliation(s)
- Luca Pesce
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
| | - Claudio Perego
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
| | - Angela B Grommet
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rafal Klajn
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Giovanni M Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland.,Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
29
|
Gerkman MA, Gibson RSL, Calbo J, Shi Y, Fuchter MJ, Han GGD. Arylazopyrazoles for Long-Term Thermal Energy Storage and Optically Triggered Heat Release below 0 °C. J Am Chem Soc 2020; 142:8688-8695. [DOI: 10.1021/jacs.0c00374] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mihael A. Gerkman
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Rosina S. L. Gibson
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, Wood Lane, London W12 0BZ, United Kingdom
| | - Joaquín Calbo
- Instituto de Ciencia Molecular, Universidad de Valencia, 46890 Paterna, Spain
| | - Yuran Shi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Matthew J. Fuchter
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, Wood Lane, London W12 0BZ, United Kingdom
| | - Grace G. D. Han
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|