1
|
Ma Y, Qian J, Xu X, Wei C, Wang M, Zhang P, Chen S, Zhang L, Zhang Y, Wang Y, Xu W, Liu M, Lin X. Engraftment of self-renewing endometrial epithelial organoids promotes endometrial regeneration by differentiating into functional glands in rats. Front Bioeng Biotechnol 2024; 12:1449955. [PMID: 39723128 PMCID: PMC11668608 DOI: 10.3389/fbioe.2024.1449955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Extensive trauma frequently disrupts endometrial regeneration by diminishing endometrial stem cells/progenitor cells, affecting female fertility. While bone marrow mesenchymal stem cell (BMSC) transplantation has been suggested as an approach to address endometrial injury, it comes with certain limitations. Recent advancements in endometrial epithelial organoids (EEOs) have displayed encouraging potential for endometrial regeneration. Therefore, this study aims to explore whether EEOs surpass BMSCs in their ability to repair injured endometrium and to examine whether the restoration process involves the integration of EEOs into the endometrial tissue of the recipient. Methods We developed rat EEOs (rEEOs) mimicking the features of the rat endometrium. Subsequently, we created a rat model of endometrial injury to compare the effects of rEEOs and rat BMSCs (rBMSCs) on endometrial regeneration and reproductive recovery. Bulk RNA-sequencing analysis was conducted to further investigate the capacity of rEEOs for endometrial regeneration and to identify discrepancies between rEEOs and rBMSCs. Additionally, to track the fate of the transplanted cells in vivo, we transplanted green fluorescent protein (GFP) -labelled rEEOs or red fluorescent protein (RFP) -labelled rBMSCs. Results In a rat model of endometrial injury, we observed that fertility recovery in rats transplanted with rEEOs was more comparable to that of normal rats than in those treated with rBMSC. rEEOs possess a high concentration of endometrial epithelial stem/progenitor cells and secrete vascular endothelial growth factor (VEGF)-A to promote endometrial neovascularization. Significantly, we observed that cells from GFP-labelled rEEOs could integrate and differentiate into functional glands within the injured endometrium of recipient rats. Discussion EEOs offer a transformative approach to address the challenges of endometrial trauma. Their remarkable regenerative potential holds promise for the restoration of damaged endometrium. As we venture into the future, the concept of utilizing patient-specific EEOs for transplantation emerges as a tantalizing prospect. However, the EEOs in our experiments were mainly cultured in Matrigel, which has barriers to clinical translation as a biomaterial, a new biomaterial to be explored. Secondly, our experiments have been successful only in rat models, and more efforts need to be made before clinical translation.
Collapse
Affiliation(s)
- Yana Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
| | - Jingjing Qian
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Obstetrics and Gynecology, Yuyao People’s Hospital of Zhejiang Province, Ningbo, China
| | - Xin Xu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
| | - Cheng Wei
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Minyuan Wang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Gynecology, Wenling First People’s Hospital of Zhejiang Province, Taizhou, China
| | - Peipei Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Obstetrics and Gynecology, Tiantai People’s Hospital of Zhejiang Province, Taizhou, China
| | - Sijia Chen
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
| | - Lingyan Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Yanling Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Yanpeng Wang
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Wenzhi Xu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Mengying Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
| | - Xiaona Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| |
Collapse
|
2
|
Zarnani K, Zarnani K, Maslehat-Lay N, Zeynali B, Vafaei S, Shokri MR, Vanaki N, Soltanghoraee H, Mirzadegan E, Edalatkhah H, Naderi MM, Sarvari A, Attari F, Jeddi-Tehrani M, Zarnani AH. In-utero transfer of decidualized endometrial stromal cells increases the frequency of regulatory T cells and normalizes the abortion rate in the CBA/J × DBA/2 abortion model. Front Immunol 2024; 15:1440388. [PMID: 39380998 PMCID: PMC11460546 DOI: 10.3389/fimmu.2024.1440388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/30/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Failure to adequate decidualization leads to adverse pregnancy outcomes including pregnancy loss. Although there are plenty of reports underscoring immune dysfunction as the main cause of abortion in CBA/J females mated with DBA/2 males (CBA/J × DBA/2), little is known about the potential role of impaired endometrial decidualization. Methods Endometrial stromal cells (ESCs) from CBA/J mice were in-vitro decidualized, and the proteome profile of the secretome was investigated by membrane-based array. CBA/J mice were perfused In-utero with either decidualized ESCs (C×D/D), undecidualized ESCs (C×D/ND), or PBS (C×D/P) 12 days before mating with DBA/2 males. Control mice were not manipulated and were mated with male DBA/2 (C×D) or Balb/c (C×B) mice. On day 13.5 of pregnancy, reproductive parameters were measured. In-vivo tracking of EdU-labeled ESCs was performed using fluorescence microscopy. The frequency of regulatory T cells (Tregs) in paraaortic/renal and inguinal lymph nodes was measured by flow cytometry. The proliferation of pregnant CBA/J splenocytes in response to stimulation with DBA/2 splenocytes was assessed by 5,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) flow cytometry. Results In C×D/D mice, the resorption rate was reduced to match that seen in the C×B group. Intrauterine perfused ESCs appeared in uterine stroma after 2 days, which remained there for at least 12 days. There was no difference in the number of implantation sites and embryo weight across all groups. The frequency of Tregs in the inguinal lymph nodes was similar across all groups, but it increased in the paraaortic/renal lymph nodes of C×D/D mice to the level found in C×B mice. No significant changes were observed in the proliferation of splenocytes from pregnant C×D/D compared to those of the C×D group in response to stimulation with DBA/2 splenocytes. Decidualization of ESCs was associated with a profound alteration in ESC secretome exemplified by alteration in proteins involved in extracellular matrix (ECM) remodeling, response to inflammation, senescence, and immune cell trafficking. Discussion Our results showed that the deficiency of Tregs is not the primary driver of abortion in the CBA/J × DBA/2 model and provided evidence that impaired endometrial decidualization probably triggers endometrial immune dysfunction and abortion in this model.
Collapse
Affiliation(s)
- Kayhan Zarnani
- School of Biology, College of Sciences, University of Tehran, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Zarnani
- School of Biology, College of Sciences, University of Tehran, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Nasim Maslehat-Lay
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Bahman Zeynali
- Developmental Biology Lab., School of Biology, College of Sciences, University of Tehran, Tehran, Iran
| | - Sedigheh Vafaei
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Mohammad-Reza Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Negar Vanaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Soltanghoraee
- Reproductive Biotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Ebrahim Mirzadegan
- Nanobiotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Haleh Edalatkhah
- Reproductive Biotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Mohammad-Mehdi Naderi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Ali Sarvari
- Reproductive Biotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Farnoosh Attari
- Department of Animal Biology, School of Biology, College of Sciences, University of Tehran, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Walewska E, Makowczenko KG, Witek K, Laniecka E, Molcan T, Alvarez-Sanchez A, Kelsey G, Perez-Garcia V, Galvão AM. Fetal growth restriction and placental defects in obese mice are associated with impaired decidualisation: the role of increased leptin signalling modulators SOCS3 and PTPN2. Cell Mol Life Sci 2024; 81:329. [PMID: 39090270 PMCID: PMC11335253 DOI: 10.1007/s00018-024-05336-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/05/2024] [Accepted: 06/28/2024] [Indexed: 08/04/2024]
Abstract
Decidualisation of the endometrium is a key event in early pregnancy, which enables embryo implantation. Importantly, the molecular processes impairing decidualisation in obese mothers are yet to be characterised. We hypothesise that impaired decidualisation in obese mice is mediated by the upregulation of leptin modulators, the suppressor of cytokine signalling 3 (SOCS3) and the protein tyrosine phosphatase non-receptor type 2 (PTPN2), together with the disruption of progesterone (P4)-signal transducer and activator of transcription (STAT3) signalling. After feeding mice with chow diet (CD) or high-fat diet (HFD) for 16 weeks, we confirmed the downregulation of P4 and oestradiol (E2) steroid receptors in decidua from embryonic day (E) 6.5 and decreased proliferation of stromal cells from HFD. In vitro decidualised mouse endometrial stromal cells (MESCs) and E6.5 deciduas from the HFD showed decreased expression of decidualisation markers, followed by the upregulation of SOCS3 and PTPN2 and decreased phosphorylation of STAT3. In vivo and in vitro leptin treatment of mice and MESCs mimicked the results observed in the obese model. The downregulation of Socs3 and Ptpn2 after siRNA transfection of MESCs from HFD mice restored the expression level of decidualisation markers. Finally, DIO mice placentas from E18.5 showed decreased labyrinth development and vascularisation and fetal growth restricted embryos. The present study revealed major defects in decidualisation in obese mice, characterised by altered uterine response to E2 and P4 steroid signalling. Importantly, altered hormonal response was associated with increased expression of leptin signalling modulators SOCS3 and PTPN2. Elevated levels of SOCS3 and PTPN2 were shown to molecularly affect decidualisation in obese mice, potentially disrupting the STAT3-PR regulatory molecular hub.
Collapse
Affiliation(s)
- Edyta Walewska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Karol G Makowczenko
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Krzysztof Witek
- Laboratory of Cell and Tissue Analysis and Imaging, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Elżbieta Laniecka
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Tomasz Molcan
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Andrea Alvarez-Sanchez
- Molecular Mechanisms of Placental Invasion, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
| | - Vicente Perez-Garcia
- Molecular Mechanisms of Placental Invasion, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, 46012, Valencia, Spain.
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
| | - António M Galvão
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland.
