1
|
Bakhashab S, O’Neill J, Barber R, Arden C, Weaver JU. Upregulation of Anti-Angiogenic miR-106b-3p Correlates Negatively with IGF-1 and Vascular Health Parameters in a Model of Subclinical Cardiovascular Disease: Study with Metformin Therapy. Biomedicines 2024; 12:171. [PMID: 38255276 PMCID: PMC10813602 DOI: 10.3390/biomedicines12010171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Well-controlled type 1 diabetes mellitus (T1DM) is regarded as a model of subclinical cardiovascular disease (CVD), characterized by inflammation and adverse vascular health. However, the underlying mechanisms are not fully understood. We investigated insulin-like growth factor-1 (IGF-1) and IGF-binding protein-3 (IGFBP-3) levels, their correlation to miR-106b-3p expression in a subclinical CVD model, and the cardioprotective effect of metformin. A total of 20 controls and 29 well-controlled T1DM subjects were studied. Plasma IGF-1, IGFBP-3 levels, and miR-106b-3p expression in colony-forming unit-Hills were analyzed and compared with vascular markers. miR-106b-3p was upregulated in T1DM (p < 0.05) and negatively correlated with pro-angiogenic markers CD34+/100-lymphocytes (p < 0.05) and IGF-1 (p < 0.05). IGF-1 was downregulated in T1DM (p < 0.01), which was associated with increased inflammatory markers TNF-α, CRP, and IL-10 and reduced CD34+/100-lymphocytes. IGFBP-3 had no significant results. Metformin had no effect on IGF-1 but significantly reduced miR-106b-3p (p < 0.0001). An Ingenuity Pathway analysis predicted miR-106b-3p to inhibit PDGFA, PIK3CG, GDNF, and ADAMTS13, which activated CVD. Metformin was predicted to be cardioprotective by inhibiting miR-106b-3p. In conclusion: Subclinical CVD is characterized by a cardio-adverse profile of low IGF-1 and upregulated miR-106b-3p. We demonstrated that the cardioprotective effect of metformin may be via downregulation of upregulated miR-106b-3p and its effect on downstream targets.
Collapse
Affiliation(s)
- Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, P.O. Box 80218, Jeddah 21589, Saudi Arabia;
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (J.O.); (R.B.)
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Josie O’Neill
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (J.O.); (R.B.)
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Rosie Barber
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (J.O.); (R.B.)
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Catherine Arden
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Jolanta U. Weaver
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (J.O.); (R.B.)
- Department of Diabetes, Queen Elizabeth Hospital, Newcastle upon Tyne NE9 6SH, UK
- Vascular Biology and Medicine Theme, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
2
|
Zhang Z, Zhang Q, Zhang Y, Lou Y, Ge L, Zhang W, Zhang W, Song F, Huang P. Role of sodium taurocholate cotransporting polypeptide (NTCP) in HBV-induced hepatitis: Opportunities for developing novel therapeutics. Biochem Pharmacol 2024; 219:115956. [PMID: 38049009 DOI: 10.1016/j.bcp.2023.115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Hepatitis B is an infectious disease caused by the HBV virus. It presents a significant challenge for treatment due to its chronic nature and the potential for developing severe complications, including hepatocirrhosis and hepatocellular carcinoma. These complications not only cause physical and psychological distress to patients but also impose substantial economic and social burdens on both individuals and society as a whole. The internalization of HBV relies on endocytosis and necessitates the involvement of various proteins, including heparin sulfate proteoglycans, epidermal growth factor receptors, and NTCP. Among these proteins, NTCP is pivotal in HBV internalization and is primarily located in the liver's basement membrane. As a transporter of bile acids, NTCP also serves as a receptor facilitating HBV entry into cells. Numerous molecules have been identified to thwart HBV infection by stifling NTCP activity, although only a handful exhibit low IC50 values. In this systematic review, our primary focus dwells on the structure and regulation of NTCP, as well as the mechanism involved in HBV internalization. We underscore recent drug breakthroughs that specifically target NTCP to combat HBV infection. By shedding light on these advances, this review contributes novel insights into developing effective anti-HBV medications.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Qi Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Yutao Lou
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Luqi Ge
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wanli Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wen Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
3
|
Xue JC, Yuan S, Hou XT, Meng H, Liu BH, Cheng WW, Zhao M, Li HB, Guo XF, Di C, Li MJ, Zhang QG. Natural products modulate NLRP3 in ulcerative colitis. Front Pharmacol 2023; 14:1265825. [PMID: 37849728 PMCID: PMC10577194 DOI: 10.3389/fphar.2023.1265825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023] Open
Abstract
Ulcerative colitis (UC) is a clinically common, progressive, devastating, chronic inflammatory disease of the intestine that is recurrent and difficult to treat. Nod-like receptor protein 3 (NLRP3) is a protein complex composed of multiple proteins whose formation activates cysteine aspartate protease-1 (caspase-1) to induce the maturation and secretion of inflammatory mediators such as interleukin (IL)-1β and IL-18, promoting the development of inflammatory responses. Recent studies have shown that NLRP3 is associated with UC susceptibility, and that it maintains a stable intestinal environment by responding to a wide range of pathogenic microorganisms. The mainstay of treatment for UC is to control inflammation and relieve symptoms. Despite a certain curative effect, there are problems such as easy recurrence after drug withdrawal and many side effects associated with long-term medication. NLRP3 serves as a core link in the inflammatory response. If the relationship between NLRP3 and gut microbes and inflammation-associated factors can be analyzed concerning its related inflammatory signaling pathways, its expression status as well as specific mechanism in the course of IBD can be elucidated and further considered for clinical diagnosis and treatment of IBD, it is expected that the development of lead compounds targeting the NLRP3 inflammasome can be developed for the treatment of IBD. Research into the prevention and treatment of UC, which has become a hotbed of research in recent years, has shown that natural products are rich in therapeutic means, and multi-targets, with fewer adverse effects. Natural products have shown promise in treating UC in numerous basic and clinical trials over the past few years. This paper describes the regulatory role of the NLRP3 inflammasome in UC and the mechanism of recent natural products targeting NLRP3 against UC, which provides a reference for the clinical treatment of this disease.
