1
|
Fakih TM, Rizkita AD, Dewi SA, Muchtaridi M. In silico approaches for developing sesquiterpene derivatives as antagonists of human nicotinic acetylcholine receptors (nAChRs) for nicotine addiction treatment. Curr Res Struct Biol 2025; 9:100162. [PMID: 39867106 PMCID: PMC11753972 DOI: 10.1016/j.crstbi.2024.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/07/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025] Open
Abstract
Cinnamomum, a genus within the Lauraceae family, has gained global recognition due to its wide-ranging utility. Extensive research has been dedicated to exploring its phytochemical composition and pharmacological effects. Notably, the uniqueness of Cinnamomum lies in its terpenoid content, characterized by distinctive structures and significant biological implications. An intriguing discovery is that sesquiterpene compounds originating from Cinnamomum possess the capacity to function as antagonists for human nicotinic acetylcholine receptors (nAChRs), specifically the nAChRÿ3 subtype, rendering them potential candidates for nicotine replacement therapy (NRT) to aid active smokers. This investigation employed molecular docking and molecular dynamics simulations to assess the inhibitory effects of these compounds on nAChRÿ3. Among the 55 compounds examined, Dihydroxyeudesmene, Gibberodione, and Germacrene-E exhibited the highest binding affinities. These compounds demonstrated robust interactions with the nAChRÿ3 receptor, as evidenced by elevated molecular mechanics general surface area (MM/GBSA) values (ΔG Bind = Dihydroxyeudesmene: -36.45 kcal/mol, Gibberodione: -36.51 kcal/mol, and Germacrene-E: -36.51 kcal/mol). Molecular dynamics simulations further confirmed the stability of these three compounds, indicating their potential to effectively compete with native ligands. However, comprehensive in vitro, in vivo, and clinical investigations are imperative to ascertain the efficacy of these promising therapeutic candidates.
Collapse
Affiliation(s)
- Taufik Muhammad Fakih
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung, Jl. Ranggagading No.8, Bandung, 40116, Indonesia
| | - Aden Dhana Rizkita
- Department of Pharmacy, Sekolah Tinggi Ilmu Kesehatan (STIKES) Bogor Husada, Jl. Sholeh Iskandar No.4, Bogor, 16164, Indonesia
| | - Sintia Ayu Dewi
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, No. 250 Wu-Xing Street, Taipei, 11031, Taiwan
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Jalan Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia
| |
Collapse
|
2
|
Jo S, Park M, Yusupov Z, Tojibaev KS, Kenicer GJ, Choi S, Paik JH. Intracellular gene transfer (IGT) events from the mitochondrial genome to the plastid genome of the subtribe ferulinae drude (Apiaceae) and their implications. BMC PLANT BIOLOGY 2024; 24:1172. [PMID: 39643875 PMCID: PMC11622593 DOI: 10.1186/s12870-024-05891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Intracellular gene transfer (IGT) is a phenomenon in genome evolution that occurs between the nuclear and organellar genomes of plants or between the genomes of different organelles. The majority of the plastid genomes (plastomes) in angiosperms have a conserved structure, but some species exhibit unexpected structural variations. RESULTS In this study, we focused on the Ferulinae, which includes Ferula, one of the largest genera in the Apiaceae family. We discovered IGTs in the rps12-trnV IGS region of the plastome's inverted repeat (IR). We found that partial mitochondrial genome (mitogenome) sequences, ranging in length from about 2.8 to 5.8 kb, were imported into the plastome. In addition to these, that are known from other Scandiceae subtribes, the Ferulinae plastomes contained two unique mitogenome sequences. We have named these sequences Ferula Mitochondrial Plastid sequences (FeMP). FeMP1 varies in length from 336 bp to 1,100 bp, while FeMP2 ranges from 50 bp to 740 bp in length, with the exception of F. conocaula and F. kingdon-wardii, which do not possess FeMP2. Notably, FeMP2 includes a complete rps7 gene of mitogenome origin. In the maximum likelihood (ML) tree constructed from 79 protein-coding genes, Ferulinae appears as a monophyletic group, while Ferula shows paraphyly. Dorema and Fergania are nested within the Ferula clade, sharing the unusual characteristics of the Ferula plastome. Based on these findings, a reclassification of Dorema and Fergania is warranted. CONCLUSIONS Our results shed light on the mechanism of plastome evolution in the Scandiceae with a focus on the unique plastome structure found in the Apiaceae. These findings enhance our understanding of the evolution of plant organellar genomes.
Collapse
Affiliation(s)
- Sangjin Jo
- International Biological Material Research Center (IBMRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
| | - Minsu Park
- International Biological Material Research Center (IBMRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
| | - Ziyoviddin Yusupov
- Institute of Botany, Academy of Sciences, Durmon yuli str. 32, Tashkent, 100125, Uzbekistan
| | - Komiljon Sh Tojibaev
- Institute of Botany, Academy of Sciences, Durmon yuli str. 32, Tashkent, 100125, Uzbekistan
| | - Gregory J Kenicer
- Royal Botanical Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Sangho Choi
- International Biological Material Research Center (IBMRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
| | - Jin-Hyub Paik
- International Biological Material Research Center (IBMRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea.
| |
Collapse
|
3
|
Li L, Fu H, Altaf MA, Wang Z, Lu X. The complete mitochondrial genome assembly of Capsicum pubescens reveals key evolutionary characteristics of mitochondrial genes of two Capsicum subspecies. BMC Genomics 2024; 25:1064. [PMID: 39528932 PMCID: PMC11552386 DOI: 10.1186/s12864-024-10985-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Pepper (Capsicum pubescens), one of five domesticated pepper species, has unique characteristics, such as numerous hairs on the epidermis of its leaves and stems, black seeds, and vibrant purple flowers. To date, no studies have reported on the complete assembly of the mitochondrial genome (mitogenome) of C. pubescens. Understanding the mitogenome is crucial for further research on C. pubescens. RESULTS In our study, we successfully assembled the first mitogenome of C. pubescens, which was assigned the GenBank accession number OP957066. This mitogenome has a length of 454,165 bp and exhibits the typical circular structure observed in most mitogenomes. We annotated a total of 70 genes, including 35 protein-coding genes (PCGs), 30 tRNA genes, 3 rRNA genes, and 2 pseudogenes. Compared to the other three pepper mitogenomes (KJ865409, KJ865410, and MN196478), C. pubescens OP957066 exhibited four unique PCGs (atp4, atp8, mttB, and rps1), while two PCGs (rpl10 and rps3) were absent. Notably, each of the three pepper mitogenomes from C. annuum (KJ865409, KJ865410, and MN196478) experienced the loss of four PCGs (atp4, atp8, mttB, and rps1). To further explore the evolutionary relationships, we reconstructed a phylogenetic tree using the mitogenomes of C. pubescens and fourteen other species. Structural comparison and synteny analysis of the above four pepper mitogenomes revealed that C. pubescens shares high sequence similarity with KJ865409 and that C. pubescens has rearranged with the other three pepper mitogenomes. Interestingly, we observed 72 similar sequences between the mitochondrial and chloroplast genomes, which accounted for 12.60% of the mitogenome, with a total length of 57,207 bp. These sequences encompassed 12 tRNA genes and the rRNA gene (rrn18). Remarkably, selective pressure analysis suggested that the nad5 gene underwent obvious positive selection. Furthermore, a single-base mutation in three genes (nad1, nad2, and nad4) resulted in an amino acid change. CONCLUSION This study provides a high-quality mitogenome of pepper, providing valuable molecular data for future investigations into the exchange of genetic information between pepper organelle genomes.
Collapse
Affiliation(s)
- Lin Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication) , Hainan University, Sanya Hainan, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Huizhen Fu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication) , Hainan University, Sanya Hainan, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Muhammad Ahsan Altaf
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication) , Hainan University, Sanya Hainan, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Zhiwei Wang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication) , Hainan University, Sanya Hainan, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Xu Lu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication) , Hainan University, Sanya Hainan, 572025, China.
