1
|
Guo W, Banerjee AK, Feng H, Ng WL, Wu H, Li W, Yuan Y, Huang Y. Recent allopolyploidization and transcriptomic asymmetry in the mangrove shrub Acanthus tetraploideus. BMC Genomics 2025; 26:438. [PMID: 40316933 PMCID: PMC12046671 DOI: 10.1186/s12864-025-11557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/01/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Mangrove species are vital to the ecosystems of tropical and subtropical coastlines worldwide. Despite the underexplored role of polyploidization in these species, deciphering its impact on gene expression is essential for understanding the connection between polyploidization and species diversification. Our initial investigation, integrating multiple nuclear loci with morphological and cytological data, indicates that the tetraploid Acanthus tetraploideus likely originated from allopolyploidization events involving the diploid species A. ilicifolius and A. ebracteatus. Expanding on these insights, this study utilizes genome-wide evidence to confirm the divergence patterns among extant Acanthus mangrove diploids and to investigate the origin and transcriptome asymmetry of the tetraploid A. tetraploideus. RESULTS Phylogenetic analysis and molecular dating revealed a closer evolutionary relationship between A. ebracteatus and A. volubilis than between A. ebracteatus and A. ilicifolius, diverged approximately 6.92 Mya and 9.59 Mya, respectively. Analysis of individual whole transcriptomes revealed that homeologous sequences in A. tetraploideus were preferentially clustered with A. ilicifolius and A. ebracteatus, rather than A. volubilis, in a roughly 1:1 ratio. The high similarity in nucleotide sequences and homologous polymorphisms between the tetraploid A. tetraploideus and its two parental diploids, A. ebracteatus and A. ilicifolius, supports the hypothesis of a recent allopolyploid origin for A. tetraploideus. Estimation of homeolog expression revealed a general attenuation of homeolog expression divergence in A. tetraploideus compared to the in silico parental mix, with 22.87% and 67.66% of genes exhibiting biased homeolog expression, respectively. Further investigation identified remarkable retention of parental expression dominance in the tetraploid, suggesting that parental genetic legacy substantially influences the reconfiguration of homeolog expression in the derived tetraploid. Meanwhile, the observation of numerous novel expression patterns between the two homeolog sets suggests that the transcriptome shock (i.e., the transcriptomic changes induced by interspecific hybridization) associated with allopolyploidization and subsequent post-polyploid evolutionary processes also significantly impact transcriptome asymmetry in A. tetraploideus. While no strong evidence directly links transcriptomic changes to specific adaptive traits, the patterns in unbiased and novelly biased genes in A. tetraploideus suggest adaptations to stable polyploidy. Unbiased genes involved in fundamental cellular processes and novelly biased genes related to chromosome dynamics and cell cycle regulation may stabilize polyploid genomes, supporting the species' establishment and long-term success. These findings underscore the role of transcriptomic stability in polyploid adaptation. CONCLUSIONS Our study sheds light on the evolutionary origins and the intricate transcriptional reconfiguration of the tetraploid A. tetraploideus. These insights significantly enhance our comprehension of the pivotal role that polyploidization plays in speciation and adaptative evolution of mangrove species.
Collapse
Affiliation(s)
- Wuxia Guo
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, 368 Jinwan Road, Zhuhai, Guangdong, 519041, People's Republic of China.
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China.
| | - Achyut Kumar Banerjee
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
- School of Arts and Sciences, Azim Premji University, Bhopal, Madhya Pradesh, 462010, India
| | - Hui Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Wei Lun Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, 43900, Malaysia
| | - Haidan Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Weixi Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Yang Yuan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Yelin Huang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China.