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
- Department of Comparative Biomedical Sciences, Royal Veterinary College, 4 Royal College Street, London, NW1 0TU, UK.
| |
Collapse
|
4
|
Minisy FM, Shawki HH, Fujita T, Moustafa AM, Sener R, Nishio Y, Shimada IS, Saitoh S, Sugiura-Ogasawara M, Oishi H. Transcription Factor 23 is an Essential Determinant of Murine Term Parturition. Mol Cell Biol 2024; 44:316-333. [PMID: 39014976 PMCID: PMC11296541 DOI: 10.1080/10985549.2024.2376146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/27/2024] [Accepted: 06/30/2024] [Indexed: 07/18/2024] Open
Abstract
Pregnancy involving intricate tissue transformations governed by the progesterone hormone (P4). P4 signaling via P4 receptors (PRs) is vital for endometrial receptivity, decidualization, myometrial quiescence, and labor initiation. This study explored the role of TCF23 as a downstream target of PR during pregnancy. TCF23 was found to be expressed in female reproductive organs, predominantly in uterine stromal and smooth muscle cells. Tcf23 expression was high during midgestation and was specifically regulated by P4, but not estrogen. The Tcf23 knockout (KO) mouse was generated and analyzed. Female KO mice aged 4-6 months exhibited subfertility, reduced litter size, and defective parturition. Uterine histology revealed disrupted myometrial structure, altered collagen organization, and disarrayed smooth muscle sheets at the conceptus sites of KO mice. RNA-Seq analysis of KO myometrium revealed dysregulation of genes associated with cell adhesion and extracellular matrix organization. TCF23 potentially modulates TCF12 activity to mediate cell-cell adhesion and matrix modulation in smooth muscle cells. Overall, TCF23 deficiency leads to impaired myometrial remodeling, causing parturition delay and fetal demise. This study sheds light on the critical role of TCF23 as a dowstream mediator of PR in uterine remodeling, reflecting the importance of cell-cell communication and matrix dynamics in myometrial activation and parturition.
Collapse
Affiliation(s)
- Fatma M. Minisy
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Pathology, National Research Centre, Cairo, Egypt
| | - Hossam H. Shawki
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Animal Genetic Resources, National Gene Bank of Egypt, ARC, Giza, Egypt
| | - Tsubasa Fujita
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ahmed M. Moustafa
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Rumeysa Sener
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Youske Nishio
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Issei S. Shimada
- Department of Cell Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mayumi Sugiura-Ogasawara
- Department of Obstetrics and Gynecology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
5
|
Laurenzi G, Fedeli V, Canipari R. Decreased fertility in female mice lacking urokinase plasminogen activator. Reprod Biol 2024; 24:100840. [PMID: 38113659 DOI: 10.1016/j.repbio.2023.100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/21/2023]
Abstract
It is well established that mouse ovarian granulosa cells secrete urokinase plasminogen activator (uPA) under gonadotropin stimulation. The synthesis and secretion of the enzyme correlate well with the time of follicular rupture in vivo. Moreover, uPA is secreted by the trophoblast at the time of implantation. In the present study, we have analyzed whether the absence of uPA could influence follicular growth, ovulation, and embryo implantation. Our data show fewer preantral follicles in uPA-/- ovaries but no decrease in hormonally induced ovulation. However, we observed a significant decrease in the number of implanted embryos in uPA-/- animals and, therefore, a lower number of pups per family. Adding uPA to the epithelial and stromal uterine cell culture medium strongly upregulates the expression of prostaglandin-endoperoxide synthase 2 (Ptgs2), the enzyme required for prostaglandin production and embryo implantation. The uPA inhibitor amiloride abrogated this increase.
Collapse
Affiliation(s)
- Gaia Laurenzi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, Sapienza University of Rome, Rome, Italy
| | - Valeria Fedeli
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, Sapienza University of Rome, Rome, Italy
| | - Rita Canipari
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
6
|
Fu W, Dai C, Ma Z, Li Q, Lan D, Sun C, Wu X, Li J, Wang S. Enhanced glutathione production protects against zearalenone-induced oxidative stress and ferroptosis in female reproductive system. Food Chem Toxicol 2024; 185:114462. [PMID: 38272172 DOI: 10.1016/j.fct.2024.114462] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 12/08/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Zearalenone (ZEN, a widespread fusarium mycotoxin) causes evoked oxidative stress in reproductive system, but little is known about whether this is involved in ferroptosis. Melatonin, a well-known antioxidant, has demonstrated unique anti-antioxidant properties in several studies. Here, this study was aimed to investigate whether ZEN-induced oxidative stress in female pig's reproductive system was involved in ferroptosis, and melatonin was then supplemented to protect against ZEN-induced abnormalities in vitro cell models [human granulosa cell (KGN) and mouse endometrial stromal cell (mEC)] and in vivo mouse model. According to the results from female pig's reproductive organs, ZEN-induced abnormalities in vulvar swelling, inflammatory invasion and pathological mitochondria, were closely linked with evoked oxidative stress. Using RNA-seq analysis, we further revealed that ZEN-induced reproductive toxicity was due to activated ferroptosis. Mechanistically, by using in vitro cell models (KGN and mEC) and in vivo mouse model, we observed that ZEN exposure resulted in oxidative stress and ferroptosis in a glutathione-dependent manner. Notably, these ZEN-induced abnormalities above were alleviated by melatonin supplementation through enhanced productions of glutathione peroxidase 4 and glutathione. Herein, the present results suggest that potential strategies to improve glutathione production protect against ZEN-induced reproductive toxicity, including oxidative stress and ferroptosis.
Collapse
Affiliation(s)
- Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Chao Dai
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zifeng Ma
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Qiao Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Changpo Sun
- Standards and Quality Center of National Food and Strategic Reserves Administration, Beijing, 100037, China
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610041, China.
| | - Shujin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400032, China.
| |
Collapse
|
7
|
Pavličev M, McDonough-Goldstein CE, Zupan AM, Muglia L, Hu YC, Kong F, Monangi N, Dagdas G, Zupančič N, Maziarz J, Sinner D, Zhang G, Wagner G, Muglia L. A common allele increases endometrial Wnt4 expression, with antagonistic implications for pregnancy, reproductive cancers, and endometriosis. Nat Commun 2024; 15:1152. [PMID: 38346980 PMCID: PMC10861470 DOI: 10.1038/s41467-024-45338-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/20/2024] [Indexed: 02/15/2024] Open
Abstract
The common human SNP rs3820282 is associated with multiple phenotypes including gestational length and likelihood of endometriosis and cancer, presenting a paradigmatic pleiotropic variant. Deleterious pleiotropic mutations cause the co-occurrence of disorders either within individuals, or across population. When adverse and advantageous effects are combined, pleiotropy can maintain high population frequencies of deleterious alleles. To reveal the causal molecular mechanisms of this pleiotropic SNP, we introduced this substitution into the mouse genome by CRISPR/Cas 9. Previous work showed that rs3820282 introduces a high-affinity estrogen receptor alpha-binding site at the Wnt4 locus. Here, we show that this mutation upregulates Wnt4 transcription in endometrial stroma, following the preovulatory estrogen peak. Effects on uterine transcription include downregulation of epithelial proliferation and induction of progesterone-regulated pro-implantation genes. We propose that these changes increase uterine permissiveness to embryo invasion, whereas they decrease resistance to invasion by cancer and endometriotic foci in other estrogen-responsive tissues.
Collapse
Affiliation(s)
- Mihaela Pavličev
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria.
- Complexity Science Hub, Vienna, Austria.
| | | | | | - Lisa Muglia
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yueh-Chiang Hu
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fansheng Kong
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nagendra Monangi
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gülay Dagdas
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Nina Zupančič
- University Medical Center Ljubljana, Department of Cardiovascular Surgery, Ljubljana, Slovenia
| | - Jamie Maziarz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Debora Sinner
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ge Zhang
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Günter Wagner
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Yale Systems Biology Institute, Yale University, West Haven, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, USA
| | - Louis Muglia
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Burroughs Wellcome Fund, Research Triangle Park, NC, Durham, USA
| |
Collapse
|
8
|
Lin X, Dai Y, Gu W, Zhang Y, Zhuo F, Zhao F, Jin X, Li C, Huang D, Tong X, Zhang S. The involvement of RNA N6-methyladenosine and histone methylation modification in decidualization and endometriosis-associated infertility. Clin Transl Med 2024; 14:e1564. [PMID: 38344897 PMCID: PMC10859880 DOI: 10.1002/ctm2.1564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/18/2023] [Accepted: 01/14/2024] [Indexed: 02/15/2024] Open
Abstract
Defective decidualization of endometrial stromal cells (ESCs) in endometriosis (EM) patients leads to inadequate endometrial receptivity and EM-associated infertility. Hypoxia is an inevitable pathological process of EM and participates in deficient decidualization of the eutopic secretory endometrium. Enhancer of zeste homology 2 (EZH2) is a methyltransferase which catalyses H3K27Me3, leading to decreased expression levels of target genes. Although EZH2 expression is low under normal decidualization, it is abundantly increased in the eutopic secretory endometrium of EM and is induced by hypoxia. Chromatin immunoprecipitation-PCR results revealed that decidua marker IGFBP1 is a direct target of EZH2, partially explaining the increased levels of histone methylation modification in defected decidualization of EM. To mechanism controlling this, we examined the effects of hypoxia on EZH2 and decidualization. EZH2 mRNA showed decreased m6 A modification and increased expression levels under hypoxia and decidualization combined treatment. Increased EZH2 expression was due to the increased expression of m6 A demethylase ALKBH5 and decreased expression of the m6 A reader protein YTHDF2. YTHDF2 directly bind to the m6 A modification site of EZH2 to promote EZH2 mRNA degradation in ESCs. Moreover, selective Ezh2 depletion in mouse ESCs increased endometrial receptivity and improved mouse fertility by up-regulating decidua marker IGFBP1 expression. This is the first report showing that YTHDF2 can act as a m6 A reader to promote decidualization by decreasing the stability of EZH2 mRNA and further increasing the expression of IGFBP1 in ESCs. Taken together, our findings highlight the critical role of EZH2/H3K27Me3 in decidualization and reveal a novel epigenetic mechanism by which hypoxia can suppress EM decidualization by decreasing the m6 A modification of EZH2 mRNA.
Collapse
Affiliation(s)
- Xiang Lin
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Yongdong Dai
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Weijia Gu
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Yi Zhang
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Feng Zhuo
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Fanxuan Zhao
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaoying Jin
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Chao Li
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Dong Huang
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Xiaomei Tong
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Songying Zhang
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
9
|
Huang J, Chen X, Liu J. High mobility group box 1 promotes endometriosis under hypoxia by regulating inflammation and autophagy in vitro and in vivo. Int Immunopharmacol 2024; 127:111397. [PMID: 38134596 DOI: 10.1016/j.intimp.2023.111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Endometriosis is a chronic disease. Our previous study identified a positive correlation between high mobility group box 1 (HMGB1) and endometriosis, and HMGB1 and inflammation. However, the precise roles of HMGB1 in endometriosis are not fully elucidated. METHODS We overexpressed HMGB1 in human endometrial stromal cells (HESCs). The expression of pro-inflammatory cytokines and autophagy-related markers were detected by Western blot and ELISA. We generated HMGB1 deficient mice and established the murine model of endometriosis. The development of endometriosis was evaluated. The expression of cytokines and markers of autophagy in implant lesions and mouse endometrial stromal cells was measured. RESULTS Overexpression of HMGB1 in HESCs promoted the pro-inflammatory cytokines production and expression of autophagy-related markers. HMGB1 deficient mice had less implant lesions, decreased inflammatory cytokines level and down-regulated autophagy-related markers in implant lesions and mouse endometrial stromal cells. CONCLUSION HMGB1 promotes endometriosis by regulating inflammation and autophagy.
