1
|
Abma E, Daminet S, Smets P, Ni Y, de Rooster H. Combretastatin A4-phosphate and its potential in veterinary oncology: a review. Vet Comp Oncol 2015; 15:184-193. [PMID: 25988493 DOI: 10.1111/vco.12150] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 03/17/2015] [Accepted: 03/30/2015] [Indexed: 12/27/2022]
Abstract
For many years, research on anticancer therapy has focussed almost exclusively on targeting cancer cells directly, to selectively kill them or restrict their growth. But limited advances in this strategy have led researchers to shift their attention to other potential targets. Active research is now on-going on targeting tumour stroma. Vascular disrupting agents (VDAs) appear a promising class of anticancer drugs that are currently under investigation as a sole or combined therapy in human cancer patients. This article will briefly touch on the history and biology of combretastatin A4-phosphate (CA4P) as a typical example of VDAs and will concentrate on the side effects that can be expected when used in veterinary patients. Particularly, the pathogenesis of these side effects and how they may be prevented and/or treated will be discussed. The purpose of this article is to illustrate the potentials of CA4P as anticancer therapy in veterinary oncology patients.
Collapse
Affiliation(s)
- E Abma
- Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - S Daminet
- Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - P Smets
- Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Y Ni
- Department of Radiology, KU Leuven, Leuven, Belgium
| | - H de Rooster
- Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
2
|
Tran WT, Iradji S, Sofroni E, Giles A, Eddy D, Czarnota GJ. Microbubble and ultrasound radioenhancement of bladder cancer. Br J Cancer 2012; 107:469-76. [PMID: 22790798 PMCID: PMC3405216 DOI: 10.1038/bjc.2012.279] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/29/2012] [Accepted: 05/30/2012] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Tumour vasculature is an important component of tumour growth and survival. Recent evidence indicates tumour vasculature also has an important role in tumour radiation response. In this study, we investigated ultrasound and microbubbles to enhance the effects of radiation. METHODS Human bladder cancer HT-1376 xenografts in severe combined immuno-deficient mice were used. Treatments consisted of no, low and high concentrations of microbubbles and radiation doses of 0, 2 and 8 Gy in short-term and longitudinal studies. Acute response was assessed 24 h after treatment and longitudinal studies monitored tumour response weekly up to 28 days using power Doppler ultrasound imaging for a total of 9 conditions (n=90 animals). RESULTS Quantitative analysis of ultrasound data revealed reduced blood flow with ultrasound-microbubble treatments alone and further when combined with radiation. Tumours treated with microbubbles and radiation revealed enhanced cell death, vascular normalisation and areas of fibrosis. Longitudinal data demonstrated a reduced normalised vascular index and increased tumour cell death in both low and high microbubble concentrations with radiation. CONCLUSION Our study demonstrated that ultrasound-mediated microbubble exposure can enhance radiation effects in tumours, and can lead to enhanced tumour cell death.
Collapse
Affiliation(s)
- W T Tran
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Department of Imaging Research, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, Canada
- Department of Radiotherapy and Oncology, Sheffield Hallam University, Howard Street, Sheffield, South Yorkshire S1 1WB, UK
| | - S Iradji
- Department of Imaging Research, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, Canada
| | - E Sofroni
- Department of Imaging Research, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, Canada
| | - A Giles
- Department of Imaging Research, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, Canada
| | - D Eddy
- Department of Radiotherapy and Oncology, Sheffield Hallam University, Howard Street, Sheffield, South Yorkshire S1 1WB, UK
| | - G J Czarnota
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Department of Imaging Research, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Dougherty ST, Walker SE, Davis PD, Dougherty GJ. The Novel Vascular Disrupting Agent ANG501 Induces Cell Cycle Arrest and Enhances Endothelial Cell Sensitivity to Radiation. CANCER GROWTH AND METASTASIS 2009. [DOI: 10.4137/cgm.s2596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The efficacy of approaches in which vascular disrupting agents (VDA) are used in combination with conventional chemotherapy and/or radiation therapy in the treatment of cancer might be improved if there were a better understanding of the cellular and molecular changes induced in normal and malignant cells as a result of VD A exposure. Toward this goal, murine endothelial cells were treated in vitro with ANG501, a novel stilbene VDA developed in our laboratory, and alterations in gene expression determined by genome-wide microarray analysis and subsequently confirmed by Western blot analysis. Among the genes that were shown to be induced upon brief exposure to non-cytotoxic doses of ANG501 were several involved in the control of cell cycle progression and apoptosis, including p21Wafl and the heat shock/stress proteins hsp25, hsp70 and anti-B-crystallin. Reflecting such induction, functional studies confirmed that normal cell cycling is temporarily inhibited following treatment with ANG501 such that the majority of cells accumulate at the radiation-sensitive G2/M phase of the cell cycle at 6 hr. The effects were transient and by 24 hr normal cell cycling had largely resumed. Combination experiments confirmed that endothelial cells treated 6 hr previously with ANG501 were more readily killed by radiation. Importantly, significant effects were evident at clinically relevant radiation doses. Taken together these findings emphasize the need to consider the radiosensitizing activity of VD As when developing therapies in which these promising compounds are used in combination with radiation.