| |
Collapse
|
2
|
Benson CW, Sheltra MR, Maughan PJ, Jellen EN, Robbins MD, Bushman BS, Patterson EL, Hall ND, Huff DR. Homoeologous evolution of the allotetraploid genome of Poa annua L. BMC Genomics 2023; 24:350. [PMID: 37365554 DOI: 10.1186/s12864-023-09456-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Poa annua (annual bluegrass) is an allotetraploid turfgrass, an agronomically significant weed, and one of the most widely dispersed plant species on earth. Here, we report the chromosome-scale genome assemblies of P. annua's diploid progenitors, P. infirma and P. supina, and use multi-omic analyses spanning all three species to better understand P. annua's evolutionary novelty. RESULTS We find that the diploids diverged from their common ancestor 5.5 - 6.3 million years ago and hybridized to form P. annua ≤ 50,000 years ago. The diploid genomes are similar in chromosome structure and most notably distinguished by the divergent evolutionary histories of their transposable elements, leading to a 1.7 × difference in genome size. In allotetraploid P. annua, we find biased movement of retrotransposons from the larger (A) subgenome to the smaller (B) subgenome. We show that P. annua's B subgenome is preferentially accumulating genes and that its genes are more highly expressed. Whole-genome resequencing of several additional P. annua accessions revealed large-scale chromosomal rearrangements characterized by extensive TE-downsizing and evidence to support the Genome Balance Hypothesis. CONCLUSIONS The divergent evolutions of the diploid progenitors played a central role in conferring onto P. annua its remarkable phenotypic plasticity. We find that plant genes (guided by selection and drift) and transposable elements (mostly guided by host immunity) each respond to polyploidy in unique ways and that P. annua uses whole-genome duplication to purge highly parasitized heterochromatic sequences. The findings and genomic resources presented here will enable the development of homoeolog-specific markers for accelerated weed science and turfgrass breeding.
Collapse
Affiliation(s)
- Christopher W Benson
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA.
- Intercollegiate Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, USA.
| | - Matthew R Sheltra
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
- Intercollegiate Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, USA
| | - Peter J Maughan
- Department of Plant and Wildlife Sciences, Brigham Young University, Logan, UT, USA
| | - Eric N Jellen
- Department of Plant and Wildlife Sciences, Brigham Young University, Logan, UT, USA
| | | | | | - Eric L Patterson
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Nathan D Hall
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - David R Huff
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
3
|
Debat H, Garcia ML, Bejerman N. Expanding the Repertoire of the Plant-Infecting Ophioviruses through Metatranscriptomics Data. Viruses 2023; 15:v15040840. [PMID: 37112821 PMCID: PMC10144540 DOI: 10.3390/v15040840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Ophioviruses (genus Ophiovirus, family Aspiviridae) are plant-infecting viruses with non-enveloped, filamentous, naked nucleocapsid virions. Members of the genus Ophiovirus have a segmented single-stranded negative-sense RNA genome (ca. 11.3–12.5 kb), encompassing three or four linear segments. In total, these segments encode four to seven proteins in the sense and antisense orientation, both in the viral and complementary strands. The genus Ophiovirus includes seven species with viruses infecting both monocots and dicots, mostly trees, shrubs and some ornamentals. From a genomic perspective, as of today, there are complete genomes available for only four species. Here, by exploring large publicly available metatranscriptomics datasets, we report the identification and molecular characterization of 33 novel viruses with genetic and evolutionary cues of ophioviruses. Genetic distance and evolutionary insights suggest that all the detected viruses could correspond to members of novel species, which expand the current diversity of ophioviruses ca. 4.5-fold. The detected viruses increase the tentative host range of ophioviruses for the first time to mosses, liverwort and ferns. In addition, the viruses were linked to several Asteraceae, Orchidaceae and Poaceae crops/ornamental plants. Phylogenetic analyses showed a novel clade of mosses, liverworts and fern ophioviruses, characterized by long branches, suggesting that there is still plenty of unsampled hidden diversity within the genus. This study represents a significant expansion of the genomics of ophioviruses, opening the door to future works on the molecular and evolutionary peculiarity of this virus genus.