Collapse
Affiliation(s)
- Jingying Huang
- Department of Obstetrics and Gynecology, Quanzhou First Hospital Affiliated to Fujian Medical University, No.250 East Street, Quanzhou 362000, Fujian, China.
| | - Xuan Chen
- Department of Obstetrics and Gynecology, Quanzhou First Hospital Affiliated to Fujian Medical University, No.250 East Street, Quanzhou 362000, Fujian, China
| | - Jiangrui Liu
- Department of Gastrointestinal Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, No.250 East Street, Quanzhou 362000, Fujian, China
| |
Collapse
|
10
|
Butt Z, Tinning H, O'Connell MJ, Fenn J, Alberio R, Forde N. Understanding conceptus-maternal interactions: what tools do we need to develop? Reprod Fertil Dev 2023; 36:81-92. [PMID: 38064186 DOI: 10.1071/rd23181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Communication between the maternal endometrium and developing embryo/conceptus is critical to support successful pregnancy to term. Studying the peri-implantation period of pregnancy is critical as this is when most pregnancy loss occurs in cattle. Our current understanding of these interactions is limited, due to the lack of appropriate in vitro models to assess these interactions. The endometrium is a complex and heterogeneous tissue that is regulated in a transcriptional and translational manner throughout the oestrous cycle. While there are in vitro models to study endometrial function, they are static and 2D in nature or explant models and are limited in how well they recapitulate the in vivo endometrium. Recent developments in organoid systems, microfluidic approaches, extracellular matrix biology, and in silico approaches provide a new opportunity to develop in vitro systems that better model the in vivo scenario. This will allow us to investigate in a more high-throughput manner the fundamental molecular interactions that are required for successful pregnancy in cattle.
Collapse
Affiliation(s)
- Zenab Butt
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Haidee Tinning
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Mary J O'Connell
- Computational and Molecular Evolutionary Biology Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jonathan Fenn
- Computational and Molecular Evolutionary Biology Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Niamh Forde
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
11
|
Yang M, Ong J, Meng F, Zhang F, Shen H, Kitt K, Liu T, Tao W, Du P. Spatiotemporal insight into early pregnancy governed by immune-featured stromal cells. Cell 2023; 186:4271-4288.e24. [PMID: 37699390 DOI: 10.1016/j.cell.2023.08.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/04/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
Endometrial decidualization connecting embryo implantation and placentation is transient but essential for successful pregnancy, which, however, is not systematically investigated. Here, we use a scStereo-seq technology to spatially visualize and define the dynamic functional decidual hubs assembled by distinct immune, endothelial, trophoblast, and decidual stromal cells (DSCs) in early pregnant mice. We unravel the DSC transdifferentiation trajectory and surprisingly discover a dual-featured type of immune-featured DSCs (iDSCs). We find that immature DSCs attract immune cells and induce decidual angiogenesis at the mesenchymal-epithelial transition hub during decidualization initiation. iDSCs enable immune cell recruitment and suppression, govern vascularization, and promote cytolysis at immune cell assembling and vascular hubs, respectively, to establish decidual homeostasis at a later stage. Interestingly, dysfunctional and spatially disordered iDSCs cause abnormal accumulation of immune cells in the vascular hub, which disrupts decidual hub specification and eventually leads to pregnancy complications in DBA/2-mated CBA/J mice.
Collapse
Affiliation(s)
- Min Yang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jennie Ong
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Fanju Meng
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Feixiang Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Shen
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Kerstin Kitt
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma Co KG, Biberach an der Riss 88400, Germany
| | - Tengfei Liu
- Department of Research Beyond Borders, Boehringer Ingelheim (China) Investment Co., Ltd., Beijing 100027, China
| | - Wei Tao
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
12
|
Hennes A, Devroe J, De Clercq K, Ciprietti M, Held K, Luyten K, Van Ranst N, Maenhoudt N, Peeraer K, Vankelecom H, Voets T, Vriens J. Protease secretions by the invading blastocyst induce calcium oscillations in endometrial epithelial cells via the protease-activated receptor 2. Reprod Biol Endocrinol 2023; 21:37. [PMID: 37060079 PMCID: PMC10105462 DOI: 10.1186/s12958-023-01085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/23/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Early embryo implantation is a complex phenomenon characterized by the presence of an implantation-competent blastocyst and a receptive endometrium. Embryo development and endometrial receptivity must be synchronized and an adequate two-way dialogue between them is necessary for maternal recognition and implantation. Proteases have been described as blastocyst-secreted proteins involved in the hatching process and early implantation events. These enzymes stimulate intracellular calcium signaling pathways in endometrial epithelial cells (EEC). However, the exact molecular players underlying protease-induced calcium signaling, the subsequent downstream signaling pathways and the biological impact of its activation remain elusive. METHODS To identify gene expression of the receptors and ion channels of interest in human and mouse endometrial epithelial cells, RNA sequencing, RT-qPCR and in situ hybridization experiments were conducted. Calcium microfluorimetric experiments were performed to study their functional expression. RESULTS We showed that trypsin evoked intracellular calcium oscillations in EEC of mouse and human, and identified the protease-activated receptor 2 (PAR2) as the molecular entity initiating protease-induced calcium responses in EEC. In addition, this study unraveled the molecular players involved in the downstream signaling of PAR2 by showing that depletion and re-filling of intracellular calcium stores occurs via PLC, IP3R and the STIM1/Orai1 complex. Finally, in vitro experiments in the presence of a specific PAR2 agonist evoked an upregulation of the 'Window of implantation' markers in human endometrial epithelial cells. CONCLUSIONS These findings provide new insights into the blastocyst-derived protease signaling and allocate a key role for PAR2 as maternal sensor for signals released by the developing blastocyst.
Collapse
Grants
- C14/18/106 Research Council of the KU Leuven
- C14/18/106 Research Council of the KU Leuven
- C14/18/106 Research Council of the KU Leuven
- C14/18/106 Research Council of the KU Leuven
- G.0D1417N, G.084515N, G.0A6719N, 12R4622N, 12U7918N Fonds Wetenschappelijk Onderzoek
- G.0D1417N, G.084515N, G.0A6719N, 12R4622N, 12U7918N Fonds Wetenschappelijk Onderzoek
- G.0D1417N, G.084515N, G.0A6719N, 12R4622N, 12U7918N Fonds Wetenschappelijk Onderzoek
- G.0D1417N, G.084515N, G.0A6719N, 12R4622N, 12U7918N Fonds Wetenschappelijk Onderzoek
- G.0D1417N, G.084515N, G.0A6719N, 12R4622N, 12U7918N Fonds Wetenschappelijk Onderzoek
Collapse
Affiliation(s)
- Aurélie Hennes
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 Box 611, 3000, Leuven, Belgium
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, VIB Center for Brain & Disease Research, KU Leuven, Herestraat 49 Box 802, 3000, Leuven, Belgium
| | - Johanna Devroe
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 Box 611, 3000, Leuven, Belgium
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, VIB Center for Brain & Disease Research, KU Leuven, Herestraat 49 Box 802, 3000, Leuven, Belgium
- Leuven University Fertility Center, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Katrien De Clercq
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 Box 611, 3000, Leuven, Belgium
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, VIB Center for Brain & Disease Research, KU Leuven, Herestraat 49 Box 802, 3000, Leuven, Belgium
| | - Martina Ciprietti
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 Box 611, 3000, Leuven, Belgium
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, VIB Center for Brain & Disease Research, KU Leuven, Herestraat 49 Box 802, 3000, Leuven, Belgium
| | - Katharina Held
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 Box 611, 3000, Leuven, Belgium
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, VIB Center for Brain & Disease Research, KU Leuven, Herestraat 49 Box 802, 3000, Leuven, Belgium
| | - Katrien Luyten
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 Box 611, 3000, Leuven, Belgium
| | - Nele Van Ranst
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, VIB Center for Brain & Disease Research, KU Leuven, Herestraat 49 Box 802, 3000, Leuven, Belgium
| | - Nina Maenhoudt
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49 Box 804, 3000, Leuven, Belgium
| | - Karen Peeraer
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 Box 611, 3000, Leuven, Belgium
- Leuven University Fertility Center, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49 Box 804, 3000, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, VIB Center for Brain & Disease Research, KU Leuven, Herestraat 49 Box 802, 3000, Leuven, Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 Box 611, 3000, Leuven, Belgium.
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, VIB Center for Brain & Disease Research, KU Leuven, Herestraat 49 Box 802, 3000, Leuven, Belgium.
| |
Collapse
|
13
|
A re-appraisal of mesenchymal-epithelial transition (MET) in endometrial epithelial remodeling. Cell Tissue Res 2023; 391:393-408. [PMID: 36401092 PMCID: PMC9889438 DOI: 10.1007/s00441-022-03711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
Mesenchymal-epithelial transition (MET) is a mechanism of endometrial epithelial regeneration. It is also implicated in adenocarcinoma and endometriosis. Little is known about this process in normal uterine physiology. Previously, using pregnancy and menses-like mouse models, MET occurred only as an epithelial damage/repair mechanism. Here, we hypothesized that MET also occurs in other physiological endometrial remodeling events, outside of damage/repair, such as during the estrous cycle and adenogenesis (gland development). To investigate this, Amhr2-Cre-YFP/GFP mesenchyme-specific reporter mice were used to track the fate of mesenchymal-derived (MD) cells. Using EpCAM (epithelial marker), EpCAM+YFP+ MD-epithelial cells were identified in all stages of the estrous cycle except diestrus, in both postpartum and virgin mice. EpCAM+YFP+ MD-epithelial cells comprised up to 80% of the epithelia during estrogen-dominant proestrus and significantly declined to indistinguishable from control uteri in diestrus, suggesting MET is hormonally regulated. MD-epithelial cells were also identified during postnatal epithelial remodeling. MET occurred immediately after birth at postnatal day (P) 0.5 with EpCAM+GFP+ cells ranging from negligible (0.21%) to 82% of the epithelia. EpCAM+GFP+ MD-epithelial cells declined during initiation of adenogenesis (P8, avg. 1.75%) and then increased during gland morphogenesis (P14, avg. 10%). MD-epithelial cells expressed markers in common with non-MD-epithelial cells (e.g., EpCAM, FOXA2, ESR1, PGR). However, MD-epithelial cells were differentially regulated postnatally and in adults, suggesting a functional distinction in the two populations. We conclude that MET occurs not only as an epithelial damage/repair mechanism but also during other epithelial remodeling events, which to our knowledge has not been demonstrated in other tissues.