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
4
|
Zhang X, Ding Z, Lou H, Han R, Ma C, Yang S. A Systematic Review and Developmental Perspective on Origin of CMS Genes in Crops. Int J Mol Sci 2024; 25:8372. [PMID: 39125940 PMCID: PMC11312923 DOI: 10.3390/ijms25158372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Cytoplasmic male sterility (CMS) arises from the incompatibility between the nucleus and cytoplasm as typical representatives of the chimeric structures in the mitochondrial genome (mitogenome), which has been extensively applied for hybrid seed production in various crops. The frequent occurrence of chimeric mitochondrial genes leading to CMS is consistent with the mitochondrial DNA (mtDNA) evolution. The sequence conservation resulting from faithfully maternal inheritance and the chimeric structure caused by frequent sequence recombination have been defined as two major features of the mitogenome. However, when and how these chimeric mitochondrial genes appear in the context of the highly conserved reproduction of mitochondria is an enigma. This review, therefore, presents the critical view of the research on CMS in plants to elucidate the mechanisms of this phenomenon. Generally, distant hybridization is the main mechanism to generate an original CMS source in natural populations and in breeding. Mitochondria and mitogenomes show pleomorphic and dynamic changes at key stages of the life cycle. The promitochondria in dry seeds develop into fully functioning mitochondria during seed imbibition, followed by massive mitochondria or mitogenome fusion and fission in the germination stage along with changes in the mtDNA structure and quantity. The mitogenome stability is controlled by nuclear loci, such as the nuclear gene Msh1. Its suppression leads to the rearrangement of mtDNA and the production of heritable CMS genes. An abundant recombination of mtDNA is also often found in distant hybrids and somatic/cybrid hybrids. Since mtDNA recombination is ubiquitous in distant hybridization, we put forward a hypothesis that the original CMS genes originated from mtDNA recombination during the germination of the hybrid seeds produced from distant hybridizations to solve the nucleo-cytoplasmic incompatibility resulting from the allogenic nuclear genome during seed germination.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Zhengpin Ding
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Hongbo Lou
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Rui Han
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Cunqiang Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Shengchao Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
5
|
Wu CS, Wang RJ, Chaw SM. Integration of large and diverse angiosperm DNA fragments into Asian Gnetum mitogenomes. BMC Biol 2024; 22:140. [PMID: 38915079 PMCID: PMC11197197 DOI: 10.1186/s12915-024-01924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Horizontal gene transfer (HGT) events have rarely been reported in gymnosperms. Gnetum is a gymnosperm genus comprising 25‒35 species sympatric with angiosperms in West African, South American, and Southeast Asian rainforests. Only a single acquisition of an angiosperm mitochondrial intron has been documented to date in Asian Gnetum mitogenomes. We wanted to develop a more comprehensive understanding of frequency and fragment length distribution of such events as well as their evolutionary history in this genus. RESULTS We sequenced and assembled mitogenomes from five Asian Gnetum species. These genomes vary remarkably in size and foreign DNA content. We identified 15 mitochondrion-derived and five plastid-derived (MTPT) foreign genes. Our phylogenetic analyses strongly indicate that these foreign genes were transferred from diverse eudicots-mostly from the Rubiaceae genus Coptosapelta and ten genera of Malpighiales. This indicates that Asian Gnetum has experienced multiple independent HGT events. Patterns of sequence evolution strongly suggest DNA-mediated transfer between mitochondria as the primary mechanism giving rise to these HGT events. Most Asian Gnetum species are lianas and often entwined with sympatric angiosperms. We therefore propose that close apposition of Gnetum and angiosperm stems presents opportunities for interspecific cell-to-cell contact through friction and wounding, leading to HGT. CONCLUSIONS Our study reveals that multiple HGT events have resulted in massive amounts of angiosperm mitochondrial DNA integrated into Asian Gnetum mitogenomes. Gnetum and its neighboring angiosperms are often entwined with each other, possibly accounting for frequent HGT between these two phylogenetically remote lineages.
Collapse
Affiliation(s)
- Chung-Shien Wu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Rui-Jiang Wang
- South China Botanical Garden, Chinese Academy of Science, Guangzhou, China
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
6
|
Shan Y, Li J, Duan X, Zhang X, Yu J. Elucidating the multichromosomal structure within the Brasenia schreberi mitochondrial genome through assembly and analysis. BMC Genomics 2024; 25:422. [PMID: 38684976 PMCID: PMC11059650 DOI: 10.1186/s12864-024-10331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Brasenia schreberi, a plant species traditionally utilized in Chinese medicine and cuisine, represents an early evolutionary stage among flowering plants (angiosperms). While the plastid genome of this species has been published, its mitochondrial genome (mitogenome) has not been extensively explored, with a notable absence of thorough comparative analyses of its organellar genomes. In our study, we had assembled the entire mitogenome of B. schreberi utilizing the sequencing data derived from both Illumina platform and Oxford Nanopore. The B. schreberi mitogenome mostly exists as six circular DNA molecules, with the largest being 628,257 base pairs (bp) and the smallest 110,220 bp, amounting to 1.49 megabases (Mb). Then we annotated the mitogenome of B. schreberi. The mitogenome encompasses a total of 71 genes: 40 of these are coding proteins genes (PCGs), 28 are genes for transfer RNA (tRNA), and the remaining 3 are genes for ribosomal RNA (rRNA). In the analysis of codon usage, we noted a unique codon preference specific to each amino acid. The most commonly used codons exhibited an average RSCU of 1.36, indicating a noticeable bias in codon selection. In the repeat sequence analysis, a total of 553 simple sequence repeats (SSRs) were identified, 1,822 dispersed repeats (comprising 1,015 forward and 807 palindromic repeats), and 608 long terminal repeats (LTRs). Additionally, in the analysis of homologous sequences between organelle genomes, we detected 38 homologous sequences derived from the plastid genome, each exceeding 500 bp, within the B. schreberi mitochondrial genome. Notably, ten tRNA genes (trnC-GCA, trnM-CAU, trnI-CAU, trnQ-UUG, trnN-GUU, trnT-GGU, trnW-CCA, trnA-UGC, trnI-GAU, and trnV-GAC) appear to have been completely transferred from the chloroplast to the mitogenome. Utilizing the Deepred-mt to predict the RNA editing sites in the mitogenome, we have identified 675 high-quality RNA editing sites in the 40 mitochondrial PCGs. In the final stage of our study, we performed an analysis of colinearity and inferred the phylogenetic relationship of B. schreberi with other angiosperms, utilizing the mitochondrial PCGs as a basis. The results showed that the non-coding regions of the B. schreberi mitogenome are characterized by an abundance of repetitive sequences and exogenous sequences, and B. schreberi is more closely related with Euryale ferox.
Collapse
Affiliation(s)
- Yuanyu Shan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Jingling Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Xinmei Duan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Xue Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Jie Yu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China.
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, 400715, China.
| |
Collapse
|
7
|
Thureborn O, Wikström N, Razafimandimbison SG, Rydin C. Phylogenomics and topological conflicts in the tribe Anthospermeae (Rubiaceae). Ecol Evol 2024; 14:e10868. [PMID: 38274863 PMCID: PMC10809029 DOI: 10.1002/ece3.10868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024] Open
Abstract
Genome skimming (shallow whole-genome sequencing) offers time- and cost-efficient production of large amounts of DNA data that can be used to address unsolved evolutionary questions. Here we address phylogenetic relationships and topological incongruence in the tribe Anthospermeae (Rubiaceae), using phylogenomic data from the mitochondrion, the nuclear ribosomal cistron, and the plastome. All three genomic compartments resolve relationships in the Anthospermeae; the tribe is monophyletic and consists of three major subclades. Carpacoce Sond. is sister to the remaining clade, which comprises an African subclade and a Pacific subclade. Most results, from all three genomic compartments, are statistically well supported; however, not fully consistent. Intergenomic topological incongruence is most notable in the Pacific subclade but present also in the African subclade. Hybridization and introgression followed by organelle capture may explain these conflicts but other processes, such as incomplete lineage sorting (ILS), can yield similar patterns and cannot be ruled out based on the results. Whereas the null hypothesis of congruence among all sequenced loci in the individual genomes could not be rejected for nuclear and mitochondrial data, it was rejected for plastid data. Phylogenetic analyses of three subsets of plastid loci identified using the hierarchical likelihood ratio test demonstrated statistically supported intragenomic topological incongruence. Given that plastid genes are thought to be fully linked, this result is surprising and may suggest modeling or sampling error. However, biological processes such as biparental inheritance and inter-plastome recombination have been reported and may be responsible for the observed intragenomic incongruence. Mitochondrial insertions into the plastome are rarely documented in angiosperms. Our results indicate that a mitochondrial insertion event in the plastid trnS GGA - rps4 IGS region occurred in the common ancestor of the Pacific clade of Anthospermeae. Exclusion/inclusion of this locus in phylogenetic analyses had a strong impact on topological results in the Pacific clade.