Collapse
Affiliation(s)
- Humberto Debat
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
- Unidad de Fitopatología y Modelización Agrícola, Consejo Nacional de Investigaciones Científicas y Técnicas, Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
- Correspondence: (H.D.); (N.B.)
| | - Maria Laura Garcia
- Instituto de Biotecnología y Biología Molecular (IBBM-CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 50 y 115, La Plata 1900, Argentina
| | - Nicolas Bejerman
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
- Unidad de Fitopatología y Modelización Agrícola, Consejo Nacional de Investigaciones Científicas y Técnicas, Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
- Correspondence: (H.D.); (N.B.)
| |
Collapse
|
4
|
Robbins MD, Bushman BS, Huff DR, Benson CW, Warnke SE, Maughan CA, Jellen EN, Johnson PG, Maughan PJ. Chromosome-Scale Genome Assembly and Annotation of Allotetraploid Annual Bluegrass (Poa annua L.). Genome Biol Evol 2022; 15:6961776. [PMID: 36574983 PMCID: PMC9838796 DOI: 10.1093/gbe/evac180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/28/2022] [Accepted: 12/10/2022] [Indexed: 12/29/2022] Open
Abstract
Poa annua L. is a globally distributed grass with economic and horticultural significance as a weed and as a turfgrass. This dual significance, and its phenotypic plasticity and ecological adaptation, have made P. annua an intriguing plant for genetic and evolutionary studies. Because of the lack of genomic resources and its allotetraploid (2n = 4x = 28) nature, a reference genome sequence would be a valuable asset to better understand the significance and polyploid origin of P. annua. Here we report a genome assembly with scaffolds representing the 14 haploid chromosomes that are 1.78 Gb in length with an N50 of 112 Mb and 96.7% of BUSCO orthologs. Seventy percent of the genome was identified as repetitive elements, 91.0% of which were Copia- or Gypsy-like long-terminal repeats. The genome was annotated with 76,420 genes spanning 13.3% of the 14 chromosomes. The two subgenomes originating from Poa infirma (Knuth) and Poa supina (Schrad) were sufficiently divergent to be distinguishable but syntenic in sequence and annotation with repetitive elements contributing to the expansion of the P. infirma subgenome.
Collapse
Affiliation(s)
| | | | - David R Huff
- Department of Plant Science, Pennsylvania State University, University Park
| | | | - Scott E Warnke
- USDA ARS, Floral and Nursery Plants Research, Beltsville, Maryland
| | - Chase A Maughan
- Plant and Wildlife Sciences Department, Brigham Young University, Provo, Utah
| | - Eric N Jellen
- Plant and Wildlife Sciences Department, Brigham Young University, Provo, Utah
| | - Paul G Johnson
- Plant, Soils, and Climate Department, Utah State University, Logan
| | - Peter J Maughan
- Plant and Wildlife Sciences Department, Brigham Young University, Provo, Utah
| |
Collapse
|
5
|
Vadlamani G, Sukhoverkov KV, Haywood J, Breese KJ, Fisher MF, Stubbs KA, Bond CS, Mylne JS. Crystal structure of Arabidopsis thaliana HPPK/DHPS, a bifunctional enzyme and target of the herbicide asulam. PLANT COMMUNICATIONS 2022; 3:100322. [PMID: 35605193 PMCID: PMC9284294 DOI: 10.1016/j.xplc.2022.100322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Herbicides are vital for modern agriculture, but their utility is threatened by genetic or metabolic resistance in weeds, as well as regulatory barriers. Of the known herbicide modes of action, 7,8-dihydropterin synthase (DHPS), which is involved in folate biosynthesis, is targeted by just one commercial herbicide, asulam. A mimic of the substrate para-aminobenzoic acid, asulam is chemically similar to sulfonamide antibiotics, and although it is still in widespread use, asulam has faced regulatory scrutiny. With an entire mode of action represented by just one commercial agrochemical, we sought to improve the understanding of its plant target. Here we solve a 2.3 Å resolution crystal structure for Arabidopsis thaliana DHPS that is conjoined to 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), and we reveal a strong structural conservation with bacterial counterparts at the sulfonamide-binding pocket of DHPS. We demonstrate that asulam and the antibiotic sulfamethoxazole have herbicidal as well as antibacterial activity, and we explore the structural basis of their potency by modeling these compounds in mitochondrial HPPK/DHPS. Our findings suggest limited opportunity for the rational design of plant selectivity from asulam and indicate that pharmacokinetic or delivery differences between plants and microbes might be the best ways to safeguard this mode of action.