Collapse
|
14
|
Xu QX, Zhang WQ, Lu L, Wang KZ, Su RW. Distinguish Characters of Luminal and Glandular Epithelium from Mouse Uterus Using a Novel Enzyme-Based Separation Method. Reprod Sci 2022; 30:1867-1877. [PMID: 36581776 DOI: 10.1007/s43032-022-01154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022]
Abstract
The uterine luminal epithelium, glandular epithelium, and stromal cells are vital for the establishment of pregnancy. Previously studies have shown various methods to isolate mouse uterine epithelium and stromal cells, including laser capture microdissection (LCM), enzyme digestion, and immunomagnetic beads. Despite the importance of the endometrial epithelium as the site of implantation and nutritional support for the conceptus, there is no isolated method to separate the luminal epithelium and glandular epithelium. Here, we establish a novel enzyme-based way to separate two types of epithelium and keep their viability. In this article, we analyzed their purity by mRNA level, immunostaining, and transcriptome analysis. Our isolation method revealed several unstudied luminal and glandular epithelial markers in transcriptome analysis. We further demonstrated the viability of the isolated epithelium by 2D and 3D cultures. The results showed that we successfully separated the endometrial luminal epithelium and glandular epithelium. We also provided an experimental model for the following study of the physiological function of the different parts of the uterus and related diseases.
Collapse
Affiliation(s)
- Qi-Xin Xu
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong, 510642, China
| | - Wang-Qing Zhang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong, 510642, China
| | - Lei Lu
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong, 510642, China
| | - Ke-Zhi Wang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong, 510642, China
| | - Ren-Wei Su
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
15
|
Zhang Q, Hao J, Liu B, Ouyang Y, Guo J, Dong M, Wang Z, Gao F, Yao Y. Supplementation of mitochondria from endometrial mesenchymal stem cells improves oocyte quality in aged mice. Cell Prolif 2022; 56:e13372. [PMID: 36480483 PMCID: PMC9977672 DOI: 10.1111/cpr.13372] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Maternal ageing is one of the major causes of reduced ovarian reserve and low oocyte quality in elderly women. Decreased oocyte quality is the main cause of age-related infertility. Mitochondria are multifunctional energy stations that determine the oocyte quality. The mitochondria in aged oocytes display functional impairments with mtDNA damage, which leads to reduced competence and developmental potential of oocytes. To improve oocyte quality, mitochondrial supplementation is carried out as a potential therapeutic approach. However, the selection of suitable cells as the source of mitochondria remains controversial. We cultivated endometrial mesenchymal stem cells (EnMSCs) from aged mice and extracted mitochondria from EnMSCs. To improve the quality of oocytes, GV oocytes were supplemented with mitochondria via microinjection. And MII oocytes from aged mice were fertilized by intracytoplasmic sperm injection (ICSI), combining EnMSCs' mitochondrial microinjection. In this study, we found that the mitochondria derived from EnMSCs could significantly improve the quality of aged oocytes. Supplementation with EnMSC mitochondria significantly increased the blastocyst ratio of MII oocytes from aged mice after ICSI. We also found that the birth rate of mitochondria-injected ageing oocytes was significantly increased after embryo transplantation. Our study demonstrates that supplementation with EnMSC-derived mitochondria can improve the quality of oocytes and promote embryo development in ageing mice, which might provide a prospective strategy for clinical treatment.
Collapse
Affiliation(s)
- Qi Zhang
- Medical School of Chinese People's Liberation Army General HospitalBeijingChina,Department of Obstetrics and GynecologyThe First Medical Center of Chinese PLA General HospitalBeijingChina,State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Jian‐Xiu Hao
- Department of Clinical Biobank CenterThe Medical Innovation Research Division of Chinese PLA General HospitalBeijingChina
| | - Bo‐Wen Liu
- Department of Clinical Biobank CenterThe Medical Innovation Research Division of Chinese PLA General HospitalBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Ying‐Chun Ouyang
- Department of Clinical Biobank CenterThe Medical Innovation Research Division of Chinese PLA General HospitalBeijingChina
| | - Jia‐Ni Guo
- Department of Clinical Biobank CenterThe Medical Innovation Research Division of Chinese PLA General HospitalBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Ming‐Zhe Dong
- Department of Clinical Biobank CenterThe Medical Innovation Research Division of Chinese PLA General HospitalBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Zhen‐Bo Wang
- Department of Clinical Biobank CenterThe Medical Innovation Research Division of Chinese PLA General HospitalBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Fei Gao
- Department of Clinical Biobank CenterThe Medical Innovation Research Division of Chinese PLA General HospitalBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Yuan‐Qing Yao
- Department of Obstetrics and GynecologyThe First Medical Center of Chinese PLA General HospitalBeijingChina,Shenzhen Key Laboratory of Fertility RegulationThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| |
Collapse
|
16
|
Cui L, Xu F, Xu C, Ding Y, Wang S, Du M. Circadian gene Rev-erbα influenced by sleep conduces to pregnancy by promoting endometrial decidualization via IL-6-PR-C/EBPβ axis. J Biomed Sci 2022; 29:101. [PMID: 36419076 PMCID: PMC9685872 DOI: 10.1186/s12929-022-00884-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Sleep disturbance can cause adverse pregnancy outcomes by changing circadian gene expression. The potential mechanisms remain unclear. Decidualization is critical for the establishment and maintenance of normal pregnancy, which can be regulated by circadian genes. Whether Rev-erbα, a critical circadian gene, affects early pregnancy outcome by regulating decidualization needs to be explored. METHODS QPCR, western blot and artificial decidualization mouse model were used to confirm the effect of sleep disturbance on Rev-erbα expression and decidualization. The regulatory mechanism of Rev-erbα on decidualization was assessed using QPCR, western blot, RNA-Seq, and Chip-PCR. Finally, sleep disturbance mouse model was used to investigate the effect of therapeutic methods targeting Rev-erbα and interleukin 6 (IL-6) on improving adverse pregnancy outcomes induced by sleep disturbance. RESULTS Dysregulation of circadian rhythm due to sleep disturbance displayed abnormal expression profile of circadian genes in uterine including decreased level of Rev-erbα, accompanied by defective decidualization. Rev-erbα could regulate decidualization by directly repressing IL-6, which reduced the expression of CCAAT/enhancer-binding protein β (C/EBPβ) and its target insulin-like growth factor binding protein 1 (IGFBP1), the marker of decidualization, by inhibiting progesterone receptors (PR) expression. Moreover, deficient decidualization, higher abortion rate and lower implantation number were exhibited in the mouse models with sleep disturbance compared with those in normal mouse. Pharmacological activation of Rev-erbα or neutralization of IL-6 alleviated the adverse effect of sleep disturbance on pregnancy outcomes. CONCLUSIONS Taken together, Rev-erbα regulated decidualization via IL-6-PR-C/EBPβ axis and might be a connector between sleep and pregnancy outcome. Therapies targeting Rev-erbα and IL-6 might help improving adverse pregnancy outcomes induced by sleep disturbance.
Collapse
Affiliation(s)
- Liyuan Cui
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200090, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200090, China
| | - Feng Xu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200090, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200090, China
| | - Chunfang Xu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200090, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200090, China
| | - Yan Ding
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200090, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200090, China
| | - Songcun Wang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200090, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200090, China. .,Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, ZhaoZhou Road 413, Shanghai, 200011, China.
| | - Meirong Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200090, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200090, China. .,Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, ZhaoZhou Road 413, Shanghai, 200011, China. .,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, SAR, China. .,Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
| |
Collapse
|
17
|
Van den Eynde C, Held K, Ciprietti M, De Clercq K, Kerselaers S, Marchand A, Chaltin P, Voets T, Vriens J. Loratadine, an antihistaminic drug, suppresses the proliferation of endometrial stromal cells by inhibition of TRPV2. Eur J Pharmacol 2022; 928:175086. [PMID: 35714693 DOI: 10.1016/j.ejphar.2022.175086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/03/2022]
Abstract
The transient receptor potential (TRP) channel TRPV2 is widely expressed in a variety of different cell types and tissues. However, elucidating the exact biological functions of TRPV2 is significantly hampered by the lack of selective pharmacological tools to modulate channel activity in vitro and in vivo. This study aimed to identify new compounds that modify TRPV2 activity via the use of a plate-based calcium imaging approach to screen a drug repurposing library. Three antihistaminic drugs, loratadine, astemizole and clemizole were identified to reduce calcium-influx evoked by the TRPV2 agonist tetrahydrocannabivarin in HEK293 cells expressing murine TRPV2. Using single-cell calcium-microfluorimetry and whole-cell patch clamp recordings, we further confirmed that all three compounds induced a concentration-dependent block of TRPV2-mediated Ca2+ influx and whole-cell currents, with loratadine being the most potent antagonist of TRPV2. Moreover, this study demonstrated that loratadine was able to block both the human and mouse TRPV2 orthologs, without inhibiting the activity of other closely related members of the TRPV superfamily. Finally, loratadine inhibited TRPV2-dependent responses in a primary culture of mouse endometrial stromal cells and attenuated cell proliferation and migration in in vitro cell proliferation and wound healing assays. Taken together, our study revealed that the antihistaminic drugs loratadine, astemizole and clemizole target TRPV2 in a concentration-dependent manner. The identification of these antihistaminic drugs as blockers of TRPV2 may form a new starting point for the synthesis of more potent and selective TRPV2 antagonists, which could further lead to the unravelling of the physiological role of the channel.