Collapse
Affiliation(s)
- Olle Thureborn
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | - Niklas Wikström
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- The Bergius FoundationThe Royal Academy of SciencesStockholmSweden
| | | | - Catarina Rydin
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- The Bergius FoundationThe Royal Academy of SciencesStockholmSweden
| |
Collapse
|
8
|
Park S, Park S. Intrageneric structural variation in organelle genomes from the genus Dystaenia (Apiaceae): genome rearrangement and mitochondrion-to-plastid DNA transfer. FRONTIERS IN PLANT SCIENCE 2023; 14:1283292. [PMID: 38116150 PMCID: PMC10728875 DOI: 10.3389/fpls.2023.1283292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
Introduction During plant evolution, intracellular DNA transfer (IDT) occurs not only from organelles to the nucleus but also between organelles. To further comprehend these events, both organelle genomes and transcriptomes are needed. Methods In this study, we constructed organelle genomes and transcriptomes for two Dystaenia species and described their dynamic IDTs between their nuclear and mitochondrial genomes, or plastid and mitochondrial genomes (plastome and mitogenome). Results and Discussion We identified the putative functional transfers of the mitochondrial genes 5' rpl2, rps10, rps14, rps19, and sdh3 to the nucleus in both Dystaenia species and detected two transcripts for the rpl2 and sdh3 genes. Additional transcriptomes from the Apicaceae species also provided evidence for the transfers and duplications of these mitochondrial genes, showing lineage-specific patterns. Intrageneric variations of the IDT were found between the Dystaenia organelle genomes. Recurrent plastid-to-mitochondrion DNA transfer events were only identified in the D. takeshimana mitogenome, and a pair of mitochondrial DNAs of plastid origin (MIPTs) may generate minor alternative isoforms. We only found a mitochondrion-to-plastid DNA transfer event in the D. ibukiensis plastome. This event may be linked to inverted repeat boundary shifts in its plastome. We inferred that the insertion region involved an MIPT that had already acquired a plastid sequence in its mitogenome via IDT. We propose that the MIPT acts as a homologous region pairing between the donor and recipient sequences. Our results provide insight into the evolution of organelle genomes across the family Apiaceae.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
9
|
Kirankumar SI, Balaji R, Tanuja, Parani M. The complete chloroplast genome of Ocimum basilicum L. var. basilicum (Lamiaceae) and its phylogenetic analysis. Mitochondrial DNA B Resour 2023; 8:1169-1173. [PMID: 38188439 PMCID: PMC10769543 DOI: 10.1080/23802359.2023.2275835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/20/2023] [Indexed: 01/09/2024] Open
Abstract
Ocimum basilicum L. var. basilicum (Sweet Basil) is an aromatic herb belonging to the family Lamiaceae and is known for its medicinal uses. It is commonly used in traditional medicine for its therapeutic value, including anti-allergic, anti-inflammatory, antioxidant, antitumor, and antimicrobial properties. In this study, we generated the complete chloroplast genome sequence of O. basilicum var. basilicum using Illumina paired-end sequencing data. The chloroplast genome was 152,407 bp in length, containing a large single-copy (LSC) region of 83,409 bp and a small single-copy region (SSC) of 17,604 bp, separated by a pair of inverted repeats (IRs) of 25,697 bp. The genome contained 134 genes, including 89 protein-coding, 37 tRNA, and eight rRNA genes. Nine genes had one intron, two genes had two introns, and others did not have any intron. Overall GC content of the chloroplast genome was 38%, while that of LSC, SSC, and IR regions was 35.9%, 31.6%, and 43.1%, respectively. Phylogenetic analysis of the chloroplast genomes revealed that O. basilicum var. basilicum was closely related to Ocimum basilicum from the Ocimum species.
Collapse
Affiliation(s)
- Sriramulu Indhukumar Kirankumar
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Raju Balaji
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Tanuja
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Madasamy Parani
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
10
|
Vineesh S, Balaji R, Tanuja, Parani M. The complete chloroplast genome of Ocimum americanum Linnaeus 1755 and phylogenetic analysis among the Lamiaceae family. Mitochondrial DNA B Resour 2023; 8:1077-1081. [PMID: 37859799 PMCID: PMC10583627 DOI: 10.1080/23802359.2023.2264545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023] Open
Abstract
Ocimum americanum Linnaeus 1755 (Lemon basil) is an essential medicinal species in the Ocimum genus. Its leaf decoction is traditionally used to treat diabetes, constipation, diarrhea, piles, and dysentery. The essential oils from this species have intense fungicidal activity. The complete chloroplast genome sequence of O. americanum was assembled from Illumina paired-end sequencing data. The O. americanum chloroplast genome was 152,460 bp in length, containing a large single copy (LSC) region of 83,459 bp and a small single copy (SSC) region of 17,607 bp, separated by a pair of inverted repeats (IRs) of 25,697 bp. The genome contained 134 unique genes, including 89 protein-coding, 37 tRNA, and eight rRNA genes. Among them, nine genes had a single intron, and two genes contained two introns. The overall GC content of the chloroplast genome was 38%, while the corresponding values of LSC, SSC, and IR regions were 35.8%, 31.7%, and 43.1%, respectively. In the phylogenetic analysis, all the Ocimum species formed a group closely related to Plectranthus barbatus. O. americanum was more closely related to O. gratissimum and O. basilicum than the other species of Ocimum included in this study.
Collapse
Affiliation(s)
- Suresh Vineesh
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Raju Balaji
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Tanuja
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Madasamy Parani
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
11
|
Bandaranayake PCG, Naranpanawa N, Chandrasekara CHWMRB, Samarakoon H, Lokuge S, Jayasundara S, Bandaranayake AU, Pushpakumara DKNG, Wijesundara DSA. Chloroplast genome, nuclear ITS regions, mitogenome regions, and Skmer analysis resolved the genetic relationship among Cinnamomum species in Sri Lanka. PLoS One 2023; 18:e0291763. [PMID: 37729154 PMCID: PMC10511092 DOI: 10.1371/journal.pone.0291763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
Cinnamomum species have gained worldwide attention because of their economic benefits. Among them, C. verum (synonymous with C. zeylanicum Blume), commonly known as Ceylon Cinnamon or True Cinnamon is mainly produced in Sri Lanka. In addition, Sri Lanka is home to seven endemic wild cinnamon species, C. capparu-coronde, C. citriodorum, C. dubium, C. litseifolium, C. ovalifolium, C. rivulorum and C. sinharajaense. Proper identification and genetic characterization are fundamental for the conservation and commercialization of these species. While some species can be identified based on distinct morphological or chemical traits, others cannot be identified easily morphologically or chemically. The DNA barcoding using rbcL, matK, and trnH-psbA regions could not also resolve the identification of Cinnamomum species in Sri Lanka. Therefore, we generated Illumina Hiseq data of about 20x coverage for each identified species and a C. verum sample (India) and assembled the chloroplast genome, nuclear ITS regions, and several mitochondrial genes, and conducted Skmer analysis. Chloroplast genomes of all eight species were assembled using a seed-based method.According to the Bayesian phylogenomic tree constructed with the complete chloroplast genomes, the C. verum (Sri Lanka) is sister to previously sequenced C. verum (NC_035236.1, KY635878.1), C. dubium and C. rivulorum. The C. verum sample from India is sister to C. litseifolium and C. ovalifolium. According to the ITS regions studied, C. verum (Sri Lanka) is sister to C. verum (NC_035236.1), C. dubium and C. rivulorum. Cinnamomum verum (India) shares an identical ITS region with C. ovalifolium, C. litseifolium, C. citriodorum, and C. capparu-coronde. According to the Skmer analysis C. verum (Sri Lanka) is sister to C. dubium and C. rivulorum, whereas C. verum (India) is sister to C. ovalifolium, and C. litseifolium. The chloroplast gene ycf1 was identified as a chloroplast barcode for the identification of Cinnamomum species. We identified an 18 bp indel region in the ycf1 gene, that could differentiate C. verum (India) and C. verum (Sri Lanka) samples tested.
Collapse
Affiliation(s)
| | - Nathasha Naranpanawa
- Faculty of Agriculture, Agricultural Biotechnology Centre, University of Peradeniya, Peradeniya, Sri Lanka
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - Hiruna Samarakoon
- Faculty of Agriculture, Agricultural Biotechnology Centre, University of Peradeniya, Peradeniya, Sri Lanka
| | - S. Lokuge
- Faculty of Agriculture, Agricultural Biotechnology Centre, University of Peradeniya, Peradeniya, Sri Lanka
| | - S. Jayasundara
- Faculty of Agriculture, Agricultural Biotechnology Centre, University of Peradeniya, Peradeniya, Sri Lanka
| | - Asitha U. Bandaranayake
- Faculty of Engineering, Department of Computer Engineering, University of Peradeniya, Peradeniya, Sri Lanka
| | - D. K. N. G. Pushpakumara
- Faculty of Agriculture, Department of Crop Science, University of Peradeniya, Peradeniya, Sri Lanka
| | | |
Collapse
|
12
|
Kim HB, Lee DG, Kim SC. Plastomes of Sonchus (Asteraceae) endemic to the Atlantic Madeira archipelago: Genome structure, comparative analysis, and phylogenetic relationships. PLoS One 2023; 18:e0287523. [PMID: 37347743 PMCID: PMC10286973 DOI: 10.1371/journal.pone.0287523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
The woody Sonchus alliance, a spectacular example of adaptive radiation with six genera and approximately 31 species, is found exclusively on three Macaronesian Islands (Madeira, Canaries, and Cape Verdes) in the Atlantic Ocean. Four of the Sonchus taxa are restricted to Madeira, including shrubs and small trees at higher elevations (S. fruticosus and S. pinnatus), and caudex perennials in the lower coastal areas (S. ustulatus subsp. maderensis and S. ustulatus subsp. ustulatus). The Madeiran Sonchus stemmed from a single colonization event that originated from the Canaries < 3 million years ago. However, the plastome evolution and species relationships remains insufficiently explored. We therefore assembled and characterized the plastomes of four Sonchus taxa from Madeira and conducted a phylogenomic analysis. We found highly conserved plastome sequences among the taxa, further supporting a single and recent origin. We also found highly conserved plastomes among the cosmopolitan weedy Sonchus, Macaronesian Sonchus in the Atlantic, and Juan Fernández Islands Dendroseris in the Pacific. Furthermore, we identified four mutation hotspot regions (trnK-rps16, petN-psbM, ndhF-Ψycf1, and ycf1) and simple sequence repeat motifs. This study strongly supports the monophyly of Madeiran Sonchus. However, its relationship with the remaining woody Sonchus alliance from the Canary Islands requires further investigation.