Collapse
Affiliation(s)
- Grishma Vadlamani
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Kirill V Sukhoverkov
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Joel Haywood
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Karen J Breese
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Mark F Fisher
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Keith A Stubbs
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Joshua S Mylne
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia.
| |
Collapse
|
6
|
Laforest M, Soufiane B, Patterson EL, Vargas JJ, Boggess SL, Houston LC, Trigiano RN, Brosnan JT. Differential expression of genes associated with non-target site resistance in Poa annua with target site resistance to acetolactate synthase inhibitors. PEST MANAGEMENT SCIENCE 2021; 77:4993-5000. [PMID: 34218510 PMCID: PMC8518846 DOI: 10.1002/ps.6541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Poa annua is a pervasive grassy, self-pollinating, weed that has evolved resistance to 10 different herbicide modes-of-action, third most of all weed species. We investigated constitutive overexpression of genes associated with non-target site resistance (NTSR) in POAAN-R3 and the response of those genes when treated with trifloxysulfuron despite the biotype having a known target site mutation in acetolactate synthase (ALS). RESULTS Despite having an ALS target site mutation, POAAN-R3 still had a transcriptomic response to herbicide application that differed from a susceptible biotype. We observed differential expression of genes associated with transmembrane transport and oxidation-reduction activities, with differences being most pronounced prior to herbicide treatment. CONCLUSIONS In the P. annua biotype we studied with confirmed target site resistance to ALS inhibitors, we also observed constitutive expression of genes regulating transmembrane transport, as well as differential expression of genes associated with oxidative stress after treatment with trifloxysulfuron. This accumulation of mechanisms, in addition to the manifestation of target site resistance, could potentially increase the chance of survival when plants are challenged by different modes of action.
Collapse
Affiliation(s)
- Martin Laforest
- Saint‐Jean‐sur‐Richelieu R&D Centre, Agriculture and Agri‐Food CanadaSaint‐Jean‐sur‐RichelieuQCCanada
| | - Brahim Soufiane
- Saint‐Jean‐sur‐Richelieu R&D Centre, Agriculture and Agri‐Food CanadaSaint‐Jean‐sur‐RichelieuQCCanada
| | - Eric L Patterson
- Department of Plant, Soil, & Microbial SciencesMichigan State UniversityEast LansingMIUSA
| | - José J Vargas
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Sarah L Boggess
- Department of Entomology & Plant PathologyUniversity of TennesseeKnoxvilleTNUSA
| | - Logan C Houston
- Department of Entomology & Plant PathologyUniversity of TennesseeKnoxvilleTNUSA
| | - Robert N Trigiano
- Department of Entomology & Plant PathologyUniversity of TennesseeKnoxvilleTNUSA
| | - James T Brosnan
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| |
Collapse
|
7
|
Hall ND, Patel JD, McElroy JS, Goertzen LR. Detection of subgenome bias using an anchored syntenic approach in Eleusine coracana (finger millet). BMC Genomics 2021; 22:175. [PMID: 33706694 PMCID: PMC7953713 DOI: 10.1186/s12864-021-07447-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 02/16/2021] [Indexed: 01/15/2023] Open
Abstract
Background Finger millet (Eleusine coracana 2n = 4x = 36) is a hardy, nutraceutical, climate change tolerant, orphan crop that is consumed throughout eastern Africa and India. Its genome has been sequenced multiple times, but A and B subgenomes could not be separated because no published genome for E. indica existed. The classification of A and B subgenomes is important for understanding the evolution of this crop and provide a means to improve current and future breeding programs. Results We produced subgenome calls for 704 syntenic blocks and inferred A or B subgenomic identity for 59,377 genes 81% of the annotated genes. Phylogenetic analysis of a super matrix containing 455 genes shows high support for A and B divergence within the Eleusine genus. Synonymous substitution rates between A and B genes support A and B calls. The repetitive content on highly supported B contigs is higher than that on similar A contigs. Analysis of syntenic singletons showed evidence of biased fractionation showed a pattern of A genome dominance, with 61% A, 37% B and 1% unassigned, and was further supported by the pattern of loss observed among cyto-nuclear interacting genes. Conclusion The evidence of individual gene calls within each syntenic block, provides a powerful tool for inference for subgenome classification. Our results show the utility of a draft genome in resolving A and B subgenomes calls, primarily it allows for the proper polarization of A and B syntenic blocks. There have been multiple calls for the use of phylogenetic inference in subgenome classification, our use of synteny is a practical application in a system that has only one parental genome available. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07447-y.