Collapse
Affiliation(s)
- Charlotte Van den Eynde
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Katharina Held
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Martina Ciprietti
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Katrien De Clercq
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Sara Kerselaers
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Arnaud Marchand
- CISTIM Leuven vzw, Gaston Geenslaan 2, 3001, Leuven, Heverlee, Belgium
| | - Patrick Chaltin
- CISTIM Leuven vzw, Gaston Geenslaan 2, 3001, Leuven, Heverlee, Belgium; Centre for Drug Design and Discovery (CD3), KU Leuven, Gaston Geenslaan 2, 3001, Leuven, Heverlee, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium.
| |
Collapse
|
18
|
Kang J, Liu Y, Zhang Y, Yan W, Wu Y, Su R. The Influence of the Prolactins on the Development of the Uterus in Neonatal Mice. Front Vet Sci 2022; 9:818827. [PMID: 35252420 PMCID: PMC8891943 DOI: 10.3389/fvets.2022.818827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
The endometrial gland is one of the most important components of the mammalian uterus. However, few studies have been conducted on the regulatory mechanisms of adenogenesis during the development of endometrium. In the present study, we detected the genes expression of 35 different prolactin family members (PRLs) together with the prolactin receptor (PRL-R) in the endometrium of neonatal mice along with the adenogenesis process, to address which prolactin-like genes play a key role during gland development in mice. We found that: (1) The expression of Prl1a1, Prl3d1, Prl5a1, Prl7a1, Prl7a2, Prl7d1, Prl8a6, Prl8a8, and Prl8a9 genes were significantly increased along with the development of uterine glands. Prl7c1 and Prl8a1 were observably up-regulated on Postnatal day 5 (PND5) when the uterine glandular bud invagination begins. Prl3a1, Prl3b1, and Prl7b1 suddenly increased significantly on PND9. But, Prl3c1 and Prl8a2 were markedly down-regulated on PND5 and the expression of Prl6a1 and Prlr were stable extremely. (2) After continuous injection of Progesterone (P4), a well-known method to suppress the endometrial adenogenesis, the expression of Prl1a1, Prl3d1, Prl5a1, Prl7a1, Prl7a2, Prl7d1, Prl8a6, Prl8a8, Prl8a9, and Prlr were suppressed on PND7. And on PND9, Prl1a1, Prl3d1, Prl8a6, Prl8a8, and Prl8a9 were significantly inhibited. (3) Further analysis of the epithelial and stroma showed that these PRLs were mainly expressed in the endometrial stroma of neonatal mice. Our results indicate that multiple PRLs are involved in uterine development and endometrial adenogenesis. Continued progesterone therapy may alter the expression pattern of these PRLs in endometrial stromal cells, thereby altering the interaction and communication between stroma and epithelium, and ultimately leading to complete suppression of endometrial adenogenesis.
Collapse
|
19
|
Niazi Tabar A, Azizi H, Hashemi Karoii D, Skutella T. Testicular Localization and Potential Function of Vimentin Positive Cells during Spermatogonial Differentiation Stages. Animals (Basel) 2022; 12:ani12030268. [PMID: 35158592 PMCID: PMC8833806 DOI: 10.3390/ani12030268] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/18/2021] [Accepted: 01/03/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Spermatogonia stem cells (SSCs) in the testis are responsible for transmitting genetic information to subsequent generations. During the differentiation of SSCs, various cytoskeletons are involved in giving the cell shape and internal organization. One of the essential cytoskeletons that play functions in these spermatogenic processes is vimentin. This study examined the vimentin expression in vivo and in vitro by immunocytochemistry (ICC), immunohistochemistry (IMH), Fluidigm real-time polymerase chain reaction, and bioinformatics analysis. IMH analysis demonstrated that the high vimentin expression was localized in the middle and central testicular cords cells of seminiferous tubules and low expression in the basal region under in vivo conditions. To evaluate the expression of vimentin in vitro, we first isolated SSCs and then cultured cells from the testis. Our results showed that vimentin plays important roles in the differentiation of testicular germ cells. Abstract Vimentin is a type of intermediate filament (IF) and one of the first filaments expressed in spermatogenesis. Vimentin plays numerous roles, consisting of the determination of cell shape, differentiation, cell motility, the maintenance of cell junctions, intracellular trafficking, and assisting in keeping normal differentiating germ cell morphology. This study investigated the vimentin expression in two populations of undifferentiated and differentiated spermatogonia. We examined vimentin expression in vivo and in vitro by immunocytochemistry (ICC), immunohistochemistry (IMH), and Fluidigm real-time polymerase chain reaction. IMH data showed that the high vimentin expression was localized in the middle of seminiferous tubules, and low expression was in the basal membrane. ICC analysis of the colonies by isolated differentiated spermatogonia indicated the positive expression for the vimentin antibody, but vimentin’s expression level in the undifferentiated population was negative under in vitro conditions. Fluidigm real-time PCR analysis showed significant vimentin expression in differentiated spermatogonia compared to undifferentiated spermatogonia (p < 0.05). Our results showed that vimentin is upregulated in the differentiation stages of spermatogenesis, proving that vimentin is an intermediate filament with crucial roles in the differentiation stages of testicular germ cells. These results support the advanced investigations of the spermatogenic process, both in vitro and in vivo.
Collapse
Affiliation(s)
- Amirreza Niazi Tabar
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol 4616849767, Iran; (A.N.T.); (D.H.K.)
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol 4616849767, Iran; (A.N.T.); (D.H.K.)
- Correspondence:
| | - Danial Hashemi Karoii
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol 4616849767, Iran; (A.N.T.); (D.H.K.)
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany;
| |
Collapse
|
20
|
Insight on Polyunsaturated Fatty Acids in Endometrial Receptivity. Biomolecules 2021; 12:biom12010036. [PMID: 35053184 PMCID: PMC8773570 DOI: 10.3390/biom12010036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Endometrial receptivity plays a crucial role in fertilization as well as pregnancy outcome in patients faced with fertility challenges. The optimization of endometrial receptivity may help with normal implantation of the embryo, and endometrial receptivity may be affected by numerous factors. Recently, the role of lipids in pregnancy has been increasingly recognized. Fatty acids and their metabolites may be involved in all stages of pregnancy and play a role in supporting cell proliferation and development, participating in cell signaling and regulating cell function. Polyunsaturated fatty acids, in particular, are essential fatty acids for the human body that can affect the receptivity of the endometrium through in a variety of methods, such as producing prostaglandins, estrogen and progesterone, among others. Additionally, polyunsaturated fatty acids are also involved in immunity and the regulation of endometrial decidualization. Fatty acids are essential for fetal placental growth and development. The interrelationship of polyunsaturated fatty acids with these substances and how they may affect endometrial receptivity will be reviewed in this article.
Collapse
|
21
|
TRP channel expression correlates with the epithelial-mesenchymal transition and high-risk endometrial carcinoma. Cell Mol Life Sci 2021; 79:26. [PMID: 34936030 PMCID: PMC8732886 DOI: 10.1007/s00018-021-04023-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/12/2021] [Accepted: 10/31/2021] [Indexed: 01/14/2023]
Abstract
Transient receptor potential (TRP) channels excel in cellular sensing as they allow rapid ion influx across the plasma membrane in response to a variety of extracellular cues. Recently, a distinct TRP mRNA expression signature was observed in stromal cells (ESC) and epithelial cells (EEC) of the endometrium, a tissue in which cell phenotypic plasticity is essential for normal functioning. However, it is unknown whether TRP channel mRNA expression is subject to the phenotypic switching that occurs during epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial transition (MET), and whether TRP channel mRNA expression is associated with aggressive phenotypes in endometrial cancer (EC). Here, we induced EMT and MET in vitro using in primary EEC and ESC, respectively, and analyzed expression and functionality of TRP channels using RT-qPCR and intracellular Ca2+ imaging. The outcome of these experiments showed a strong association between TRPV2 and TRPC1 mRNA expression and the mesenchymal phenotype, whereas TRPM4 mRNA expression correlated with the epithelial phenotype. In line herewith, increased TRPV2 and TRPC1 mRNA expression levels were observed in both primary and metastatic EC biopsies and in primary EC cells with a high EMT status, indicating an association with an aggressive tumor phenotype. Remarkably, TRPV2 mRNA expression in primary EC biopsies was associated with tumor invasiveness and cancer stage. In contrast, increased TRPM4 mRNA expression was observed in EC biopsies with a low EMT status and less aggressive tumor phenotypes. Taken together, this dataset proved for the first time that TRP channel mRNA expression is strongly linked to cellular phenotypes of the endometrium, and that phenotypic transitions caused by either experimental manipulation or malignancy could alter this expression in a predictable manner. These results implicate that TRP channels are viable biomarkers to identify high-risk EC, and potential targets for EC treatment.
Collapse
|
22
|
Kang ML, Goo JTT, Lee DJK. CHOP protocol: streamlining access to definitive intervention for major trauma victims. Singapore Med J 2021; 62:620-622. [PMID: 32728086 PMCID: PMC8804424 DOI: 10.11622/smedj.2020113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Min Li Kang
- Department of Surgery, Khoo Teck Puat Hospital, Singapore
| | | | | |
Collapse
|
23
|
PPP2R2A affects embryonic implantation by regulating the proliferation and apoptosis of Hu sheep endometrial stromal cells. Theriogenology 2021; 176:149-162. [PMID: 34619436 DOI: 10.1016/j.theriogenology.2021.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Embryonic implantation is a complex reproductive physiological process in mammals. Although several endometrial proteins affecting embryonic implantation have been reported in the past, there are still potential endometrial proteins that have been neglected, and their specific regulatory mechanisms are unclear. This study demonstrated that protein phosphatase 2A regulatory subunit B55α (PPP2R2A) served as a novel regulator in medication of sheep embryonic implantation in vitro. Our results showed that sheep PPP2R2A encoded 447 amino acids and shared 91.74%-92.36% amino acid sequences with its orthologs compared with other species. Meanwhile, PPP2R2A was widely expressed in sheep uterine tissues, and it could regulate the expression levels of key regulators of embryonic implantation in endometrial stromal cells (ESCs). Knockdown of PPP2R2A significantly inhibited cell proliferation by blocking cell cycle transfer G0/G1 into S phase accompanied by downregulation of CDK2, CDK4, CCND1, CCNE1 and upregulation of P21. In contrast to PPP2R2A overexpression, PPP2R2A interference greatly promoted cell apoptosis and the expression of BAX, CASP3, CASP9 and BAX/BCL-2. Taken together, these results suggest that PPP2R2A, as a novel regulatory factor, affects embryonic implantation via regulating the proliferation and apoptosis of Hu sheep ESCs in vitro.