Collapse
Affiliation(s)
- Hye-Been Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
- R&I Center, COSMAX BTI, Pangyo Inno Valley E255, Seongnam, Republic of Korea
| | - Dong-Geol Lee
- R&I Center, COSMAX BTI, Pangyo Inno Valley E255, Seongnam, Republic of Korea
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
13
|
Zhang X, Shan Y, Li J, Qin Q, Yu J, Deng H. Assembly of the Complete Mitochondrial Genome of Pereskia aculeata Revealed That Two Pairs of Repetitive Elements Mediated the Recombination of the Genome. Int J Mol Sci 2023; 24:ijms24098366. [PMID: 37176072 PMCID: PMC10179450 DOI: 10.3390/ijms24098366] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Pereskia aculeata is a potential new crop species that has both food and medicinal (antinociceptive activity) properties. However, comprehensive genomic research on P. aculeata is still lacking, particularly concerning its organelle genome. In this study, P. aculeata was studied to sequence the mitochondrial genome (mitogenome) and to ascertain the assembly, informational content, and developmental expression of the mitogenome. The findings revealed that the mitogenome of P. aculeata is circular and measures 515,187 bp in length with a GC content of 44.05%. It contains 52 unique genes, including 33 protein-coding genes, 19 tRNA genes, and three rRNA genes. Additionally, the mitogenome analysis identified 165 SSRs, primarily consisting of tetra-nucleotides, and 421 pairs of dispersed repeats with lengths greater than or equal to 30, which were mainly forward repeats. Based on long reads and PCR experiments, we confirmed that two pairs of long-fragment repetitive elements were highly involved with the mitogenome recombination process. Furthermore, there were 38 homologous fragments detected between the mitogenome and chloroplast genome, and the longest fragment was 3962 bp. This is the first report on the mitogenome in the family Cactaceae. The decoding of the mitogenome of P. aculeata will provide important genetic materials for phylogenetic studies of Cactaceae and promote the utilization of species germplasm resources.
Collapse
Affiliation(s)
- Xue Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Yuanyu Shan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Jingling Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Qiulin Qin
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Jie Yu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Hongping Deng
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
Cheng Y, Huang Y, Yuan F, Sheng Y, Yang D, Wei Y, Abozeid A. The complete chloroplast genome sequence of Salvia chienii E.Peter, 1936 (Lamiaceae). Mitochondrial DNA B Resour 2023; 8:255-259. [PMID: 36816054 PMCID: PMC9930746 DOI: 10.1080/23802359.2023.2175978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Salvia chienii E.Peter is a medicinal herb mainly distributed in Huangshan Mountain of Anhui province, China. In this study, the first complete chloroplast genome of S. chienii was sequenced and assembled. The genome length was 151,530 bp and encoded 143 genes (91 protein-coding genes, eight rRNA genes, and 37 tRNA genes). The phylogenomic analysis showed that S. chienii was closely related to S. miltiorrhiza. Further evolutionary studies of the genus Salvia could benefit from the complete chloroplast genome of S. chienii present in this study.
Collapse
Affiliation(s)
- Ying Cheng
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yanbo Huang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Fuhai Yuan
- Changzhou Menghe Shuangfeng Chinese Herbal Medicine Technology Co. LTD, Changzhou, China
| | - Yelong Sheng
- Changzhou Menghe Shuangfeng Chinese Herbal Medicine Technology Co. LTD, Changzhou, China
| | - Dongfeng Yang
- CONTACT Dongfeng Yang Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, -College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yukun Wei
- Shanghai Botanical Garden, Shanghai, China,Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China,Yukun Wei Shanghai Botanical Garden, Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Ann Abozeid
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Egypt
| |
Collapse
|
15
|
Wu CS, Chen CI, Chaw SM. Plastid phylogenomics and plastome evolution in the morning glory family (Convolvulaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:1061174. [PMID: 36605953 PMCID: PMC9808526 DOI: 10.3389/fpls.2022.1061174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Convolvulaceae, the morning glories or bindweeds, is a large family containing species of economic value, including crops, traditional medicines, ornamentals, and vegetables. However, not only are the phylogenetic relationships within this group still debated at the intertribal and intergeneric levels, but also plastid genome (plastome) complexity within Convolvulaceae is not well surveyed. We gathered 78 plastomes representing 17 genera across nine of the 12 Convolvulaceae tribes. Our plastid phylogenomic trees confirm the monophyly of Convolvulaceae, place the genus Jacquemontia within the subfamily Dicranostyloideae, and suggest that the tribe Merremieae is paraphyletic. In contrast, positions of the two genera Cuscuta and Erycibe are uncertain as the bootstrap support of the branches leading to them is moderate to weak. We show that nucleotide substitution rates are extremely variable among Convolvulaceae taxa and likely responsible for the topological uncertainty. Numerous plastomic rearrangements are detected in Convolvulaceae, including inversions, duplications, contraction and expansion of inverted repeats (IRs), and losses of genes and introns. Moreover, integrated foreign DNA of mitochondrial origin was found in the Jacquemontia plastome, adding a rare example of gene transfer from mitochondria to plastids in angiosperms. In the IR of Dichondra, we discovered an extra copy of rpl16 containing a direct repeat of ca. 200 bp long. This repeat was experimentally demonstrated to trigger effective homologous recombination, resulting in the coexistence of intron-containing and -lacking rpl16 duplicates. Therefore, we propose a hypothetical model to interpret intron loss accompanied by invasion of direct repeats at appropriate positions. Our model complements the intron loss model driven by retroprocessing when genes have lost introns but contain abundant RNA editing sites adjacent to former splicing sites.
Collapse
Affiliation(s)
- Chung-Shien Wu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chung-I. Chen
- Department of Forestry, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
16
|
Sangsrakru D, Sonthirod C, Nawae W, Yundaeng C, Promchoo W, Pootakham W, Tangphatsornruang S. The complete chloroplast genome of Sonneratia griffithii Kurz (Lythraceae). Mitochondrial DNA B Resour 2022; 7:1761-1763. [PMID: 36237205 PMCID: PMC9553166 DOI: 10.1080/23802359.2022.2119818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
Abstract
Sonneratia griffithii Kurz is a critically endangered mangrove species that can be found along the western coast of Thailand. In this study, we reported the complete chloroplast genome of S. griffithii. The chloroplast genome is 152,730 bp, consisting of one large single-copy (LSC) region, one small single-copy (SSC) region and a pair of inverted repeats (IRs). The LSC, SSC, and IR lengths are 87,226, 17,764, and 23,870 bp, respectively. The genome contains 113 unique genes, including 79 protein-coding, 30 tRNA, and 4 rRNA genes. The GC content of the chloroplast genome is 37.31%. The phylogenetic analysis based on 76 protein-coding genes showed a monophyletic group of S. griffithii and other Sonneratia species.
Collapse
Affiliation(s)
- Duangjai Sangsrakru
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chutima Sonthirod
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wanapinun Nawae
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chutintorn Yundaeng
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Waratthaya Promchoo
- Department of Marine and Coastal Resources, Royal Thai Government Ministry of Natural Resources and Environment, Bangkok, Thailand
| | - Wirulda Pootakham
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sithichoke Tangphatsornruang
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand,CONTACT Sithichoke Tangphatsornruang National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| |
Collapse
|
17
|
Zhao Y, Qu D, Ma Y. Characterization of the Chloroplast Genome of Argyranthemum frutescens and a Comparison with Other Species in Anthemideae. Genes (Basel) 2022; 13:genes13101720. [PMID: 36292605 PMCID: PMC9602088 DOI: 10.3390/genes13101720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Argyranthemum frutescens, which belongs to the Anthemideae (Asteraceae), is widely cultivated as an ornamental plant. In this study, the complete chloroplast genome of A. frutescens was obtained based on the sequences generated by Illumina HiSeq. The chloroplast genome of A. frutescens was 149,626 base pairs (bp) in length, containing a pair of inverted repeats (IR, 24,510 bp) regions separated by a small single-copy (SSC, 18,352 bp) sequence and a large single-copy (LSC, 82,254 bp) sequence. The genome contained 132 genes, consisting of 85 coding DNA sequences, 37 tRNA genes, and 8 rRNA genes, with nineteen genes duplicated in the IR region. A comparison chloroplast genome analysis among ten species from the tribe of Anthemideae revealed that the chloroplast genome size varied, but the genome structure, gene content, and oligonucleotide repeats were highly conserved. Highly divergent regions, e.g., ycf1, trnK-psbK, petN-psbM intronic, were detected. Phylogenetic analysis supported Argyranthemum as a separate genus. The findings of this study will be helpful in the exploration of the phylogenetic relationships of the tribe of Anthemideae and contribute to the breeding improvement of A. frutescens.