Collapse
Affiliation(s)
- Nathan D Hall
- Department of Crop, Soil and Environmental Science Auburn University, Auburn, AL, USA.
| | - Jinesh D Patel
- Department of Crop, Soil and Environmental Science Auburn University, Auburn, AL, USA
| | - J Scott McElroy
- Department of Crop, Soil and Environmental Science Auburn University, Auburn, AL, USA
| | - Leslie R Goertzen
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
8
|
Gaines TA, Duke SO, Morran S, Rigon CAG, Tranel PJ, Küpper A, Dayan FE. Mechanisms of evolved herbicide resistance. J Biol Chem 2020; 295:10307-10330. [PMID: 32430396 PMCID: PMC7383398 DOI: 10.1074/jbc.rev120.013572] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
The widely successful use of synthetic herbicides over the past 70 years has imposed strong and widespread selection pressure, leading to the evolution of herbicide resistance in hundreds of weed species. Both target-site resistance (TSR) and nontarget-site resistance (NTSR) mechanisms have evolved to most herbicide classes. TSR often involves mutations in genes encoding the protein targets of herbicides, affecting the binding of the herbicide either at or near catalytic domains or in regions affecting access to them. Most of these mutations are nonsynonymous SNPs, but polymorphisms in more than one codon or entire codon deletions have also evolved. Some herbicides bind multiple proteins, making the evolution of TSR mechanisms more difficult. Increased amounts of protein target, by increased gene expression or by gene duplication, are an important, albeit less common, TSR mechanism. NTSR mechanisms include reduced absorption or translocation and increased sequestration or metabolic degradation. The mechanisms that can contribute to NTSR are complex and often involve genes that are members of large gene families. For example, enzymes involved in herbicide metabolism-based resistances include cytochromes P450, GSH S-transferases, glucosyl and other transferases, aryl acylamidase, and others. Both TSR and NTSR mechanisms can combine at the individual level to produce higher resistance levels. The vast array of herbicide-resistance mechanisms for generalist (NTSR) and specialist (TSR and some NTSR) adaptations that have evolved over a few decades illustrate the evolutionary resilience of weed populations to extreme selection pressures. These evolutionary processes drive herbicide and herbicide-resistant crop development and resistance management strategies.