Collapse
|
24
|
The Role of the FOXO1/β 2-AR/p-NF-κB p65 Pathway in the Development of Endometrial Stromal Cells in Pregnant Mice under Restraint Stress. Int J Mol Sci 2021; 22:ijms22031478. [PMID: 33540675 PMCID: PMC7867244 DOI: 10.3390/ijms22031478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Restraint stress causes various maternal diseases during pregnancy. β2-Adrenergic receptor (β2-AR) and Forkhead transcription factor class O 1 (FOXO1) are critical factors not only in stress, but also in reproduction. However, the role of FOXO1 in restraint stress, causing changes in the β2-AR pathway in pregnant mice, has been unclear. The aim of this research was to investigate the β2-AR pathway of restraint stress and its impact on the oxidative stress of the maternal uterus. In the study, maternal mice were treated with restraint stress by being restrained in a transparent and ventilated device before sacrifice on Pregnancy Day 5 (P5), Pregnancy Day 10 (P10), Pregnancy Day 15 (P15), and Pregnancy Day 20 (P20) as well as on Non-Pregnancy Day 5 (NP5). Restraint stress augmented blood corticosterone (CORT), norepinephrine (NE), and blood glucose levels, while oestradiol (E2) levels decreased. Moreover, restraint stress increased the mRNA levels of the FOXO family, β2-AR, and even the protein levels of FOXO1 and β2-AR in the uterus and ovaries. Furthermore, restraint stress increased uterine oxidative stress level. In vitro, the protein levels of FOXO1 were also obviously increased when β2-AR was activated in endometrial stromal cells (ESCs). In addition, phosphorylated-nuclear factor kappa-B p65 (p-NF-κB p65) and its target genes decreased significantly when FOXO1 was inhibited. Overall, it can be said that the β2-AR/FOXO1/p-NF-κB p65 pathway was activated when pregnant mice were under restraint stress. This study provides a scientific basis for the origin of psychological stress in pregnant women.
Collapse
|
25
|
Vishnyakova P, Artemova D, Elchaninov A, Efendieva Z, Apolikhina I, Sukhikh G, Fatkhudinov T. Effects of platelet-rich plasma on mesenchymal stem cells isolated from rat uterus. PeerJ 2020; 8:e10415. [PMID: 33335809 PMCID: PMC7713597 DOI: 10.7717/peerj.10415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/02/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Platelet-rich plasma (PRP), which represents a valuable source of growth factors, is increasingly being applied in regenerative medicine. Recent findings suggest the feasibility of using PRP in the treatment of infertility secondary to refractory thin endometrium. Mesenchymal stem/stromal cells (MSCs) of the endometrium are an essential cellular component responsible for extracellular matrix remodeling, angiogenesis, cell-to-cell communication, and postmenstrual tissue repair. Using a rat model, we examine the effects of autologous PRP on MSCs isolated from the uterus and compare them with the effects of autologous ordinary plasma (OP) and complete growth medium. METHODS MSCs were isolated from uterine tissues via enzymatic disaggregation. Flow cytometry immunophenotyping of the primary cell cultures was complemented by immunocytochemistry for Ki-67 and vimentin. The ability of MSCs to differentiate in osteo-, chondro-, and adipogenic directions was assessed using differentiation-inducing media. The levels of autophagy and apoptosis markers, as well as the levels of matrix metalloproteinase 9 (MMP9) and estrogen receptor α, were assessed by western blotting. RESULTS After 24 h incubation, the proliferation index of the PRP-treated MSC cultures was significantly higher than that of the MSC cultures treated with complete growth medium. PRP treatment elevated production of LC3B protein, an autophagy marker, while OP treatment upregulated the expression of stress-induced protein p53 and extracellular enzyme MMP9. The results indicate practical relevance and validity for PRP use in the treatment of infertility.
Collapse
Affiliation(s)
- Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Daria Artemova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Scientific Research Institute of Human Morphology, Moscow, Russia
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Zulfiia Efendieva
- I. M. Sechenov First Moscow State Medical University of Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Inna Apolikhina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- I. M. Sechenov First Moscow State Medical University of Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- I. M. Sechenov First Moscow State Medical University of Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Timur Fatkhudinov
- Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Scientific Research Institute of Human Morphology, Moscow, Russia
| |
Collapse
|
26
|
Mayoral Andrade G, Vásquez Martínez G, Pérez-Campos Mayoral L, Hernández-Huerta MT, Zenteno E, Pérez-Campos Mayoral E, Martínez Cruz M, Martínez Cruz R, Matias-Cervantes CA, Meraz Cruz N, Romero Díaz C, Cruz-Parada E, Pérez-Campos E. Molecules and Prostaglandins Related to Embryo Tolerance. Front Immunol 2020; 11:555414. [PMID: 33329514 PMCID: PMC7710691 DOI: 10.3389/fimmu.2020.555414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022] Open
Abstract
It is generally understood that the entry of semen into the female reproductive tract provokes molecular and cellular changes facilitating conception and pregnancy. We show a broader picture of the participation of prostaglandins in the fertilization, implantation and maintenance of the embryo. A large number of cells and molecules are related to signaling networks, which regulate tolerance to implantation and maintenance of the embryo and fetus. In this work, many of those cells and molecules are analyzed. We focus on platelets, polymorphonuclear leukocytes, and group 2 innate lymphoid cells involved in embryo tolerance in order to have a wider view of how prostaglandins participate. The combination of platelets and neutrophil extracellular traps (Nets), uterine innate lymphoid cells (uILC), Treg cells, NK cells, and sex hormones have an important function in immunological tolerance. In both animals and humans, the functions of these cells can be regulated by prostaglandins and soluble factors in seminal plasma to achieve an immunological balance, which maintains fetal-maternal tolerance. Prostaglandins, such as PGI2 and PGE2, play an important role in the suppression of the previously mentioned cells. PGI2 inhibits platelet aggregation, in addition to IL-5 and IL-13 expression in ILC2, and PGE2 inhibits some neutrophil functions, such as chemotaxis and migration processes, leukotriene B4 (LTB4) biosynthesis, ROS production, and the formation of extracellular traps, which could help prevent trophoblast injury and fetal loss. The implications are related to fertility in female when seminal fluid is deposited in the vagina or uterus.
Collapse
Affiliation(s)
- Gabriel Mayoral Andrade
- Research Centre Medicine National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca (UNAM-UABJO), Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca, Mexico
| | | | - Laura Pérez-Campos Mayoral
- Research Centre Medicine National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca (UNAM-UABJO), Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca, Mexico
| | | | - Edgar Zenteno
- Department of Biochemistry, School of Medicine, UNAM, Mexico City, México
| | - Eduardo Pérez-Campos Mayoral
- Research Centre Medicine National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca (UNAM-UABJO), Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca, Mexico
| | | | - Ruth Martínez Cruz
- Research Centre Medicine National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca (UNAM-UABJO), Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca, Mexico
| | | | - Noemi Meraz Cruz
- School of Medicine, Branch at National Institute of Genomic Medicine, Mexico City, Mexico
| | - Carlos Romero Díaz
- Research Centre Medicine National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca (UNAM-UABJO), Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca, Mexico
| | - Eli Cruz-Parada
- Biochemistry and Immunology Unit, National Technological of Mexico/ITOaxaca, Oaxaca, Mexico
| | - Eduardo Pérez-Campos
- Biochemistry and Immunology Unit, National Technological of Mexico/ITOaxaca, Oaxaca, Mexico
| |
Collapse
|
27
|
Liu T, Shi F, Ying Y, Chen Q, Tang Z, Lin H. Mouse model of menstruation: An indispensable tool to investigate the mechanisms of menstruation and gynaecological diseases (Review). Mol Med Rep 2020; 22:4463-4474. [PMID: 33174022 PMCID: PMC7646730 DOI: 10.3892/mmr.2020.11567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
Abnormal menstruation may result in several pathological alterations and gynaecological diseases, including endometriosis, menstrual pain and miscarriage. However, the pathogenesis of menstruation remains unclear due to the limited number of animal models available to study the menstrual cycle. In recent years, an effective, reproducible, and highly adaptive mouse model to study menstruation has been developed. In this model, progesterone and oestrogen were administered in cycles following the removal of ovaries. Subsequently, endometrial decidualisation was induced using sesame oil, followed by withdrawal of progesterone administration. Vaginal bleeding in mice is similar to that in humans. Therefore, the use of mice as a model organism to study the mechanism of menstruation and gynaecological diseases may prove to be an important breakthrough. The present review is focussed ond the development and applications of a mouse model of menstruation. Furthermore, various studies have been described to improve this model and the research findings that may aid in the treatment of menstrual disorders in women are presented.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Fuli Shi
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Ying Ying
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Qiongfeng Chen
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Zhimin Tang
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
28
|
Wei C, Pan Y, Zhang Y, Dai Y, Jiang L, Shi L, Yang W, Xu S, Zhang Y, Xu W, Zhang Y, Lin X, Zhang S. Overactivated sonic hedgehog signaling aggravates intrauterine adhesion via inhibiting autophagy in endometrial stromal cells. Cell Death Dis 2020; 11:755. [PMID: 32934215 PMCID: PMC7492405 DOI: 10.1038/s41419-020-02956-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Autophagy can be dynamically induced in response to stresses and is an essential, ubiquitous intracellular recycling system that impacts the fate of damaged resident cells, thereby influencing wound healing. Endometrial fibrosis is a form of abnormal wound healing that causes intrauterine adhesion (IUA) and infertility. We previously demonstrated that overactivated sonic hedgehog (SHH) signaling exacerbated endometrial fibrosis, but the role of autophagy in this process is still unknown. Here, we report that impaired autophagy participates in SHH pathway-induced endometrial fibrosis. Endometrial stroma-myofibroblast transition accompanied by autophagy dysfunction was present in both endometrial biopsies of IUA patients and Amhr2cre/+R26-SmoM2+/− (AM2) transgenic mouse. Mechanistically, SHH pathway negatively regulated autophagy through pAKT-mTORC1 in a human endometrial stromal cell line (T-HESCs). Furthermore, SHH pathway-mediated fibrosis was partly counteracted by autophagy modulation in both T-HESCs and the murine IUA model. Specifically, the impact of SHH pathway inhibition (GANT61) was reversed by the pharmacological autophagy inhibitor chloroquine (CQ) or RNA interference of autophagy-related gene ATG5 or ATG7. Similar results were obtained from the murine IUA model treated with GANT61 and CQ. Moreover, promoting autophagy with rapamycin reduced fibrosis in the AM2 IUA model to baseline levels. In summary, defective autophagy is involved in SHH pathway-driven endometrial fibrosis, suggesting a potential novel molecular target for IUA treatment.