Collapse
|
18
|
Li C, Liu Y, Lin F, Zheng Y, Huang P. Characterization of the complete chloroplast genome sequences of six Dalbergia species and its comparative analysis in the subfamily of Papilionoideae (Fabaceae). PeerJ 2022; 10:e13570. [PMID: 35795179 PMCID: PMC9252178 DOI: 10.7717/peerj.13570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/20/2022] [Indexed: 01/17/2023] Open
Abstract
Dalbergia spp. are numerous and widely distributed in pantropical areas in Asia, Africa and America, and most of the species have important economic and ecological value as precious timber. In this study, we determined and characterized six complete chloroplast genomes of Dalbergia species (Dalbergia obtusifolia, D. hupeana, D. mimosoides, D. sissoo, D. hancei, D. balansae), which displayed the typical quadripartite structure of angiosperms. The sizes of the genomes ranged from 155,698 bp (D. hancei) to 156,419 bp (D. obtusifolia). The complete chloroplast genomes of Dalbergia include 37 tRNA genes, eight rRNA genes and 84 protein-coding genes. We analysed the sequence diversity of Dalberigia chloroplast genomes coupled with previous reports. The results showed 12 noncoding regions (rps16-accD, trnR-UCU-trnG-UCC, ndhE-ndhG, trnG-UCC-psbZ, rps8-rpl14, trnP-UGG-psaJ, ndhH-rps15, trnQ-UUG-rps16, trnS-GCU-psbI, rps12-clpP, psbA-trnK-UUU, trnK-UUU-intron), and four coding regions (rps16, ycf1, rps15 and ndhF) showed many nucleotide variations that could be used as potential molecular markers. Based on a site-specific model, we analysed the selective pressure of chloroplast genes in Dalbergia species. Twenty-two genes with positively selected sites were detected, involving the photosynthetic system (ndhC, adhD, ndhF, petB, psaA, psaB, psbB, psbC, psbK and rbcL), self-replication category of genes (rpoA, rpoC2, rps3, rps12 and rps18) and others (accD, ccsA, cemA, clpP, matK, ycf1 and ycf2). Additionally, we identified potential RNA editing sites that were relatively conserved in the genus Dalbergia. Furthermore, the comparative analysis of cp genomes of Dalbergieae species indicated that the boundary of IRs/SSC was highly variable, which resulted in the size variation of cp genomes. Finally, phylogenetic analysis showed an inferred phylogenetic tree of Papilionoideae species with high bootstrap support and suggested that Amorpheae was the sister of the clade Dalbergieae. Moreover, three genera of the Pterocarpus clade showed a nested evolutionary relationship. These complete cp genomes provided valuable information for understanding the genetic variation and phylogenetic relationship of Dalbergia species with their relatives.
Collapse
Affiliation(s)
- Changhong Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yu Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Resource Plant Innovation and Utilization, Institute of Subtropical Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Wenzhou, Zhejiang, China
| | - Furong Lin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yongqi Zheng
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Ping Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
19
|
Travadi T, Sharma S, Pandit R, Nakrani M, Joshi C, Joshi M. A duplex PCR assay for authentication of Ocimum basilicum L. and Ocimum tenuiflorum L in Tulsi churna. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Li J, Li J, Ma Y, Kou L, Wei J, Wang W. The complete mitochondrial genome of okra (Abelmoschus esculentus): using nanopore long reads to investigate gene transfer from chloroplast genomes and rearrangements of mitochondrial DNA molecules. BMC Genomics 2022; 23:481. [PMID: 35768783 PMCID: PMC9245263 DOI: 10.1186/s12864-022-08706-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Okra (Abelmoschus esculentus L. Moench) is an economically important crop and is known for its slimy juice, which has significant scientific research value. The A. esculentus chloroplast genome has been reported; however, the sequence of its mitochondrial genome is still lacking. RESULTS We sequenced the plastid and mitochondrial genomes of okra based on Illumina short reads and Nanopore long reads and conducted a comparative study between the two organelle genomes. The plastid genome of okra is highly structurally conserved, but the mitochondrial genome of okra has been confirmed to have abundant subgenomic configurations. The assembly results showed that okra's mitochondrial genome existed mainly in the form of two independent molecules, which could be divided into four independent molecules through two pairs of long repeats. In addition, we found that four pairs of short repeats could mediate the integration of the two independent molecules into one complete molecule at a low frequency. Subsequently, we also found extensive sequence transfer between the two organelles of okra, where three plastid-derived genes (psaA, rps7 and psbJ) remained intact in the mitochondrial genome. Furthermore, psbJ, psbF, psbE and psbL were integrated into the mitochondrial genome as a conserved gene cluster and underwent pseudogenization as nonfunctional genes. Only psbJ retained a relatively complete sequence, but its expression was not detected in the transcriptome data, and we speculate that it is still nonfunctional. Finally, we characterized the RNA editing events of protein-coding genes located in the organelle genomes of okra. CONCLUSIONS In the current study, our results not only provide high-quality organelle genomes for okra but also advance our understanding of the gene dialogue between organelle genomes and provide information to breed okra cultivars efficiently.
Collapse
Affiliation(s)
- Jihan Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 China
| | - Jingling Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 China
| | - Yubo Ma
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 China
| | - Lu Kou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 China
| | - Juanjuan Wei
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions from Ministry of Education, No.2 Tiansheng Road, Beibei District, Chongqing, 400716 China
| | - Weixing Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions from Ministry of Education, No.2 Tiansheng Road, Beibei District, Chongqing, 400716 China
| |
Collapse
|
21
|
Choi IS, Wojciechowski MF, Steele KP, Hunter SG, Ruhlman TA, Jansen RK. Born in the mitochondrion and raised in the nucleus: evolution of a novel tandem repeat family in Medicago polymorpha (Fabaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:389-406. [PMID: 35061308 DOI: 10.1111/tpj.15676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Plant nuclear genomes harbor sequence elements derived from the organelles (mitochondrion and plastid) through intracellular gene transfer (IGT). Nuclear genomes also show a dramatic range of repeat content, suggesting that any sequence can be readily amplified. These two aspects of plant nuclear genomes are well recognized but have rarely been linked. Through investigation of 31 Medicago taxa we detected exceptionally high post-IGT amplification of mitochondrial (mt) DNA sequences containing rps10 in the nuclear genome of Medicago polymorpha and closely related species. The amplified sequences were characterized as tandem arrays of five distinct repeat motifs (2157, 1064, 987, 971, and 587 bp) that have diverged from the mt genome (mitogenome) in the M. polymorpha nuclear genome. The mt rps10-like arrays were identified in seven loci (six intergenic and one telomeric) of the nuclear chromosome assemblies and were the most abundant tandem repeat family, representing 1.6-3.0% of total genomic DNA, a value approximately three-fold greater than the entire mitogenome in M. polymorpha. Compared to a typical mt gene, the mt rps10-like sequence coverage level was 691.5-7198-fold higher in M. polymorpha and closely related species. In addition to the post-IGT amplification, our analysis identified the canonical telomeric repeat and the species-specific satellite arrays that are likely attributable to an ancestral chromosomal fusion in M. polymorpha. A possible relationship between chromosomal instability and the mt rps10-like tandem repeat family in the M. polymorpha clade is discussed.