Collapse
Affiliation(s)
- Todd A Gaines
- Agricultural Biology Department, Colorado State University, Fort Collins, Colorado, USA
| | - Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, Mississippi, USA
| | - Sarah Morran
- Agricultural Biology Department, Colorado State University, Fort Collins, Colorado, USA
| | - Carlos A G Rigon
- Agricultural Biology Department, Colorado State University, Fort Collins, Colorado, USA
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| | - Anita Küpper
- Bayer AG, CropScience Division, Frankfurt am Main, Germany
| | - Franck E Dayan
- Agricultural Biology Department, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
9
|
Khew CY, Harikrishna JA, Wee WY, Lau ET, Hwang SS. Transcriptional Sequencing and Gene Expression Analysis of Various Genes in Fruit Development of Three Different Black Pepper ( Piper nigrum L.) Varieties. Int J Genomics 2020; 2020:1540915. [PMID: 32399475 PMCID: PMC7210556 DOI: 10.1155/2020/1540915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 01/30/2020] [Accepted: 03/13/2020] [Indexed: 11/18/2022] Open
Abstract
Black pepper (Piper nigrum) is a vital spice crop with uses ranging from culinary to pharmacological applications. However, limited genetic information has constrained the understanding of the molecular regulation of flower and fruit development in black pepper. In this study, a comparison among three different black pepper varieties, Semengok Aman (SA), Kuching (KC), and Semengok 1 (S1), with varying fruit characteristics was used to provide insight on the genetic regulation of flower and fruit development. Next-generation sequencing (NGS) technology was used to determine the flower and fruit transcriptomes by sequencing on an Illumina HiSeq 2500 platform followed by de novo assembly using SOAPdenovo-Trans. The high-quality assembly of 66,906 of unigenes included 64.4% of gene sequences (43,115) with similarity to one or more protein sequences from the GenBank database. Annotation with Blast2Go assigned 37,377 genes to one or more Gene Ontology terms. Of these genes, 5,874 genes were further associated with the biological pathways recorded in the KEGG database. Comparison of flower and fruit transcriptome data from the three different black pepper varieties revealed a large number of DEGs between flower and fruit of the SA variety. Gene Ontology (GO) enrichment analysis further supports functions of DEGs between flower and fruit in the categories of carbohydrate metabolic processes, embryo development, and DNA metabolic processes while the DEGs in fruit relate to biosynthetic process, secondary metabolic process, and catabolic process. The enrichment of DEGs in KEGG pathways was also investigated, and a large number of genes were found to belong to the nucleotide metabolism and carbohydrate metabolism categories. Gene expression profiling of flower formation-related genes reveals that other than regulating the flowering in black pepper, the flowering genes might also be implicated in the fruit development process. Transcriptional analysis of sugar transporter and carbohydrate metabolism genes in different fruit varieties suggested that the carbohydrate metabolism in black pepper fruit is developmentally regulated, and some genes might serve as potential genes for future crop quality improvement. Study on the piperine-related gene expression analysis suggested that lysine-derived products might present in all stages of fruit development, but the transportation was only active at the early stage of fruit development. These results indicate several candidate genes related to the development of flower and fruit in black pepper and provide a resource for future functional analysis and potentially for future crop improvement.
Collapse
Affiliation(s)
- Choy Yuen Khew
- Department of Research and Quality Development, Malaysian Pepper Board, Lot 1115, Jalan Utama, Pending Industrial Area, 93450 KC, Sarawak, Malaysia
- School of Chemical Engineering and Science, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350 KC, Sarawak, Malaysia
| | - Jennifer Ann Harikrishna
- Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Wei Yee Wee
- Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Ee Tiing Lau
- Department of Research and Quality Development, Malaysian Pepper Board, Lot 1115, Jalan Utama, Pending Industrial Area, 93450 KC, Sarawak, Malaysia
- School of Chemical Engineering and Science, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350 KC, Sarawak, Malaysia
| | - Siaw San Hwang
- School of Chemical Engineering and Science, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350 KC, Sarawak, Malaysia
| |
Collapse
|
10
|
Zhang H, Hall N, Goertzen LR, Chen CY, Peatman E, Patel J, McElroy JS. Transcriptome Analysis Reveals Unique Relationships Among Eleusine Species and Heritage of Eleusine coracana. G3 (BETHESDA, MD.) 2019; 9:2029-2036. [PMID: 31010823 PMCID: PMC6553535 DOI: 10.1534/g3.119.400214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/19/2019] [Indexed: 01/02/2023]
Abstract