Collapse
Affiliation(s)
- Jia-Chen Xue
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, Jilin, China
| | - Shuo Yuan
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Xiao-Ting Hou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Huan Meng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Bao-Hong Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Wen-Wen Cheng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Ming Zhao
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Hong-Ben Li
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Xue-Fen Guo
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Chang Di
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Min-Jie Li
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Qing-Gao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, Jilin, China
| |
Collapse
|
4
|
Ahamed F, Eppler N, Jones E, He L, Zhang Y. Small Heterodimer Partner Modulates Macrophage Differentiation during Innate Immune Response through the Regulation of Peroxisome Proliferator Activated Receptor Gamma, Mitogen-Activated Protein Kinase, and Nuclear Factor Kappa B Pathways. Biomedicines 2023; 11:2403. [PMID: 37760844 PMCID: PMC10525324 DOI: 10.3390/biomedicines11092403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatic macrophages act as the liver's first line of defense against injury. Their differentiation into proinflammatory or anti-inflammatory subpopulations is a critical event that maintains a delicate balance between liver injury and repair. In our investigation, we explored the influence of the small heterodimer partner (SHP), a nuclear receptor primarily associated with metabolism, on macrophage differentiation during the innate immune response. During macrophage differentiation, we observed significant alterations in Shp mRNA expression. Deletion of Shp promoted M1 differentiation while interfering with M2 polarization. Conversely, overexpression of SHP resulted in increased expression of peroxisome proliferator activated receptor gamma (Pparg), a master regulator of anti-inflammatory macrophage differentiation, thereby inhibiting M1 differentiation. Upon lipopolysaccharide (LPS) injection, there was a notable increase in the proinflammatory M1-like macrophages, accompanied by exacerbated infiltration of monocyte-derived macrophages (MDMs) into the livers of Shp myeloid cell specific knockout (Shp-MKO). Concurrently, we observed significant induction of tumor necrosis factor alpha (Tnfa) and chemokine (C-C motif) ligand 2 (Ccl2) expression in LPS-treated Shp-MKO livers. Additionally, the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) pathways were activated in LPS-treated Shp-MKO livers. Consistently, both pathways were hindered in SHP overexpression macrophages. Finally, we demonstrated that SHP interacts with p65, thereby influencing macrophage immune repones. In summary, our study uncovered a previously unrecognized role of SHP in promoting anti-inflammatory macrophage differentiation during the innate immune response. This was achieved by SHP acting as a regulator for the Pparg, MAPK, and NF-κB pathways.
Collapse
Affiliation(s)
| | | | | | | | - Yuxia Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (F.A.); (N.E.); (E.J.); (L.H.)
| |
Collapse
|
5
|
Batiha GES, Al-kuraishy HM, Al-Gareeb AI, Youssef FS, El-Sherbeni SA, Negm WA. A perspective study of the possible impact of obeticholic acid against SARS-CoV-2 infection. Inflammopharmacology 2023; 31:9-19. [PMID: 36484974 PMCID: PMC9735105 DOI: 10.1007/s10787-022-01111-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
The causative agent of CoV disease 2019 is a new coronavirus CoV type 2, affecting the respiratory tract with severe manifestations (SARS-CoV-2). Covid-19 is mainly symptomless, with slight indications in about 85% of the affected cases. Many efforts were done to face this pandemic by testing different drugs and agents to make treatment protocols in different countries. However, the use of these proposed drugs is associated with the development of adverse events. Remarkably, the successive development of SARS-CoV-2 variants which could affect persons even they were vaccinated, prerequisite wide search to find efficient and safe agents to face SARS-CoV-2 infection. Obeticholic acid (OCA), which has anti-inflammatory effects, may efficiently treat Covid-19. Thus, the goal of this perspective study is to focus on the possible medicinal effectiveness in managing Covid-19. OCA is a powerful farnesoid X receptor (FXR) agonist possessing marked antiviral and anti-inflammatory effects. FXR is dysregulated in Covid-19 resulting in hyper-inflammation with concurrent occurrence of hypercytokinemia. Interestingly, OCA inhibits the reaction between this virus and angiotensin-converting enzyme type 2 (ACE2) receptors. FXR agonists control the expression of ACE2 and the inflammatory signaling pathways in this respiratory syndrome, which weakens the effects of Covid-19 disease and accompanied complications. Taken together, FXR agonists like OCA may reveal both direct and indirect impacts in the modulation of immune reaction in SARS-CoV-2 conditions. It is highly recommended to perform many investigations regarding different phases of the discovery of new drugs.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 AlBeheira Egypt
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Fadia S. Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo, 11566 Egypt
| | - Suzy A. El-Sherbeni
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| |
Collapse
|
6
|
Liu Z, Deng P, Liu S, Bian Y, Xu Y, Zhang Q, Wang H, Pi J. Is Nuclear Factor Erythroid 2-Related Factor 2 a Target for the Intervention of Cytokine Storms? Antioxidants (Basel) 2023; 12:antiox12010172. [PMID: 36671034 PMCID: PMC9855012 DOI: 10.3390/antiox12010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
The term "cytokine storm" describes an acute pathophysiologic state of the immune system characterized by a burst of cytokine release, systemic inflammatory response, and multiple organ failure, which are crucial determinants of many disease outcomes. In light of the complexity of cytokine storms, specific strategies are needed to prevent and alleviate their occurrence and deterioration. Nuclear factor erythroid 2-related factor 2 (NRF2) is a CNC-basic region-leucine zipper protein that serves as a master transcription factor in maintaining cellular redox homeostasis by orchestrating the expression of many antioxidant and phase II detoxification enzymes. Given that inflammatory response is intertwined with oxidative stress, it is reasonable to assume that NRF2 activation limits inflammation and thus cytokine storms. As NRF2 can mitigate inflammation at many levels, it has emerged as a potential target to prevent and treat cytokine storms. In this review, we summarized the cytokine storms caused by different etiologies and the rationale of interventions, focusing mainly on NRF2 as a potential therapeutic target.