Collapse
Affiliation(s)
- Cheng Wei
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yibin Pan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yinli Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Lingling Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Libing Shi
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Shiqian Xu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yingyi Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Wenzhi Xu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yanling Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Xiaona Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China. .,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China. .,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.
| |
Collapse
|
29
|
Hu W, Liang YX, Luo JM, Gu XW, Chen ZC, Fu T, Zhu YY, Lin S, Diao HL, Jia B, Yang ZM. Nucleolar stress regulation of endometrial receptivity in mouse models and human cell lines. Cell Death Dis 2019; 10:831. [PMID: 31685803 PMCID: PMC6828743 DOI: 10.1038/s41419-019-2071-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/20/2019] [Accepted: 10/16/2019] [Indexed: 12/17/2022]
Abstract
Embryo implantation is essential to the successful establishment of pregnancy. A previous study has demonstrated that actinomycin D (ActD) could initiate the activation of mouse delayed implantation. However, the mechanism underlying this activation remains to be elucidated. A low dose of ActD is an inducer of nucleolar stress. This study was to examine whether nucleolar stress is involved in embryo implantation. We showed that nucleolar stress occurred when delayed implantation was activated by ActD in mice. ActD treatment also stimulated the Lif-STAT3 pathway. During early pregnancy, nucleolar stress was detected in the luminal epithelial cells during the receptive phase. Blastocyst-derived lactate could induce nucleolar stress in cultured luminal epithelial cells. The inhibition of nucleophosmin1 (NPM1), which was a marker of nucleolar stress, compromised uterine receptivity and decreased the implantation rates in pregnant mice. To translate these mouse data into humans, we examined nucleolar stress in human endometrium. Our data demonstrated that ActD-induced nucleolar stress had positive effects on the embryo attachment by upregulating IL32 expression in non-receptive epithelial cells rather than receptive epithelial cells. Our data should be the first to demonstrate that nucleolar stress is present during early pregnancy and is able to induce embryo implantation in both mice and humans.
Collapse
Affiliation(s)
- Wei Hu
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, China
| | - Yu-Xiang Liang
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, China.,Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, 030001, Taiyuan, China.,Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, 030001, Taiyuan, China
| | - Jia-Mei Luo
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, China
| | - Xiao-Wei Gu
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, China
| | - Zi-Cong Chen
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, China
| | - Tao Fu
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, China
| | - Yu-Yuan Zhu
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, China
| | - Shuai Lin
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, China
| | - Hong-Lu Diao
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, 442000, Shiyan, China
| | - Bo Jia
- Jiangxi Provincial Institute of Occupational Medicine, 330006, Nanchang, China
| | - Zeng-Ming Yang
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, China.
| |
Collapse
|
30
|
St-Jean G, Tsoi M, Abedini A, Levasseur A, Rico C, Morin M, Djordjevic B, Miinalainen I, Kaarteenaho R, Paquet M, Gévry N, Boyer A, Vanderhyden B, Boerboom D. Lats1 and Lats2 are required for the maintenance of multipotency in the Müllerian duct mesenchyme. Development 2019; 146:dev.180430. [PMID: 31575647 DOI: 10.1242/dev.180430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022]
Abstract
WNT signaling plays essential roles in the development and function of the female reproductive tract. Although crosstalk with the Hippo pathway is a key regulator of WNT signaling, whether Hippo itself plays a role in female reproductive biology remains largely unknown. Here, we show that conditional deletion of the key Hippo kinases Lats1 and Lats2 in mouse Müllerian duct mesenchyme cells caused them to adopt the myofibroblast cell fate, resulting in profound reproductive tract developmental defects and sterility. Myofibroblast differentiation was attributed to increased YAP and TAZ expression (but not to altered WNT signaling), leading to the direct transcriptional upregulation of Ctgf and the activation of the myofibroblast genetic program. Müllerian duct mesenchyme cells also became myofibroblasts in male mutant embryos, which impeded the development of the male reproductive tract and resulted in cryptorchidism. The inactivation of Lats1/2 in differentiated uterine stromal cells in vitro did not compromise their ability to decidualize, suggesting that Hippo is dispensable during implantation. We conclude that Hippo signaling is required to suppress the myofibroblast genetic program and maintain multipotency in Müllerian mesenchyme cells.
Collapse
Affiliation(s)
- Guillaume St-Jean
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Mayra Tsoi
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Atefeh Abedini
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Adrien Levasseur
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Charlène Rico
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Martin Morin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Bojana Djordjevic
- Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada
| | | | - Riitta Kaarteenaho
- Research Unit of Internal Medicine, University of Oulu and Medical Research Center Oulu, Oulu University Hospital, 90029, Oulu, Finland
| | - Marilène Paquet
- Département de Pathologie et de Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Nicolas Gévry
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Alexandre Boyer
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Barbara Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Derek Boerboom
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| |
Collapse
|
31
|
Noh EJ, Kim DJ, Lee JY, Park JH, Kim JS, Han JW, Kim BC, Kim CJ, Lee SK. Ureaplasma Urealyticum Infection Contributes to the Development of Pelvic Endometriosis Through Toll-Like Receptor 2. Front Immunol 2019; 10:2373. [PMID: 31636643 PMCID: PMC6788432 DOI: 10.3389/fimmu.2019.02373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/23/2019] [Indexed: 12/29/2022] Open
Abstract
Endometriosis is a chronic gynecological disorder, characterized by the presence of ectopic endometrial tissue outside the uterine cavity. Among several hypotheses, Sampson's theory of retrograde menstruation is still applicable. Recent studies have reported the importance of inflammation among endometrial tissue, the peritoneum, and immune cells. However, less is known regarding the role of bacterial infection in the pathophysiology of endometriosis. We hypothesized that Ureaplasma urealyticum infection might contribute to the development of endometriosis by inducing the production of inflammatory mediators by peritoneal mesothelial cells (PMCs), possibly through TLR2. Hence, our objective was to reveal whether PMC infection by U. urealyticum is associated with endometriosis. Moreover, we aimed to demonstrate the molecular mechanism involved in this relationship. We developed a new infection-induced mouse model of endometriosis with wild type and Tlr2-deficient mice. Based on the in vivo mouse model, U. urealyticum-infected mice showed significantly increased numbers and sizes of ectopic endometriotic lesions. U. urealyticum upregulated not only the production of IL-6, CXCL1, and CCL2, but also the expression of ICAM-1, VCAM-1, and MMP2 in murine PMCs. Similarly, endometrial stromal cells dose-dependently produced IL-6, CXCL1, and CCL2 in response to U. urealyticum infection. The series of inflammatory responses in PMCs was mediated mainly through TLR2. The phosphorylation of ERK and JNK was observed when U. urealyticum was added to PMCs and knock out of Tlr2 inhibited these MAPKs phosphorylation. Based on our co-culture study, U. urealyticum-infected PMCs exhibited significantly increased attachment to ESCs compared with uninfected PMCs. Collectively, U. urealyticum infection promotes the development of endometriosis by increasing inflammatory mediators, adhesion molecules, and MMP-2 expression in PMCs through TLR2 signaling. Through our results, we present a theory that infection-induced pelvic inflammation contributes to the initiation and progression of endometriosis. Appropriate treatment of reproductive tract infection may decrease the prevalence of endometriosis.
Collapse
Affiliation(s)
- Eui Jeong Noh
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University, Daejeon, South Korea
| | - Dong Jae Kim
- Laboratory Animal Resource Centre, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
| | - Jun Young Lee
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University, Daejeon, South Korea
| | - Jong Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
| | - Jae Won Han
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University, Daejeon, South Korea
| | - Byoung Chan Kim
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Chul Jung Kim
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University, Daejeon, South Korea
| | - Sung Ki Lee
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University, Daejeon, South Korea.,Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
| |
Collapse
|
32
|
Tal R, Shaikh S, Pallavi P, Tal A, López-Giráldez F, Lyu F, Fang YY, Chinchanikar S, Liu Y, Kliman HJ, Alderman M, Pluchino N, Kayani J, Mamillapalli R, Krause DS, Taylor HS. Adult bone marrow progenitors become decidual cells and contribute to embryo implantation and pregnancy. PLoS Biol 2019; 17:e3000421. [PMID: 31513564 PMCID: PMC6742226 DOI: 10.1371/journal.pbio.3000421] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/09/2019] [Indexed: 12/22/2022] Open
Abstract
Decidua is a transient uterine tissue shared by mammals with hemochorial placenta and is essential for pregnancy. The decidua is infiltrated by many immune cells promoting pregnancy. Adult bone marrow (BM)-derived cells (BMDCs) differentiate into rare populations of nonhematopoietic endometrial cells in the uterus. However, whether adult BMDCs become nonhematopoietic decidual cells and contribute functionally to pregnancy is unknown. Here, we show that pregnancy mobilizes mesenchymal stem cells (MSCs) to the circulation and that pregnancy induces considerable adult BMDCs recruitment to decidua, where some differentiate into nonhematopoietic prolactin-expressing decidual cells. To explore the functional importance of nonhematopoietic BMDCs to pregnancy, we used Homeobox a11 (Hoxa11)-deficient mice, having endometrial stromal-specific defects precluding decidualization and successful pregnancy. Hoxa11 expression in BM is restricted to nonhematopoietic cells. BM transplant (BMT) from wild-type (WT) to Hoxa11-/- mice results in stromal expansion, gland formation, and marked decidualization otherwise absent in Hoxa11-/- mice. Moreover, in Hoxa11+/- mice, which have increased pregnancy losses, BMT from WT donors leads to normalized uterine expression of numerous decidualization-related genes and rescue of pregnancy loss. Collectively, these findings reveal that adult BMDCs have a previously unrecognized nonhematopoietic physiologic contribution to decidual stroma, thereby playing important roles in decidualization and pregnancy.