Relationships in the genus Eleusine were obtained through transcriptome analysis. Eleusine coracana (E. coracana ssp. coracana), also known as finger millet, is an allotetraploid minor crop primarily grown in East Africa and India. Domesticated E. coracana evolved from wild E. africana (E. coracana ssp. africana) with the maternal genome donor largely supported to be E. indica; however, the paternal genome donor remains elusive. We developed transcriptomes for six Eleusine species from fully developed seedlings using Illumina technology and three de novo assemblers (Trinity, Velvet, and SOAPdenovo2) with the redundancy-reducing EvidentialGene pipeline. Mapping E. coracana reads to the chloroplast genes of all Eleusine species detected fewer variants between E. coracana and E. indica compared to all other species. Phylogenetic analysis further supports E. indica as the maternal parent of E. coracana and E. africana, in addition to a close relationship between E. indica and E. tristachya, and between E. floccifolia and E. multiflora, and E. intermedia as a separate group. A close relationship between E. floccifolia and E. multiflora was unexpected considering they are reported to have distinct nuclear genomes, BB and CC, respectively. Further, it was expected that E. intermedia and E. floccifolia would have a closer relationship considering they have similar nuclear genomes, AB and BB, respectively. A rethinking of the labeling of ancestral genomes of E. floccifolia, E. multiflora, and E. intermedia is maybe needed based on this data.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Crop, Soil and Environmental Science
| | - Nathan Hall
- Department of Crop, Soil and Environmental Science
| | | | | | - Eric Peatman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849
| | - Jinesh Patel
- Department of Crop, Soil and Environmental Science
| | | |
Collapse
|
11
|
Brunharo CADCG, Morran S, Martin K, Moretti ML, Hanson BD. EPSPS duplication and mutation involved in glyphosate resistance in the allotetraploid weed species Poa annua L. PEST MANAGEMENT SCIENCE 2019; 75:1663-1670. [PMID: 30506940 DOI: 10.1002/ps.5284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/25/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Poa annua is a widespread winter annual weed species in California. Recently, poor control of this species with glyphosate was reported by growers in an almond orchard in California with a history of repetitive glyphosate use. The objectives of this research were to evaluate the level of glyphosate resistance in a developed S4 P. annua line (R) and identify the mechanisms of resistance involved. RESULTS Whole-plant dose-response experiments confirmed glyphosate resistance in R, which required 18-fold more glyphosate to achieve a 50% growth reduction compared with a susceptible line (S), results that were supported by the lower shikimate accumulation observed in R compared with S. No differences in glyphosate absorption, translocation, or metabolism were observed, suggesting that non-target-site mechanisms of resistance are not involved in the resistance phenotype. A missense single nucleotide polymorphism was observed in EPSPS coding position 106 in R, resulting in a leucine to proline substitution. This polymorphism was observed exclusively in P. supina EPSPS homeologs. A seven-fold increase in the number of copies of EPSPS alleles was observed in R compared with S. CONCLUSIONS We report the first case of glyphosate resistance associated with both EPSPS duplication and target-site mutation at position 106, leading to high levels of glyphosate resistance in the allotetraploid weed species Poa annua L. Data obtained in this research will be useful for the development of diagnostic tools for rapid glyphosate resistance identification, monitoring and containment. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Sarah Morran
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Katie Martin
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Marcelo L Moretti
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Bradley D Hanson
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| |
Collapse
|
12
|
Kroc M, Koczyk G, Kamel KA, Czepiel K, Fedorowicz-Strońska O, Krajewski P, Kosińska J, Podkowiński J, Wilczura P, Święcicki W. Transcriptome-derived investigation of biosynthesis of quinolizidine alkaloids in narrow-leafed lupin (Lupinus angustifolius L.) highlights candidate genes linked to iucundus locus. Sci Rep 2019; 9:2231. [PMID: 30783128 PMCID: PMC6381137 DOI: 10.1038/s41598-018-37701-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 12/12/2018] [Indexed: 01/23/2023] Open
Abstract
Unravelling the biosynthetic pathway of quinolizidine alkaloids (QAs), regarded as antinutritional compounds of narrow-leafed lupin (NLL) seeds, is fundamental to best exploit NLL as food or feed. We investigated 12 candidate genes connected to QA biosynthesis, selecting them by transcriptomic and genomic approaches, from the landscape of genes differentially expressed in leaves of the high- and low-alkaloid NLL accessions. Linkage analysis enabled the assessment of the location of the candidate genes in relation to iucundus, a major locus of unknown identity, that confers reduced QA content in seeds. The key finding was the identification of APETALA2/ethylene response transcription factor, RAP2-7, cosegregating with the iucundus locus and located within a region with highly significant QTLs that affect QA composition. We additionally identified a 4-hydroxy-tetrahydrodipicolinate synthase (DHDPS) gene involved in L-lysine biosynthesis as being closely linked to iucundus. The distributed location of other remaining candidates (including previously known QA genes) across different linkage groups, also indirectly supports the transcription factor as a possible regulator of lupin alkaloid biosynthesis. Our findings provide crucial insight into QA biosynthesis in NLL. Additionally, we evaluated and selected appropriate reference genes for qRT-PCRs to analyse the expression levels of QA genes in NLL.