Collapse
Affiliation(s)
- Zihang Liu
- The First Department of Clinical Medicine, China Medical University, Shenyang 110122, China
| | - Panpan Deng
- The First Department of Clinical Medicine, China Medical University, Shenyang 110122, China
| | - Shengnan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yiying Bian
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yuanyuan Xu
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Huihui Wang
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China
- Correspondence: (H.W.); or (J.P.)
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
- Correspondence: (H.W.); or (J.P.)
| |
Collapse
|
7
|
Zhang X, Sun K, Wang X, Shi X, Gong D. Chlorpyrifos induces apoptosis and necroptosis via the activation of CYP450s pathway mediated by nuclear receptors in LMH cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1060-1071. [PMID: 35908035 DOI: 10.1007/s11356-022-22285-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Chlorpyrifos (CPF), an organophosphorus pesticide, is detected commonly in environments, where it is thought to be highly toxic to non-target organisms. However, the mechanism of CYP450s pathway mediated by nuclear receptors on CPF-induced apoptosis and necroptosis at the cellular level and the effect of CPF on the cytotoxicity of the chicken hepatocarcinoma cell line (LMH) has also not been reported in detail. Therefore, this experiment aims to explore whether CPF can improve apoptosis and necroptosis in LMH cells by activating the nuclear receptors/CYP450s axis. LMH cells, the subject of this study, were exposed to 5 μg/mL, 10 μg/mL, and 15 μg/mL doses of CPF. With the increase of CPF concentration, the increase of nuclear receptor level led to the up-regulation of CYP450s activity. With the massive production of ROS, the expression of apoptotic pathway genes (Bax, Caspase9, and Caspase3) enhanced, while Bcl-2 expression dropped sharply. The expression of programmed necroptosis genes (RIPK1, RIPK3, and MLKL) heightened, and Caspase8 reduced considerably. In short, our data suggests that excessive activation of nuclear receptors and CYP450s induced by CPF promotes ROS production, which directs apoptosis and programmed necroptosis in LMH cells.
Collapse
Affiliation(s)
- Xinyu Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Kexin Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Duqiang Gong
- College of Jilin Agricultural Science and Technology University, Jilin, 132101, People's Republic of China.
| |
Collapse
|
8
|
Shi Y, Dai S, Lei Y. Development and validation of a combined metabolism and immune prognostic model in lung adenocarcinoma. J Thorac Dis 2022; 14:4983-4997. [PMID: 36647508 PMCID: PMC9840026 DOI: 10.21037/jtd-22-1695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022]
Abstract
Background Tumor metabolism and immune response can affect the biological behavior of tumor cells. There is an obvious relationship between glycolysis and immune response. However, the association between metabolism and immune response and prognosis in lung adenocarcinoma (LUAD) has not yet been examined in a comprehensive and detailed manner. The establishment of reliable models for predicting the prognosis of LUAD based on glycolysis ability and immune status is still highly anticipated. Methods The expression of genes were obtained from online databases, and the differentially expressed genes in LUAD tissues and adjacent tissues were identified. We used LUAD samples in The Cancer Genome Atlas (TCGA) database as training set and the Gene Expression Omnibus (GEO) databases as validation sets. The best predictive model was constructed using least absolute selection and shrinkage operator (LASSO) regression and Cox regression. The receiver operator characteristic (ROC) curve is used to verify the accuracy of the model. The expression status of the Glycolysis-related genes (GRGs) and the status of the immune cells in LUCD patients were further analyzed. The protein levels of the 3 identified genes were then tested in LUAD patients. Results We identified 3 GRGs and immune-related genes (i.e., fibroblast growth factor 2, hyaluronan-mediated motor receptor, and nuclear receptor 0B2) and constructed a stable comprehensive index of glycolysis and immunity (CIGI) prediction model. The validation results for this CIGI model were quite stable across different datasets and patient subgroups and the CIGI score can be included as an independent prognostic factor for LUAD patients. The area under the curve (AUC) values of 1-, 3- and 5-year of the finally established nomogram model are 0.767, 0.735 and 0.769. Further analysis showed that LUAD patients in the low-risk group had lower levels of glycolytic gene expression than those in the high-risk group and exhibited an immunosuppressed state. Finally, hyaluronan-mediated motor receptor may play a role in inhibiting cancer, while fibroblast growth factor 2 and nuclear receptor 0B2 may play roles in promoting cancer. Conclusions In this study, we established a new prognostic prediction model for LUAD patients that combines glycolysis ability and immune status.