Collapse
Affiliation(s)
- Shona T. Dougherty
- Department of Radiation Oncology, University of Arizona, Tucson, AZ, U.S.A
| | - Sean E. Walker
- Department of Radiation Oncology, University of Arizona, Tucson, AZ, U.S.A
| | | | - Graeme J. Dougherty
- Department of Radiation Oncology, University of Arizona, Tucson, AZ, U.S.A
- Angiogene Pharmaceuticals Ltd., Oxford, United Kingdom
| |
Collapse
|
4
|
He J, Luster TA, Thorpe PE. Radiation-enhanced vascular targeting of human lung cancers in mice with a monoclonal antibody that binds anionic phospholipids. Clin Cancer Res 2007; 13:5211-8. [PMID: 17785577 DOI: 10.1158/1078-0432.ccr-07-0793] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE New treatment strategies aimed at damaging tumor vasculature could potentially improve tumor response to radiation therapy. We recently showed that anionic phospholipids, principally phosphatidylserine, are specifically exposed on the luminal surface of tumor blood vessels. Here we tested the hypothesis that radiation therapy can increase phosphatidylserine exposure on lung tumor vasculature, thereby enhancing the antitumor properties of the anti-phosphatidylserine antibody 2aG4. EXPERIMENTAL DESIGN The therapeutic efficacy of radiation therapy plus 2aG4 was tested in nude mice bearing radiation-resistant A549 human lung tumors. Radiation-induced phosphatidylserine exposure on endothelial cells and A549 tumor cells was analyzed by immunofluoresence staining. The mechanism of the enhanced antitumor effect was examined by histology and antibody-dependent cell-mediated cytotoxicity experiments. RESULTS Focal irradiation of A549 human lung cancer xenografts increased the percentage of tumor vessels with exposed phosphatidylserine from 4% to 26%. Treatment of mice bearing A549 tumors with 2aG4 plus focal radiation therapy inhibited tumor growth by 80% and was superior to radiation therapy or 2aG4 alone (P < 0.01). Combination therapy reduced blood vessel density and enhanced monocyte infiltration into the tumor mass beyond that observed with individual treatments. In vitro, 2aG4 enhanced the ability of macrophages to kill endothelial cells with exposed phosphatidylserine in an Fc'-dependent manner. CONCLUSION These results suggest that 2aG4 enhances the antitumor effects of radiation therapy by increasing antibody-dependent cell-mediated cytotoxicity toward tumor vessels with externalized phosphatidylserine. Bavituximab, a chimeric version of 2aG4 in clinical trials, has the potential to enhance the therapeutic efficacy of radiation therapy in lung cancer patients.
Collapse
Affiliation(s)
- Jin He
- Simmons Comprehensive Cancer Center, Hamon Center for Therapeutic Oncology Research, the University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | | | |
Collapse
|
5
|
Li Y, Lee HJ, Corn RM. Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging. Anal Chem 2007; 79:1082-8. [PMID: 17263339 PMCID: PMC2515860 DOI: 10.1021/ac061849m] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A methodology for the detection of protein biomarkers at picomolar concentrations that utilizes surface plasmon resonance imaging (SPRI) measurements of RNA aptamer microarrays is developed. The adsorption of proteins onto the RNA microarray is detected by the formation of a surface aptamer-protein-antibody complex. The SPRI response signal is then amplified using a localized precipitation reaction catalyzed by the enzyme horseradish peroxidase that is conjugated to the antibody. This enzymatically amplified SPRI methodology is first characterized by the detection of human thrombin at a concentration of 500 fM; the appropriate thrombin aptamer for the sandwich assay is identified from a microarray of three potential thrombin aptamer candidates. The SPRI method is then used to detect the protein vascular endothelial growth factor (VEGF) at a biologically relevant concentration of 1 pM. VEGF is a signaling protein that has been used as a serum biomarker for rheumatoid arthritis, breast cancer, lung cancer, and colorectal cancer and is also associated with age-related macular degeneration.
Collapse
Affiliation(s)
- Yuan Li
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697, USA
| | - Hye Jin Lee
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697, USA
| | - Robert M. Corn
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697, USA
| |
Collapse
|
6
|
Tejada ML, Yu L, Dong J, Jung K, Meng G, Peale FV, Frantz GD, Hall L, Liang X, Gerber HP, Ferrara N. Tumor-driven paracrine platelet-derived growth factor receptor alpha signaling is a key determinant of stromal cell recruitment in a model of human lung carcinoma. Clin Cancer Res 2006; 12:2676-88. [PMID: 16675559 DOI: 10.1158/1078-0432.ccr-05-1770] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Activated fibroblasts are thought to play important roles in the progression of many solid tumors, but little is known about the mechanisms responsible for the recruitment of fibroblasts in tumors. Using several methods, we identified platelet-derived growth factor A (PDGFA) as the major fibroblast chemoattractant and mitogen from conditioned medium generated by the Calu-6 lung carcinoma cell line. In addition, we showed that Calu-6 tumors express significant levels of PDGFC, and that the levels of expression of these two PDGFRalpha ligands correlate strongly with the degree of stromal fibroblast infiltration into the tumor mass. The most intense expression of PDGFRalpha was observed in fibroblasts in the tumor outer rim. We subsequently showed that disrupting PDGFRalpha-mediated signaling results in significant inhibition of tumor growth in vivo. Furthermore, analysis of a compendium of microarray data revealed significant expression of PDGFA, PDGFC, and PDGFRalpha in human lung tumors. We propose that therapies targeting this stromal cell type may be effective in treating certain types of solid tumors.
Collapse
Affiliation(s)
- Max L Tejada
- Department of Molecular Oncology, Pathology, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|