Collapse
Affiliation(s)
- In-Su Choi
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | | | - Kelly P Steele
- Division of Science and Mathematics, Arizona State University, Mesa, AZ, 85212, USA
| | - Sarah G Hunter
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Centre of Excellence in Bionanoscience Research, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
22
|
Kuo WH, Liu SH, Chang CC, Hsieh CL, Li YH, Ito T, Won H, Kokubugata G, Chung KF. Plastome phylogenomics of Allaeanthus, Broussonetia and Malaisia (Dorstenieae, Moraceae) and the origin of B. × kazinoki. JOURNAL OF PLANT RESEARCH 2022; 135:203-220. [PMID: 35080694 DOI: 10.1007/s10265-022-01369-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Species of Broussonetia have been essential in the development of papermaking technology. In Japan and Korea, a hybrid between B. monoica and B. papyrifera (= B. × kazinoki) known as kōzo and daknamu is still the major source of raw materials for making traditional paper washi and hanji, respectively. Despite their cultural and practical significance, however, the origin and taxonomy of kōzo and daknamu remain controversial. Additionally, the long-held generic concept of Broussonetia s.l., which included Sect. Allaeanthus and Sect. Broussonetia, was challenged as phylogenetic analyses showed Malaisia is sister to the latter section. To re-examine the taxonomic proposition that recognizes Allaeanthus, Broussonetia, and Malaisia (i.e., Broussonetia alliance), plastome and nuclear ribosomal DNA (nrDNA) sequences of six species of the alliance were assembled. Characterized by the canonical quadripartite structure, genome alignments and contents of the six plastomes (160,121-162,594 bp) are highly conserved, except for the pseudogenization and/or loss of the rpl22 gene. Relationships of the Broussonetia alliance are identical between plastome and nrDNA trees, supporting the maintenance of Malaisia and the resurrection of Allaeanthus. The phylogenomic relationships also indicate that the monoecy in B. monoica is a derived state, possibly resulting from hybridization between the dioecious B. kaempferi (♀) and B. papyrifera (♂). Based on the hypervariable ndhF-rpl32 intergenic spacer selected by sliding window analysis, phylogeographic analysis indicates that B. monoica is the sole maternal parent of B. × kazinoki and that daknamu carries multiple haplotypes, while only one haplotype was detected in kōzo. Because hybridizations between B. monoica and B. papyrifera are unidirectional and have occurred rarely in nature, our data suggest that daknamu might have originated via deliberate hybrid breeding selected for making hanji in Korea. On the contrary, kōzo appears to have a single origin and the possibility of a Korean origin cannot be ruled out.
Collapse
Affiliation(s)
- Wen-Hsi Kuo
- Research Museum and Herbarium (HAST), Biodiversity Research Center, Academia Sinica, Taipei, 115201, Taiwan
- Department of Biology, Washington University, St. Louis, MO, USA
| | - Shih-Hui Liu
- Department of Biological Sciences, National Sun Yat- sen University, Kaohsiung, Taiwan
| | - Chiung-Chih Chang
- Research Museum and Herbarium (HAST), Biodiversity Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Chia-Lun Hsieh
- Research Museum and Herbarium (HAST), Biodiversity Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Yi-Hsuan Li
- Research Museum and Herbarium (HAST), Biodiversity Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Takuro Ito
- The Center for Academic Resources and Archives/Botanical Gardens, Tohoku University, Sendai, Miyagi, Japan
| | - Hyosig Won
- Department of Biological Science and Institute of Natural Sciences, Daegu University, Gyungsan, Gyungbuk, South Korea
| | - Goro Kokubugata
- Department of Botany, National Museum of Nature and Science, Tsukuba, Ibaraki, Japan
| | - Kuo-Fang Chung
- Research Museum and Herbarium (HAST), Biodiversity Research Center, Academia Sinica, Taipei, 115201, Taiwan.
| |
Collapse
|
23
|
Lin Y, Li P, Zhang Y, Akhter D, Pan R, Fu Z, Huang M, Li X, Feng Y. Unprecedented organelle genomic variations in morning glories reveal independent evolutionary scenarios of parasitic plants and the diversification of plant mitochondrial complexes. BMC Biol 2022; 20:49. [PMID: 35172831 PMCID: PMC8851834 DOI: 10.1186/s12915-022-01250-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/08/2022] [Indexed: 01/01/2023] Open
Abstract
Background The morning glories (Convolvulaceae) are distributed worldwide and produce economically important crops, medicinal herbs, and ornamentals. Members of this family are diverse in morphological characteristics and trophic modes, including the leafless parasitic Cuscuta (dodders). Organelle genomes were generally used for studying plant phylogeny and genomic variations. Notably, plastomes in parasitic plants always show non-canonical features, such as reduced size and accelerated rates. However, few organelle genomes of this group have been sequenced, hindering our understanding of their evolution, and dodder mitogenome in particular. Results We assembled 22 new mitogenomes and 12 new plastomes in Convolvulaceae. Alongside previously known ones, we totally analyzed organelle genomes of 23 species in the family. Our sampling includes 16 leafy autotrophic species and 7 leafless parasitic dodders, covering 8 of the 12 tribes. Both the plastid and mitochondrial genomes of these plants have encountered variations that were rarely observed in other angiosperms. All of the plastomes possessed atypical IR boundaries. Besides the gene and IR losses in dodders, some leafy species also showed gene and intron losses, duplications, structural variations, and insertions of foreign DNAs. The phylogeny reconstructed by plastid protein coding sequences confirmed the previous relationship of the tribes. However, the monophyly of ‘Merremieae’ and the sister group of Cuscuta remained uncertain. The mitogenome was significantly inflated in Cuscuta japonica, which has exceeded over 800 kb and integrated massive DNAs from other species. In other dodders, mitogenomes were maintained in small size, revealing divergent evolutionary strategies. Mutations unique to plants were detected in the mitochondrial gene ccmFc, which has broken into three fragments through gene fission and splicing shift. The unusual changes likely initially happened to the common ancestor of the family and were caused by a foreign insertion from rosids followed by double-strand breaks and imprecise DNA repairs. The coding regions of ccmFc expanded at both sides after the fission, which may have altered the protein structure. Conclusions Our family-scale analyses uncovered unusual scenarios for both organelle genomes in Convolvulaceae, especially in parasitic plants. The data provided valuable genetic resources for studying the evolution of Convolvulaceae and plant parasitism. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01250-1.
Collapse
Affiliation(s)
- Yanxiang Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Pan Li
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yuchan Zhang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Delara Akhter
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Department of Genetics and Plant Breeding, Sylhet Agricultural University, Sylhet Division 3100, Sylhet, Bangladesh
| | - Ronghui Pan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Zhixi Fu
- College of Life Science, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Mingqing Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Xiaobo Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Yanlei Feng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China. .,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|
24
|
Trofimov D, Cadar D, Schmidt-Chanasit J, Rodrigues de Moraes PL, Rohwer JG. A comparative analysis of complete chloroplast genomes of seven Ocotea species (Lauraceae) confirms low sequence divergence within the Ocotea complex. Sci Rep 2022; 12:1120. [PMID: 35064146 PMCID: PMC8782842 DOI: 10.1038/s41598-021-04635-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
The genus Ocotea (Lauraceae) includes about 450 species, of which about 90% are Neotropical, while the rest is from Macaronesia, Africa and Madagascar. In this study we present the first complete chloroplast genome sequences of seven Ocotea species, six Neotropical and one from Macaronesia. Genome sizes range from 152,630 (O. porosa) to 152,685 bp (O. aciphylla). All seven plastomes contain a total of 131 (114 unique) genes, among which 87 (80 unique) encode proteins. The order of genes (if present) is the same in all Lauraceae examined so far. Two hypervariable loci were found in the LSC region (psbA-trnH, ycf2), three in the SSC region (ycf1, ndhH, trnL(UAG)-ndhF). The pairwise cp genomic alignment between the taxa showed that the LSC and SSC regions are more variable compared to the IR regions. The protein coding regions comprise 25,503-25,520 codons in the Ocotea plastomes examined. The most frequent amino acids encoded in the plastomes were leucine, isoleucine, and serine. SSRs were found to be more frequent in the two dioecious Neotropical Ocotea species than in the four bisexual species and the gynodioecious species examined (87 vs. 75-84 SSRs). A preliminary phylogenetic analysis based on 69 complete plastomes of Lauraceae species shows the seven Ocotea species as sister group to Cinnamomum sensu lato. Sequence divergence among the Ocotea species appears to be much lower than among species of the most closely related, likewise species-rich genera Cinnamomum, Lindera and Litsea.
Collapse
Affiliation(s)
- Dimitrij Trofimov
- Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststraße 18, 22609, Hamburg, Germany.