Collapse
Affiliation(s)
- Yu Shi
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shihui Dai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu Lei
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Bayram M, Irak K, Cifci S, Koksal AR, Kazezoglu C, Acar Z, Ozarı HO, Alkim H. The effectiveness of small heterodimer partner and FGF 19 levels in prediction of perinatal morbidity in intrahepatic cholestasis of pregnancy. J OBSTET GYNAECOL 2022; 42:1174-1178. [PMID: 35156505 DOI: 10.1080/01443615.2022.2028275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mehmet Bayram
- Department of Gastroenterology, Health Sciences University Istanbul Kanuni Sultan Süleyman Training and Research Hospital, Istanbul, Turkey
| | - Kader Irak
- Department of Gastroenterology, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Sami Cifci
- Department of Gastroenterology, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Ali Riza Koksal
- Department of Gastroenterology & Hepatology, Tulane University of Medicine, New Orleans, LA, USA
| | - Cemal Kazezoglu
- Department of Biochemistry, Health Sciences University Istanbul Kanuni Sultan Süleyman Training and Research Hospital, Istanbul, Turkey
| | - Zuat Acar
- Department of Perinatology, Health Sciences University Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Halil Onur Ozarı
- Department of Gastroenterology, Health Sciences University Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Huseyin Alkim
- Department of Gastroenterology, Health Sciences University Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
10
|
Du J, Xiang X, Xu D, Cui K, Pang Y, Xu W, Mai K, Ai Q. LPS Stimulation Induces Small Heterodimer Partner Expression Through the AMPK-NRF2 Pathway in Large Yellow Croaker ( Larimichthys crocea). Front Immunol 2021; 12:753681. [PMID: 34819934 PMCID: PMC8607525 DOI: 10.3389/fimmu.2021.753681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
The mall heterodimer partner (SHP) plays an important regulatory role in mammal inflammation. The main objective of this study was to investigate the response of SHP to inflammatory stimulation and its underlying mechanism. The shp gene from large yellow croakers, was cloned, and this gene is mainly expressed in the liver and intestine. Lipopolysaccharide (LPS) stimulation induced the mRNA expression and protein level of SHP in macrophages of large yellow croakers. Overexpression of SHP significantly decreased mRNA expression of tnfα, il-1β, il-6 and cox2 induced by LPS treatment in macrophages. LPS stimulation increased the phosphorylation level of Adenosine 5’-monophosphate (AMP)-activated protein kinase (AMPK) in macrophages. AMPK inhibitor treatment significantly decreased the expression of SHP induced by LPS while AMPK activator significantly increased the expression of SHP. The nuclear factor-erythroid 2-related factor 2 (NRF2) increased the promoter activity of SHP in large yellow croakers and the level of nuclear NRF2 was increased by LPS stimulation and AMPK activation. NRF2 inhibitor treatment significantly decreased mRNA expression of shp induced by LPS and AMPK activator. In conclusion, LPS can induce SHP expression by activating the AMPK-NRF2 pathway while SHP could negatively regulate LPS-induced inflammation in large yellow croakers. This study may be benefit to the development of immunology of marine fish and provide new ideas for inflammation-related diseases.
Collapse
Affiliation(s)
- Jianlong Du
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Xiaojun Xiang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Dan Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Kun Cui
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yuning Pang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Wei Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
11
|
Kim S, Joo M, Yeo MK, Cho MJ, Kim JS, Jo EK, Kim JM. Small heterodimer partner as a predictor of neoadjuvant radiochemotherapy response and survival in patients with rectal cancer: A preliminary study. Oncol Lett 2021; 22:708. [PMID: 34457063 PMCID: PMC8358587 DOI: 10.3892/ol.2021.12969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/16/2021] [Indexed: 11/06/2022] Open
Abstract
Small heterodimer partner (SHP) plays an essential role in the regulation of innate immune and inflammatory responses. The aim of the present study was to identify whether SHP levels are associated with cancer immunology and treatment outcomes in rectal cancer. SHP expression was analyzed via gene set enrichment analysis and the OncoLnc database. In addition, immunohistochemistry and reverse transcription-quantitative PCR analyses were performed on the tissues of patients with locally advanced rectal cancer, and the associations of SHP expression with the clinicopathological and hematological features or treatment response to preoperative radiochemotherapy (pRCT) were analyzed retrospectively. Furthermore, the present study investigated whether SHP expression correlated with immune infiltration levels and immune checkpoint molecules in rectal cancer. The results revealed that low SHP mRNA expression was significantly associated with an inflammatory response and poor prognosis. The nuclear expression of SHP was associated with clinical N stage, neutrophil count, lymphocyte count, neutrophil-lymphocyte ratio and complete pathologic response following pRCT. The low nuclear expression of SHP was associated with poor overall and distant metastasis-free survival (DMFS). In multivariate analysis, the low nuclear expression of SHP was identified as a significant independent prognostic factor for DMFS and a marginally significant prognostic factor for overall survival in rectal cancer. Furthermore, patients with low SHP expression exhibited higher neutrophil and CD8+ T cell infiltration levels and higher PD-L1 expression in rectal adenocarcinoma. These results indicate that SHP may act as an anti-inflammatory mediator via the regulation of systemic and local immune responses in rectal cancer. Moreover, SHP might be useful a potential marker or therapeutic target in rectal cancer.