Collapse
Affiliation(s)
- Reshef Tal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Shafiq Shaikh
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Pallavi Pallavi
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Aya Tal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Francesc López-Giráldez
- Yale Center for Genome Analysis (YCGA), Yale University, New Haven, Connecticut, United States of America
| | - Fang Lyu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Yuan-Yuan Fang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Shruti Chinchanikar
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Ying Liu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Harvey J. Kliman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Myles Alderman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Nicola Pluchino
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Jehanzeb Kayani
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Diane S. Krause
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Hugh S. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
33
|
Liu F, Hu S, Yang H, Li Z, Huang K, Su T, Wang S, Cheng K. Hyaluronic Acid Hydrogel Integrated with Mesenchymal Stem Cell-Secretome to Treat Endometrial Injury in a Rat Model of Asherman's Syndrome. Adv Healthc Mater 2019; 8:e1900411. [PMID: 31148407 PMCID: PMC7045702 DOI: 10.1002/adhm.201900411] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/25/2019] [Indexed: 12/31/2022]
Abstract
Stem cell therapies have made strides toward the efficacious treatment of injured endometrium and the prevention of intrauterine adhesions, or Asherman's syndrome (AS). Despite this progress, they are limited by their risk of tumor formation, low engraftment rates, as well as storage and transportation logistics. While attempts have been made to curb these issues, there remains a need for simple and effective solutions. A growing body of evidence supports the theory that delivering media, conditioned with mesenchymal stem cells, might be a promising alternative to live cell therapy. Mesenchymal stem cell-secretome (MSC-Sec) has a superior safety profile and can be stored without losing its regenerative properties. It is versatile enough to be added to a number of delivery vehicles that improve engraftment and control the release of the therapeutic. Thus, it holds great potential for the treatment of AS. Here, a new strategy for loading crosslinked hyaluronic acid gel (HA gel) with MSC-Sec is reported. The HA gel/MSC-Sec treatment paradigm creates a sustained release system that repairs endometrial injury in rats and promotes viable pregnancy.
Collapse
Affiliation(s)
- Feiran Liu
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Hua Yang
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Gynecology and Obstetrics, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Zhenhua Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Ke Huang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Teng Su
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Shaowei Wang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
34
|
Yang Y, Zhang D, Qin H, Liu S, Yan Q. poFUT1 promotes endometrial decidualization by enhancing the O-fucosylation of Notch1. EBioMedicine 2019; 44:563-573. [PMID: 31201143 PMCID: PMC6606927 DOI: 10.1016/j.ebiom.2019.05.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Endometrial stromal cell decidualization is critical for embryo implantation. Dysfunctional decidualization leads to implantation failure, miscarriage and even pregnancy associated disorders in subsequent pregnancy trimesters. Protein glycosylation is involved in many physiological and pathological processes. Protein O-fucosyltransferase 1 (poFUT1) is the key enzyme for the O-fucosylation of proteins. However, the role and mechanism of poFUT1 in human endometrial stromal cell decidualization remain elusive. METHODS We employed immunohistochemistry to detect the level of poFUT1 in the uterine endometrium from those of the proliferative phase, secretory phase, early pregnancy women and miscarriage patients. Using human endometrial stromal cells (hESCs) and a mouse model, the underlying mechanisms of poFUT1 in decidualization was investigated. FINDINGS The level of poFUT1 was increased in the stromal cells of the secretory phase relative to those in the proliferative phase of the menstrual cycle, and decreased in the stromal cells of miscarriage patients compared to women with healthy early pregnancies. Furthermore, we found that poFUT1 promoted hESCs decidualization. The results also demonstrated that poFUT1 increased O-fucosylation on Notch1 in hESCs, which activated Notch1 signaling pathway. Activated Notch1 (NICD), as a specific trans-factor of PRL and IGFBP1 promoters, enhanced PRL and IGFBP1 transcriptional activity, thus inducing hESCs decidualization. INTERPRETATION Level of poFUT1 is lower in the uterine endometrium from miscarriage patients than early pregnancy women. poFUT1 is critical in endometrial decidualization by controlling the O-fucosylation on Notch1. Our findings provide a new mechanism perspective on poFUT1 in uterine decidualization that may be a useful diagnostic and therapeutic target for miscarriage. FUND: National Natural Science Foundation of China (31770857, 31670810 and 31870794). Liaoning Provincial Program for Top Discipline of Basic Medical Sciences.
Collapse
Affiliation(s)
- Yu Yang
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Dandan Zhang
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Huamin Qin
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Shuai Liu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Qiu Yan
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
35
|
Zhang X, Xu Y, Fu L, Li D, Dai X, Liu L, Zhang J, Zheng L, Cui M. Identification of mRNAs related to endometrium function regulated by lncRNA CD36-005 in rat endometrial stromal cells. Reprod Biol Endocrinol 2018; 16:96. [PMID: 30322386 PMCID: PMC6190555 DOI: 10.1186/s12958-018-0412-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder in women of reproductive age and is commonly complicated by adverse endometrial outcomes. Long non-coding RNAs (lncRNAs) are a class of non-protein-coding transcripts that are more than 200 nucleotides in length. Accumulating evidence indicates that lncRNAs are involved in the development of various human diseases. Among these lncRNAs, lncRNA CD36-005 (CD36-005) is indicated to be associated with the pathogenesis of PCOS. However, the mechanisms of action of CD36-005 have not yet been elucidated. METHODS This study determined the CD36-005 expression level in the uteri of PCOS rat model and its effect on the proliferation activity of rat primary endometrial stromal cells. RNA sequencing (RNA-seq) and bioinformatics analysis were performed to detect the mRNA expression profiles and the biological pathways in which these differentially expressed mRNAs involved, after CD36-005 overexpression in the primary endometrial stromal cells. The differential expression of Hmgn5, Nr5a2, Dll4, Entpd1, Fam50a, and Brms1 were further validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). RESULTS CD36-005 is highly expressed in the uteri of PCOS rat model and promotes the proliferation of rat primary endometrial stromal cells. A total of fifty-five mRNAs differentially expressed were identified in CD36-005 overexpressed stromal cells. Further analyses identified that these differentially expressed mRNAs participate in many biological processes and are associated with various human diseases. The results of qRT-PCR validation were consistent with the RNA-seq data. CONCLUSIONS These data provide a list of potential target mRNA genes of CD36-005 in endometrial stromal cells and laid a foundation for further studies on the molecular function and mechanism of CD36-005 in the endometrium.
Collapse
Affiliation(s)
- Xueying Zhang
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041 Jilin China
| | - Ying Xu
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041 Jilin China
| | - Lulu Fu
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041 Jilin China
| | - Dandan Li
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041 Jilin China
| | - Xiaowei Dai
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041 Jilin China
| | - Lianlian Liu
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041 Jilin China
| | - Jingshun Zhang
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041 Jilin China
| | - Lianwen Zheng
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041 Jilin China
| | - Manhua Cui
- grid.452829.0Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041 Jilin China
| |
Collapse
|
36
|
Functional Expression of TRP Ion Channels in Endometrial Stromal Cells of Endometriosis Patients. Int J Mol Sci 2018; 19:ijms19092467. [PMID: 30134548 PMCID: PMC6163224 DOI: 10.3390/ijms19092467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 01/09/2023] Open
Abstract
Endometriosis is a common gynecological disease that is characterized by the presence of functional endometrial-like lesions in the abdominal cavity. Aside from epithelial cells, these lesions consist of stromal cells that have the capacity to migrate, adhere, proliferate, and induce neuro- and lymphangiogenesis, which allows them to survive at ectopic locations. However, the exact underlying mechanisms that regulate these changes are yet to be elucidated. The common ground of these processes, however, is the second messenger, calcium. In this regard, members of the superfamily of transient receptor potential (TRP) ion channels, which are known to be calcium-permeable and expressed in the endometrium, have emerged as key regulators. Here, we assessed the molecular and functional expression of TRP channels in stromal cells isolated from the eutopic endometrium of endometriosis patients and controls. Using RT-qPCR, high mRNA levels of TRPV2, TRPV4, TRPM4, TRPM7, TRPC1, TRPC3, TRPC4, and TRPC6 were observed in the whole endometrium throughout the menstrual cycle. Additionally, and in line with previous reports of control patients, TRPV2, TRPV4, TRPC1/4, and TRPC6 were present in human endometrial stromal cells (hESC) from endometriosis patients both at the molecular and functional level. Moreover, proliferation and migration assays illustrated that these parameters were not affected in stromal cells from endometriosis patients. Furthermore, comparison between eutopic and ectopic endometrial samples revealed that the RNA expression pattern of TRP channels did not differ significantly. Collectively, although a functional expression of specific ion channels in hESCs was found, their expression did not correlate with endometriosis.
Collapse
|
37
|
Farine T, Parsons M, Lye S, Shynlova O. Isolation of Primary Human Decidual Cells from the Fetal Membranes of Term Placentae. J Vis Exp 2018. [PMID: 29757275 DOI: 10.3791/57443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The decidua, also known as the pregnant endometrium, is a critically important reproductive tissue. Decidual cells, comprised mainly of decidualized stromal cells and immune cells, are responsible for the secretion of hormonal and inflammatory factors which are critical for successful blastocyst implantation, placental development and play a role in the initiation of labor at term and preterm. Many pregnancy complications can arise from perturbations of a fine balance of different cell populations comprising decidua. Alterations in the proportion of specific decidual cell types may disrupt these crucial processes and increase the risk of developing serious complications of pregnancy, such as embryo implantation failure, intrauterine growth restriction, preeclampsia and preterm labor. The protocol outlined here demonstrates a cost and time effective method for the isolation of primary human decidual cells collected from the fetal membranes of term placentae. By combining enzymatic digestion and gentle mechanical disruption of the decidual tissue, a high yield of decidual cells was obtained with virtually no chorion contamination. Importantly, isolated decidual cells were characterized (stromal cells (55-60%), leukocytes (35%), epithelial (1%) or trophoblast (0.01%) cells) and maintained high viability (80%) which was confirmed by multicolor imaging flow cytometry assay. This protocol is specific to the decidua parietalis and can be adapted to first and second trimester placentae. Once isolated, decidual cells can be used for a multitude of experimental applications aiming to understand the role of different decidual cell sub-populations in pregnancy complications.
Collapse
Affiliation(s)
- Tali Farine
- Department of Physiology, University of Toronto; Lunenfeld-Tanenbaum Research Institute, Sinai Health System
| | | | - Stephen Lye
- Department of Physiology, University of Toronto; Lunenfeld-Tanenbaum Research Institute, Sinai Health System; Department of Obstetrics and Gynecology, University of Toronto
| | - Oksana Shynlova
- Department of Physiology, University of Toronto; Lunenfeld-Tanenbaum Research Institute, Sinai Health System; Department of Obstetrics and Gynecology, University of Toronto;
| |
Collapse
|