- Institute of Ecology and Evolution, Universität Jena, Philosophenweg 16, 07743, Jena, Germany.
| | - Daniel Cadar
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359, Hamburg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359, Hamburg, Germany
| | - Pedro Luís Rodrigues de Moraes
- Departamento de Botânica, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Av. 24 A 1515, Bela Vista, Rio Claro, Caixa Postal 199, São Paulo, CEP 13506-900, Brazil
| | - Jens G Rohwer
- Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststraße 18, 22609, Hamburg, Germany.
| |
Collapse
|
25
|
Hu G, Feng J, Xiang X, Wang J, Salojärvi J, Liu C, Wu Z, Zhang J, Liang X, Jiang Z, Liu W, Ou L, Li J, Fan G, Mai Y, Chen C, Zhang X, Zheng J, Zhang Y, Peng H, Yao L, Wai CM, Luo X, Fu J, Tang H, Lan T, Lai B, Sun J, Wei Y, Li H, Chen J, Huang X, Yan Q, Liu X, McHale LK, Rolling W, Guyot R, Sankoff D, Zheng C, Albert VA, Ming R, Chen H, Xia R, Li J. Two divergent haplotypes from a highly heterozygous lychee genome suggest independent domestication events for early and late-maturing cultivars. Nat Genet 2022; 54:73-83. [PMID: 34980919 PMCID: PMC8755541 DOI: 10.1038/s41588-021-00971-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/19/2021] [Indexed: 01/25/2023]
Abstract
Lychee is an exotic tropical fruit with a distinct flavor. The genome of cultivar ‘Feizixiao’ was assembled into 15 pseudochromosomes, totaling ~470 Mb. High heterozygosity (2.27%) resulted in two complete haplotypic assemblies. A total of 13,517 allelic genes (42.4%) were differentially expressed in diverse tissues. Analyses of 72 resequenced lychee accessions revealed two independent domestication events. The extremely early maturing cultivars preferentially aligned to one haplotype were domesticated from a wild population in Yunnan, whereas the late-maturing cultivars that mapped mostly to the second haplotype were domesticated independently from a wild population in Hainan. Early maturing cultivars were probably developed in Guangdong via hybridization between extremely early maturing cultivar and late-maturing cultivar individuals. Variable deletions of a 3.7 kb region encompassed by a pair of CONSTANS-like genes probably regulate fruit maturation differences among lychee cultivars. These genomic resources provide insights into the natural history of lychee domestication and will accelerate the improvement of lychee and related crops. Two divergent haplotypes from a highly heterozygous lychee genome of the cultivar ‘Feizixiao’ and resequencing of 72 lychee accessions provide insights into the genome evolution and domestication history of lychee.
Collapse
Affiliation(s)
- Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Junting Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xu Xiang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Jiabao Wang
- Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Jarkko Salojärvi
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Chengming Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zhenxian Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Zide Jiang
- Guangdong Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Wei Liu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Liangxi Ou
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Jiawei Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | | | - Yingxiao Mai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Chengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xingtan Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiakun Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yanqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Hongxiang Peng
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Lixian Yao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Ching Man Wai
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Xinping Luo
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Jiaxin Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Haibao Tang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianying Lan
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Biao Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jinhua Sun
- Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Yongzan Wei
- Key Laboratory for Tropical Fruit Biology of Ministry of Agriculture and Rural Affair, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agriculture Sciences, Zhanjiang, China
| | - Huanling Li
- Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Jiezhen Chen
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Xuming Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Qian Yan
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Xin Liu
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Leah K McHale
- Department of Horticulture and Crop Sciences and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, USA
| | - William Rolling
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, USA
| | | | - David Sankoff
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada
| | - Chunfang Zheng
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada
| | - Victor A Albert
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore. .,Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Houbin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China.
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China.
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
26
|
Yang J, Choi MJ, Kim SH, Choi HJ, Kim SC. Plastome Characterization and Phylogenomic Analysis Yield New Insights into the Evolutionary Relationships among the Species of the Subgenus Bryocles ( Hosta; Asparagaceae) in East Asia. PLANTS 2021; 10:plants10101980. [PMID: 34685791 PMCID: PMC8538707 DOI: 10.3390/plants10101980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022]
Abstract
The genus Hosta, which has a native distribution in temperate East Asia and a number of species ranging from 23 to 40, represents a taxonomically important and ornamentally popular plant. Despite its taxonomic and horticultural importance, the genus Hosta has remained taxonomically challenging owing to insufficient diagnostic features, continuous morphological variation, and the process of hybridization and introgression, making species circumscription and phylogenetic inference difficult. In this study, we sequenced 11 accessions of Hosta plastomes, including members of three geographically defined subgenera, Hosta, Bryocles, and Giboshi, determined the characteristics of plastomes, and inferred their phylogenetic relationships. We found highly conserved plastomes among the three subgenera, identified several mutation hotspots that can be used as barcodes, and revealed the patterns of codon usage bias and RNA editing sites. Five positively selected plastome genes (rbcL, rpoB, rpoC2, rpl16, and rpl20) were identified. Phylogenetic analysis suggested (1) the earliest divergence of subg. Hosta, (2) non-monophyly of subg. Bryocles and its two sections (Lamellatae and Stoloniferae), (3) a sister relationship between H. sieboldiana (subg. Giboshi) and H. ventricosa (subg. Bryocles), and (4) reciprocally monophyletic and divergent lineages of H. capitata in Korea and Japan, requiring further studies of their taxonomic distinction.
Collapse
Affiliation(s)
- JiYoung Yang
- Research Institute for Ulleung-do & Dok-do, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Mi-Jung Choi
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Korea;
| | - Seon-Hee Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea;
| | - Hyeok-Jae Choi
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Korea;
- Correspondence: (H.-J.C.); (S.-C.K.); Tel.: +82-55-213-3457 (H.-J.C.); +82-31-299-4499 (S.-C.K.)
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea;
- Correspondence: (H.-J.C.); (S.-C.K.); Tel.: +82-55-213-3457 (H.-J.C.); +82-31-299-4499 (S.-C.K.)
| |
Collapse
|
27
|
Xu L, Zhou N, Zhao S, Li J, Pei X, Yu J, Guo D. The complete plastid genome of Cotinus coggygria and phylogenetic analysis of the Anacardiaceae. Genet Mol Biol 2021; 44:e20210006. [PMID: 34342605 PMCID: PMC8329748 DOI: 10.1590/1678-4685-gmb-2021-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/02/2021] [Indexed: 11/21/2022] Open
Abstract
Cotinus coggygria Scop. (Anacardiaceae) is an important ornamental tree with beautiful characteristics that is grown in China. In this study, the complete plastid genome of C. coggygria was sequenced and assembled. This genome was 158,843 bp in size and presented a typical tetrad structure, consisting of a large single-copy region (87,121 bp), a pair of inverted repeat regions (26,829 bp), and a small single-copy region (18,064 bp). A total of 134 genes were annotated, including 88 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. We observed a deletion that caused the loss of the rpl32 gene, and a small expansion of IR regions resulted in the trnH gene accessing IR regions; two copies were obtained. Phylogenetic analysis showed that C. coggygria was most closely related to Pistacia, with 100% bootstrap support within Anacardiaceae. In this study, we report the plastid genome of Cotinus species for the first time, which provides insight into the evolution of the plastid genome in Anacardiaceae and promotes the understanding of Cotinus plants.
Collapse
Affiliation(s)
- Lingfeng Xu
- Chongqing Three Gorges University, Chongqing, College of Biology and Food Engineering, Chongqing Engineering Laboratory of Green Planting and Deep Processing of Genuine Medicinal Materials in the Three Gorges Reservoir Region, China
| | - Nong Zhou
- Chongqing Three Gorges University, Chongqing, College of Biology and Food Engineering, Chongqing Engineering Laboratory of Green Planting and Deep Processing of Genuine Medicinal Materials in the Three Gorges Reservoir Region, China
| | - Shunxin Zhao
- Chongqing Three Gorges University, Chongqing, College of Biology and Food Engineering, Chongqing Engineering Laboratory of Green Planting and Deep Processing of Genuine Medicinal Materials in the Three Gorges Reservoir Region, China
| | - Jingling Li
- Southwest University, College of Horticulture and Landscape Architecture, Chongqing, China
| | - Xiaoying Pei
- Southwest University, College of Horticulture and Landscape Architecture, Chongqing, China
| | - Jie Yu
- Southwest University, College of Horticulture and Landscape Architecture, Chongqing, China
| | - Dongqin Guo
- Chongqing Three Gorges University, Chongqing, College of Biology and Food Engineering, Chongqing Engineering Laboratory of Green Planting and Deep Processing of Genuine Medicinal Materials in the Three Gorges Reservoir Region, China
| |
Collapse
|
28
|
Lee C, Choi IS, Cardoso D, de Lima HC, de Queiroz LP, Wojciechowski MF, Jansen RK, Ruhlman TA. The chicken or the egg? Plastome evolution and an independent loss of the inverted repeat in papilionoid legumes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:861-875. [PMID: 34021942 DOI: 10.1111/tpj.15351] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The plastid genome (plastome), while surprisingly constant in gene order and content across most photosynthetic angiosperms, exhibits variability in several unrelated lineages. During the diversification history of the legume family Fabaceae, plastomes have undergone many rearrangements, including inversions, expansion, contraction and loss of the typical inverted repeat (IR), gene loss and repeat accumulation in both shared and independent events. While legume plastomes have been the subject of study for some time, most work has focused on agricultural species in the IR-lacking clade (IRLC) and the plant model Medicago truncatula. The subfamily Papilionoideae, which contains virtually all of the agricultural legume species, also comprises most of the plastome variation detected thus far in the family. In this study three non-papilioniods were included among 34 newly sequenced legume plastomes, along with 33 publicly available sequences, to assess plastome structural evolution in the subfamily. In an effort to examine plastome variation across the subfamily, approximately 20% of the sampling represents the IRLC with the remainder selected to represent the early-branching papilionoid clades. A number of IR-related and repeat-mediated changes were identified and examined in a phylogenetic context. Recombination between direct repeats associated with ycf2 resulted in intraindividual plastome heteroplasmy. Although loss of the IR has not been reported in legumes outside of the IRLC, one genistoid taxon was found to completely lack the typical plastome IR. The role of the IR and non-IR repeats in the progression of plastome change is discussed.