Collapse
Affiliation(s)
- Sup Kim
- Department of Radiation Oncology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Mina Joo
- Department of Pathology and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Min-Kyung Yeo
- Department of Pathology and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Moon-June Cho
- Department of Radiation Oncology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jun-Sang Kim
- Department of Radiation Oncology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jin-Man Kim
- Department of Pathology and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
12
|
Zhu R, Tu Y, Chang J, Xu H, Li JC, Liu W, Do AD, Zhang Y, Wang J, Li B. The Orphan Nuclear Receptor Gene NR0B2 Is a Favorite Prognosis Factor Modulated by Multiple Cellular Signal Pathways in Human Liver Cancers. Front Oncol 2021; 11:691199. [PMID: 34055653 PMCID: PMC8162207 DOI: 10.3389/fonc.2021.691199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Liver cancer is a leading cause of cancer death worldwide, and novel prognostic factor is needed for early detection and therapeutic responsiveness monitoring. The orphan nuclear receptor NR0B2 was reported to suppress liver cancer development in a mouse model, and its expression levels were reduced in liver cancer tissues and cell lines due to hypermethylation within its promoter region. However, it is not clear if NR0B2 expression is associated with cancer survival or disease progression and how NR0B2 gene expression is regulated at the molecular level. METHODS Multiple cancer databases were utilized to explore NR0B2 gene expression profiles crossing a variety of human cancers, including liver cancers, on several publicly assessable bioinformatics platforms. NR0B2 gene expression with or without kinase inhibitor treatment was analyzed using the qPCR technique, and NR0B2 protein expression was assessed in western blot assays. Two human hepatocellular carcinoma cell lines HepG2 and Huh7, were used in these experiments. NR0B2 gene activation was evaluated using NR0B2 promoter-driven luciferase reporter assays. RESULTS NR0B2 gene is predominantly expressed in liver tissue crossing human major organs or tissues, but it is significantly downregulated in liver cancers. NR0B2 expression is mostly downregulated in most common cancers but also upregulated in a few intestinal cancers. NR0B2 gene expression significantly correlated with patient overall survival status in multiple human malignancies, including lung, kidney, breast, urinary bladder, thyroid, colon, and head-neck cancers, as well as liposarcoma and B-cell lymphoma. In liver cancer patients, higher NR0B2 expression is associated with favorite relapse-free and progression-free survival, especially in Asian male patients with viral infection history. In addition, NR0B2 expression negatively correlated with immune infiltration and PIK3CA and PIK3CG gene expression in liver cancer tissues. In HepG2 and Huh7 cells, NR0B2 expression at the transcription level was drastically reduced after MAPK inhibition but was significantly enhanced after PI3K inhibition. CONCLUSION NR0B2 gene expression is altered mainly in most human malignancies and significantly reduced in liver cancers. NR0B2 is a prognosis factor for patient survival in liver cancers. MAPK and PI3K oppositely modulate NR0B2 expression, and NR0B2 gene upregulation might serve as a therapeutic responsiveness factor in anti-PI3K therapy for liver cancer.
Collapse
Affiliation(s)
- Runzhi Zhu
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China,Zhejiang University Cancer Center, Hangzhou, China,Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States,*Correspondence: Runzhi Zhu, ; Benyi Li,
| | - Yanjie Tu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Jingxia Chang
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Haixia Xu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Jean C. Li
- Department of Pharmacology, Toxicology & Therapeutics, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Wang Liu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Ahn-Dao Do
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology & Therapeutics, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Jinhu Wang
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China,Zhejiang University Cancer Center, Hangzhou, China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States,*Correspondence: Runzhi Zhu, ; Benyi Li,
| |
Collapse
|
13
|
Alatshan A, Benkő S. Nuclear Receptors as Multiple Regulators of NLRP3 Inflammasome Function. Front Immunol 2021; 12:630569. [PMID: 33717162 PMCID: PMC7952630 DOI: 10.3389/fimmu.2021.630569] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Nuclear receptors are important bridges between lipid signaling molecules and transcription responses. Beside their role in several developmental and physiological processes, many of these receptors have been shown to regulate and determine the fate of immune cells, and the outcome of immune responses under physiological and pathological conditions. While NLRP3 inflammasome is assumed as key regulator for innate and adaptive immune responses, and has been associated with various pathological events, the precise impact of the nuclear receptors on the function of inflammasome is hardly investigated. A wide variety of factors and conditions have been identified as modulators of NLRP3 inflammasome activation, and at the same time, many of the nuclear receptors are known to regulate, and interact with these factors, including cellular metabolism and various signaling pathways. Nuclear receptors are in the focus of many researches, as these receptors are easy to manipulate by lipid soluble molecules. Importantly, nuclear receptors mediate regulatory mechanisms at multiple levels: not only at transcription level, but also in the cytosol via non-genomic effects. Their importance is also reflected by the numerous approved drugs that have been developed in the past decade to specifically target nuclear receptors subtypes. Researches aiming to delineate mechanisms that regulate NLRP3 inflammasome activation draw a wide range of attention due to their unquestionable importance in infectious and sterile inflammatory conditions. In this review, we provide an overview of current reports and knowledge about NLRP3 inflammasome regulation from the perspective of nuclear receptors, in order to bring new insight to the potentially therapeutic aspect in targeting NLRP3 inflammasome and NLRP3 inflammasome-associated diseases.
Collapse
Affiliation(s)
- Ahmad Alatshan
- Departments of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilvia Benkő
- Departments of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
14
|
Kumar V. Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol 2020; 89:107087. [PMID: 33075714 PMCID: PMC7550173 DOI: 10.1016/j.intimp.2020.107087] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Sepsis infects more than 48.9 million people world-wide, with 19.7 million deaths. Cytokine storm plays a significant role in sepsis, along with severe COVID-19. TLR signaling pathways plays a crucial role in generating the cytokine storm. Endogenous negative regulators of TLR signaling are crucial to regulate cytokine storm.