Collapse
Affiliation(s)
- Magdalena Kroc
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| | - Grzegorz Koczyk
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Katarzyna A Kamel
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Katarzyna Czepiel
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Olga Fedorowicz-Strońska
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Paweł Krajewski
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Joanna Kosińska
- Department of Medical Genetics, Medical University of Warsaw, Pawińskiego 3c, 02-106, Warsaw, Poland
| | - Jan Podkowiński
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Piotrowo 2, 61-138, Poznań, Poland
| | - Paulina Wilczura
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Wojciech Święcicki
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| |
Collapse
|
13
|
Babineau M, Mahmood K, Mathiassen SK, Kudsk P, Kristensen M. De novo transcriptome assembly analysis of weed Apera spica-venti from seven tissues and growth stages. BMC Genomics 2017; 18:128. [PMID: 28166737 PMCID: PMC5294808 DOI: 10.1186/s12864-017-3538-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/02/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Loose silky bentgrass (Apera spica-venti) is an important weed in Europe with a recent increase in herbicide resistance cases. The lack of genetic information about this noxious weed limits its biological understanding such as growth, reproduction, genetic variation, molecular ecology and metabolic herbicide resistance. This study produced a reference transcriptome for A. spica-venti from different tissues (leaf, root, stem) and various growth stages (seed at phenological stages 05, 07, 08, 09). The de novo assembly was performed on individual and combined dataset followed by functional annotations. Individual transcripts and gene families involved in metabolic based herbicide resistance were identified. RESULTS Eight separate transcriptome assemblies were performed and compared. The combined transcriptome assembly consists of 83,349 contigs with an N50 and average contig length of 762 and 658 bp, respectively. This dataset contains 74,724 transcripts consisting of total 54,846,111 bp. Among them 94% had a homologue to UniProtKB, 73% retrieved a GO mapping, and 50% were functionally annotated. Compared with other grass species, A. spica-venti has 26% proteins in common to Brachypodium distachyon, and 41% to Lolium spp. Glycosyltransferases had the highest number of transcripts in each tissue followed by the cytochrome P450s. The GSTF1 and CYP89A2 transcripts were recovered from the majority of tissues and aligned at a maximum of 66 and 30% to proven herbicide resistant allele from Alopecurus myosuroides and Lolium rigidum, respectively. CONCLUSIONS De novo transcriptome assembly enabled the generation of the first reference transcriptome of A. spica-venti. This can serve as stepping stone for understanding the metabolic herbicide resistance as well as the general biology of this problematic weed. Furthermore, this large-scale sequence data is a valuable scientific resource for comparative transcriptome analysis for Poaceae grasses.
Collapse
Affiliation(s)
- Marielle Babineau
- Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse, 4200 Denmark
| | - Khalid Mahmood
- Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse, 4200 Denmark
| | | | - Per Kudsk
- Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse, 4200 Denmark
| | - Michael Kristensen
- Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse, 4200 Denmark
| |
Collapse
|