Cytokine storm generates during various systemic acute infections, including sepsis and current pandemic called COVID-19 (severe) causing devastating inflammatory conditions, which include multi-organ failure or multi-organ dysfunction syndrome (MODS) and death of the patient. Toll-like receptors (TLRs) are one of the major pattern recognition receptors (PRRs) expressed by immune cells as well as non-immune cells, including neurons, which play a crucial role in generating cytokine storm. They recognize microbial-associated molecular patterns (MAMPs, expressed by pathogens) and damage or death-associate molecular patterns (DAMPs; released and/expressed by damaged/killed host cells). Upon recognition of MAMPs and DAMPs, TLRs activate downstream signaling pathways releasing several pro-inflammatory mediators [cytokines, chemokines, interferons, and reactive oxygen and nitrogen species (ROS or RNS)], which cause acute inflammation meant to control the pathogen and repair the damage. Induction of an exaggerated response due to genetic makeup of the host and/or persistence of the pathogen due to its evasion mechanisms may lead to severe systemic inflammatory condition called sepsis in response to the generation of cytokine storm and organ dysfunction. The activation of TLR-induced inflammatory response is hardwired to the induction of several negative feedback mechanisms that come into play to conclude the response and maintain immune homeostasis. This state-of-the-art review describes the importance of TLR signaling in the onset of the sepsis-associated cytokine storm and discusses various host-derived endogenous negative regulators of TLR signaling pathways. The subject is very important as there is a vast array of genes and processes implicated in these negative feedback mechanisms. These molecules and mechanisms can be targeted for developing novel therapeutic drugs for cytokine storm-associated diseases, including sepsis, severe COVID-19, and other inflammatory diseases, where TLR-signaling plays a significant role.
Collapse
Affiliation(s)
- V Kumar
- Children Health Clinical Unit, Faculty of Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
15
|
Kim JH, Yoon JE, Nikapitiya C, Kim TH, Uddin MB, Lee HC, Kim YH, Hwang JH, Chathuranga K, Chathuranga WAG, Choi HS, Kim CJ, Jung JU, Lee CH, Lee JS. Small Heterodimer Partner Controls the Virus-Mediated Antiviral Immune Response by Targeting CREB-Binding Protein in the Nucleus. Cell Rep 2020; 27:2105-2118.e5. [PMID: 31091449 DOI: 10.1016/j.celrep.2019.04.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/01/2019] [Accepted: 04/15/2019] [Indexed: 01/16/2023] Open
Abstract
Small heterodimer partner (SHP) is an orphan nuclear receptor that acts as a transcriptional co-repressor by interacting with nuclear receptors and transcription factors. Although SHP plays a negative regulatory function in various signaling pathways, its role in virus infection has not been studied. Here, we report that SHP is a potent negative regulator of the virus-mediated type I IFN signaling that maintains homeostasis within the antiviral innate immune system. Upon virus infection, SHP interacts specifically with CREB-binding protein (CBP) in the nucleus, thereby obstructing CBP/β-catenin interaction competitively. Consequently, SHP-deficient cells enhance antiviral responses, including transcription of the type I IFN gene, upon virus infection. Furthermore, SHP-deficient mice show higher levels of IFN production and are more resistant to influenza A virus infection. Our results suggest that SHP is a nuclear regulator that blocks transcription of the type I IFN gene to inhibit excessive innate immune responses.
Collapse
Affiliation(s)
- Jae-Hoon Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea; Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Ji-Eun Yoon
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Chamilani Nikapitiya
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Tae-Hwan Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Md Bashir Uddin
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea; Faculty of Veterinary & Animal Science, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Hyun-Cheol Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jung Hwan Hwang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - W A Gayan Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Chul-Joong Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
16
|
Jin D, Lu T, Ni M, Wang H, Zhang J, Zhong C, Shen C, Hao J, Busuttil RW, Kupiec-Weglinski JW, Zhang J, Xu N, Zhai Y. Farnesoid X Receptor Activation Protects Liver From Ischemia/Reperfusion Injury by Up-Regulating Small Heterodimer Partner in Kupffer Cells. Hepatol Commun 2020; 4:540-554. [PMID: 32258949 PMCID: PMC7109340 DOI: 10.1002/hep4.1478] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
Farnesoid X receptor (FXR) is the nuclear receptor of bile acids and is involved in innate immune regulation. FXR agonists have been shown to protect multiple organs from inflammatory tissue injuries. Because liver expresses high levels of FXR, we explored the potential therapeutic benefits and underlying mechanisms of pharmacologic FXR activation in a murine model of partial liver warm ischemia. Pretreatment of mice with FXR agonist 3-(2,6-dichlorophenyl)-4-(3'-carboxy-2-chlorostilben-4-yl)oxymethyl-5-isopropylisoxazole (GW4064) attenuated liver ischemia/reperfusion injuries (IRIs) in wild-type but not FXR knockout mice. Posttreatment with GW4064 facilitated liver recovery from IRI. Mechanistically, Kupffer cells (KCs) expressed much higher levels of FXR than bone marrow-derived macrophages (BMMs). Pretreatment of KCs but not BMMs with GW4064 resulted in lower tumor necrosis factor α but higher interleukin-10 expressions following toll-like receptor stimulation. FXR-targeted gene small heterodimer partner (SHP) was critical for the regulation of KC response by GW4064. In vivo, the depletion of KCs but not cluster of differentiation (CD) 11b+ cells or knockdown of SHP diminished the immune regulatory effect of GW4064 in liver IRI. Thus, FXR activation protects liver from IRI by up-regulating SHP in KCs to inhibit the liver proinflammatory response.
Collapse
Affiliation(s)
- Dan Jin
- Department of Surgery David Geffen School of Medicine University of California Los Angles Los Angeles CA.,Department of Obstetrics and Gynecology and Shanghai Key Laboratory of Gynecologic Oncology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Tianfei Lu
- Department of Hepatic Surgery and Liver Transplantation Center Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Ming Ni
- Department of Surgery David Geffen School of Medicine University of California Los Angles Los Angeles CA
| | - Han Wang
- Department of Surgery David Geffen School of Medicine University of California Los Angles Los Angeles CA
| | - Jiang Zhang
- Department of Hepatic Surgery and Liver Transplantation Center Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Chenpeng Zhong
- Department of Hepatic Surgery and Liver Transplantation Center Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Chuan Shen
- Department of Hepatic Surgery and Liver Transplantation Center Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Jun Hao
- Department of Hepatic Surgery and Liver Transplantation Center Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Ronald W Busuttil
- Department of Surgery David Geffen School of Medicine University of California Los Angles Los Angeles CA
| | - Jerzy W Kupiec-Weglinski
- Department of Surgery David Geffen School of Medicine University of California Los Angles Los Angeles CA
| | - Jianjun Zhang
- Department of Hepatic Surgery and Liver Transplantation Center Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Ning Xu
- Department of Hepatic Surgery and Liver Transplantation Center Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Yuan Zhai
- Department of Surgery David Geffen School of Medicine University of California Los Angles Los Angeles CA
| |
Collapse
|
17
|
Host Transcription Factors in Hepatitis B Virus RNA Synthesis. Viruses 2020; 12:v12020160. [PMID: 32019103 PMCID: PMC7077322 DOI: 10.3390/v12020160] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
The hepatitis B virus (HBV) chronically infects over 250 million people worldwide and is one of the leading causes of liver cancer and hepatocellular carcinoma. HBV persistence is due in part to the highly stable HBV minichromosome or HBV covalently closed circular DNA (cccDNA) that resides in the nucleus. As HBV replication requires the help of host transcription factors to replicate, focusing on host protein–HBV genome interactions may reveal insights into new drug targets against cccDNA. The structural details on such complexes, however, remain poorly defined. In this review, the current literature regarding host transcription factors’ interactions with HBV cccDNA is discussed.
Collapse
|
18
|
Li X, Liu R, Huang Z, Gurley EC, Wang X, Wang J, He H, Yang H, Lai G, Zhang L, Bajaj JS, White M, Pandak WM, Hylemon PB, Zhou H. Cholangiocyte-derived exosomal long noncoding RNA H19 promotes cholestatic liver injury in mouse and humans. Hepatology 2018; 68:599-615. [PMID: 29425397 PMCID: PMC6085159 DOI: 10.1002/hep.29838] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/28/2018] [Accepted: 02/07/2018] [Indexed: 12/12/2022]
Abstract
UNLABELLED Cholestatic liver injury is an important clinical problem with limited understanding of disease pathologies. Exosomes are small extracellular vesicles released by a variety of cells, including cholangiocytes. Exosome-mediated cell-cell communication can modulate various cellular functions by transferring a variety of intracellular components to target cells. Our recent studies indicate that the long noncoding RNA (lncRNA), H19, is mainly expressed in cholangiocytes, and its aberrant expression is associated with significant down-regulation of small heterodimer partner (SHP) in hepatocytes and cholestatic liver injury in multidrug resistance 2 knockout (Mdr2-/- ) mice. However, how cholangiocyte-derived H19 suppresses SHP in hepatocytes remains unknown. Here, we report that cholangiocyte-derived exosomes mediate transfer of H19 into hepatocytes and promote cholestatic injury. Hepatic H19 level is correlated with severity of cholestatic injury in both fibrotic mouse models, including Mdr2-/- mice, a well-characterized model of primary sclerosing cholangitis (PSC), or CCl4 -induced cholestatic liver injury mouse models, and human PSC patients. Moreover, serum exosomal-H19 level is gradually up-regulated during disease progression in Mdr2-/- mice and patients with cirrhosis. H19-carrying exosomes from the primary cholangiocytes of wild-type (WT) mice suppress SHP expression in hepatocytes, but not the exosomes from the cholangiocytes of H19-/- mice. Furthermore, overexpression of H19 significantly suppressed SHP expression at both transcriptional and posttranscriptional levels. Importantly, transplant of H19-carrying serum exosomes of old fibrotic Mdr2-/- mice significantly promoted liver fibrosis (LF) in young Mdr2-/- mice. CONCLUSION Cholangiocyte-derived exosomal-H19 plays a critical role in cholestatic liver injury. Serum exosomal H19 represents a noninvasive biomarker and potential therapeutic target for cholestatic diseases. (Hepatology 2018).
Collapse
Affiliation(s)
- Xiaojiaoyang Li
- Department of Microbiology and Immunology and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Runping Liu
- Department of Microbiology and Immunology and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Zhiming Huang
- Department of Gastroenterology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Emily C. Gurley
- Department of Microbiology and Immunology and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, USA,Division of Gastroenterology, Hepatology and Nutrition and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University
| | - Xuan Wang
- Department of Microbiology and Immunology and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Juan Wang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Hongliang He
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Guanhua Lai
- Department of Pathology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Luyong Zhang
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University
| | - Melanie White
- Division of Gastroenterology, Hepatology and Nutrition and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University
| | - William M Pandak
- Division of Gastroenterology, Hepatology and Nutrition and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, USA,Department of Gastroenterology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,Address correspondence to: Huiping Zhou, Ph.D., Department of Microbiology & Immunology, Virginia Commonwealth University, McGuire Veterans Affairs Medical Center, 1217 East Marshall Street, MSB#533, Richmond, VA, 23298-0678, USA, Tel: 804-828-6817; Fax: 804-828-0676,
| |
Collapse
|
19
|
Zhou H, Wang H, Ni M, Yue S, Xia Y, Busuttil RW, Kupiec-Weglinski JW, Lu L, Wang X, Zhai Y. Glycogen synthase kinase 3β promotes liver innate immune activation by restraining AMP-activated protein kinase activation. J Hepatol 2018; 69:99-109. [PMID: 29452207 PMCID: PMC6291010 DOI: 10.1016/j.jhep.2018.01.036] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/08/2018] [Accepted: 01/30/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Glycogen synthase kinase 3β (Gsk3β [Gsk3b]) is a ubiquitously expressed kinase with distinctive functions in different types of cells. Although its roles in regulating innate immune activation and ischaemia and reperfusion injuries (IRIs) have been well documented, the underlying mechanisms remain ambiguous, in part because of the lack of cell-specific tools in vivo. METHODS We created a myeloid-specific Gsk3b knockout (KO) strain to study the function of Gsk3β in macrophages in a murine liver partial warm ischaemia model. RESULTS Compared with controls, myeloid Gsk3b KO mice were protected from IRI, with diminished proinflammatory but enhanced anti-inflammatory immune responses in livers. In bone marrow-derived macrophages, Gsk3β deficiency resulted in an early reduction of Tnf gene transcription but sustained increase of Il10 gene transcription on Toll-like receptor 4 stimulation in vitro. These effects were associated with enhanced AMP-activated protein kinase (AMPK) activation, which led to an accelerated and higher level of induction of the novel innate immune negative regulator small heterodimer partner (SHP [Nr0b2]). The regulatory function of Gsk3β on AMPK activation and SHP induction was confirmed in wild-type bone marrow-derived macrophages with a Gsk3 inhibitor. Furthermore, we found that this immune regulatory mechanism was independent of Gsk3β Ser9 phosphorylation and the phosphoinositide 3-kinase-Akt signalling pathway. In vivo, myeloid Gsk3β deficiency facilitated SHP upregulation by ischaemia-reperfusion in liver macrophages. Treatment of Gsk3b KO mice with either AMPK inhibitor or SHP small interfering RNA before the onset of liver ischaemia restored liver proinflammatory immune activation and IRI in these otherwise protected hosts. Additionally, pharmacological activation of AMPK protected wild-type mice from liver IRI, with reduced proinflammatory immune activation. Inhibition of the AMPK-SHP pathway by liver ischaemia was demonstrated in tumour resection patients. CONCLUSIONS Gsk3β promotes innate proinflammatory immune activation by restraining AMPK activation. LAY SUMMARY Glycogen synthase kinase 3β promotes macrophage inflammatory activation by inhibiting the immune regulatory signalling of AMP-activated protein kinase and the induction of small heterodimer partner. Therefore, therapeutic targeting of glycogen synthase kinase 3β enhances innate immune regulation and protects liver from ischaemia and reperfusion injury.
Collapse
Affiliation(s)
- Haoming Zhou
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Han Wang
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ming Ni
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shi Yue
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yongxiang Xia
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ronald W Busuttil
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Jerzy W Kupiec-Weglinski
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Ling Lu
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xuehao Wang
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Yuan Zhai
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Affiliation(s)
- Won Young Lee
- Department of Endocrinology and Metabolism, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
21
|
Jin HS, Kim TS, Jo EK. Emerging roles of orphan nuclear receptors in regulation of innate immunity. Arch Pharm Res 2016; 39:1491-1502. [PMID: 27699647 DOI: 10.1007/s12272-016-0841-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/23/2016] [Indexed: 01/25/2023]
Abstract
Innate immunity constitutes the first line of defense against pathogenic and dangerous insults. However, it is a double-edged sword, as it functions in both clearance of infection and inflammatory damage. It is therefore important that innate immune responses are tightly controlled to prevent harmful excessive inflammation. Nuclear receptors (NRs) are a family of transcription factors that play critical roles in various physiological responses. Orphan NRs are a subset of NRs for which the ligands and functions are unclear. Accumulating evidence has revealed that orphan NRs play essential roles in innate immune responses to prevent pathogenic inflammatory responses and to enhance antimicrobial host defenses. In this review, we describe current knowledge on the roles and mechanisms of orphan NRs in the regulation of innate immune responses. Discovery of new functions of orphan NRs would facilitate development of novel preventive and therapeutic strategies against human inflammatory diseases.
Collapse
Affiliation(s)
- Hyo Sun Jin
- Department of Microbiology, Department of Medical Science, Chungnam National University School of Medicine, 6 Munhwa-dong, Jungku, Daejeon, 301-747, South Korea
| | - Tae Sung Kim
- Department of Microbiology, Department of Medical Science, Chungnam National University School of Medicine, 6 Munhwa-dong, Jungku, Daejeon, 301-747, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Department of Medical Science, Chungnam National University School of Medicine, 6 Munhwa-dong, Jungku, Daejeon, 301-747, South Korea.
| |
Collapse
|