Collapse
Affiliation(s)
- Chaehee Lee
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - In-Su Choi
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-4501, USA
| | - Domingos Cardoso
- Instituto de Biologia, Universidade Federal de Bahia (UFBA), Rua Barão de Jeremoabo, s.n., Ondina, Salvador, Bahia, 40170-115, Brazil
| | - Haroldo C de Lima
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, Rio de Janeiro, 915 22460-030, Brazil
| | - Luciano P de Queiroz
- Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n, Novo Horizonte, Feira de Santana, Bahia, 44036-900, Brazil
| | | | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Center of Excellence for Bionanoscience Research, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
29
|
Liu S, Feng S, Huang Y, An W, Yang Z, Xie C, Zheng X. Characterization of the Complete Chloroplast Genome of Buddleja Lindleyana. J AOAC Int 2021; 105:202-210. [PMID: 33944934 DOI: 10.1093/jaoacint/qsab066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/25/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND Buddleja lindleyana Fort., which belongs to the Loganiaceae with a distribution throughout the tropics, is widely used as an ornamental plant in China. Buddleja contains several morphologically similar species, which need to be identified by molecular identification. But there is little molecular research on the genus Buddleja. OBJECTIVE Using molecular biology techniques to sequence and analyze the complete chloroplast (cp) genome of B. lindleyana. METHODS According to next-generation sequencing to sequence the genome data, a series of bioinformatics software were used to assembly and analysis the molecular structure of cp genome of B. lindleyana. RESULTS The complete cp genome of B. lindleyana is a circular 154,487-bp-long molecule with a GC content of 38.1%. It has a familiar quadripartite structure, including a large single-copy region (LSC; 85,489 bp), a small single-copy region (SSC; 17,898bp) and a pair of inverted repeats (IRs; 25,550 bp). A total of 133 genes were identified in the genome, including 86 protein-coding genes, 37 tRNA genes, 8 rRNA genes and 2 pseudogenes. CONCLUSIONS These results suggested that B. lindelyana cp genome could be used as a potential genomic resource to resolve the phylogenetic positions and relationships of Loganiaceae, and will offer valuable information for future research in the identification of Buddleja species and will conduce to genomic investigations of these species.
Collapse
Affiliation(s)
- Shanshan Liu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Shiyin Feng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405
| | - Yuying Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Wenli An
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Zerui Yang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Chunzhu Xie
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xiasheng Zheng
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
30
|
The Comparative Analyses of Six Complete Chloroplast Genomes of Morphologically Diverse Chenopodium album L. (Amaranthaceae) Collected in Korea. Int J Genomics 2021; 2021:6643444. [PMID: 33996994 PMCID: PMC8096589 DOI: 10.1155/2021/6643444] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/09/2021] [Indexed: 01/16/2023] Open
Abstract
Chenopodium album sensu stricto belonging to C. album aggregate is an annual cosmopolitan weed displaying the diversity of morphologies. We completed the six chloroplast genomes of C. album s. str. collected in Korea to understand the relationship between the diversity of chloroplast genomes and their morphological variations. All six C. album chloroplast genomes have a typical quadripartite structure with length ranging from 151,906 bp to 152,199 bp, similar to the previously sequenced C. album chloroplast genome (NC_034950). In total, 56 single nucleotide polymorphisms (SNPs) and 26 insertion and deletion (INDEL) regions (308 bp in total) were identified from the six chloroplast genomes, presenting a low level of intraspecific variations in comparison to the other angiosperm species. 376 normal simple sequence repeats were identified in all seven C. album chloroplast genomes. The phylogenetic analysis based on all available complete Amaranthaceae chloroplast genomes presents phylogenetic positions of six C. album samples as well as correlation with one of C. album morphological features. Our results provide the way to investigate intraspecific features of C. album chloroplast genomes and also the insights of understanding various intraspecific characteristics including morphological features.
Collapse
|
31
|
Kim H, Kim J. Structural Mutations in the Organellar Genomes of Valeriana sambucifolia f. dageletiana (Nakai. ex Maekawa) Hara Show Dynamic Gene Transfer. Int J Mol Sci 2021; 22:ijms22073770. [PMID: 33916499 PMCID: PMC8038606 DOI: 10.3390/ijms22073770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Valeriana sambucifolia f. dageletiana (Nakai. ex Maekawa) Hara is a broad-leaved valerian endemic to Ulleung Island, a noted hot spot of endemism in Korea. However, despite its widespread pharmacological use, this plant remains comparatively understudied. Plant cells generally contain two types of organellar genomes (the plastome and the mitogenome) that have undergone independent evolution, which accordingly can provide valuable information for elucidating the phylogenetic relationships and evolutionary histories of terrestrial plants. Moreover, the extensive mega-data available for plant genomes, particularly those of plastomes, can enable researchers to gain an in-depth understanding of the transfer of genes between different types of genomes. In this study, we analyzed two organellar genomes (the 155,179 bp plastome and the 1,187,459 bp mitogenome) of V. sambucifolia f. dageletiana and detected extensive changes throughout the plastome sequence, including rapid structural mutations associated with inverted repeat (IR) contraction and genetic variation. We also described features characterizing the first reported mitogenome sequence obtained for a plant in the order Dipsacales and confirmed frequent gene transfer in this mitogenome. We identified eight non-plastome-originated regions (NPRs) distributed within the plastome of this endemic plant, for six of which there were no corresponding sequences in the current nucleotide sequence databases. Indeed, one of these unidentified NPRs unexpectedly showed certain similarities to sequences from bony fish. Although this is ostensibly difficult to explain, we suggest that this surprising association may conceivably reflect the occurrence of gene transfer from a bony fish to the plastome of an ancestor of V. sambucifolia f. dageletiana mediated by either fungi or bacteria.
Collapse
Affiliation(s)
- Hyoungtae Kim
- Institute of Agriculture Science and Technology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea;
| | - Jungsung Kim
- Department of Forest Science, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
- Correspondence: ; Tel.: +82-43-261-2535
| |
Collapse
|
32
|
Niu Y, Gao C, Liu J. Comparative analysis of the complete plastid genomes of Mangifera species and gene transfer between plastid and mitochondrial genomes. PeerJ 2021; 9:e10774. [PMID: 33614280 PMCID: PMC7881718 DOI: 10.7717/peerj.10774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/22/2020] [Indexed: 01/30/2023] Open
Abstract
Mango is an important commercial fruit crop belonging to the genus Mangifera. In this study, we reported and compared four newly sequenced plastid genomes of the genus Mangifera, which showed high similarities in overall size (157,780–157,853 bp), genome structure, gene order, and gene content. Three mutation hotspots (trnG-psbZ, psbD-trnT, and ycf4-cemA) were identified as candidate DNA barcodes for Mangifera. These three DNA barcode candidate sequences have high species identification ability. We also identified 12 large fragments that were transferred from the plastid genome to the mitochondrial genome, and found that the similarity was more than 99%. The total size of the transferred fragment was 35,652 bp, accounting for 22.6% of the plastid genome. Fifteen intact chloroplast genes, four tRNAs and numerous partial genes and intergenic spacer regions were identified. There are many of these genes transferred from mitochondria to the chloroplast in other species genomes. Phylogenetic analysis based on whole plastid genome data provided a high support value, and the interspecies relationships within Mangifera were resolved well.
Collapse
Affiliation(s)
- Yingfeng Niu
- Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Chengwen Gao
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jin Liu
- Yunnan Institute of Tropical Crops, Xishuangbanna, China
| |
Collapse
|
33
|
Yang J, Chiang YC, Hsu TW, Kim SH, Pak JH, Kim SC. Characterization and comparative analysis among plastome sequences of eight endemic Rubus (Rosaceae) species in Taiwan. Sci Rep 2021; 11:1152. [PMID: 33441744 PMCID: PMC7806662 DOI: 10.1038/s41598-020-80143-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Genus Rubus represents the second largest genus of the family Rosaceae in Taiwan, with 41 currently recognized species across three subgenera (Chamaebatus, Idaoeobatus, and Malochobatus). Despite previous morphological and cytological studies, little is known regarding the overall phylogenetic relationships among the Rubus species in Taiwan, and their relationships to congeneric species in continental China. We characterized eight complete plastomes of Taiwan endemic Rubus species: subg. Idaeobatus (R. glandulosopunctatus, R. incanus, R. parviaraliifolius, R rubroangustifolius, R. taitoensis, and R. taiwanicolus) and subg. Malachobatus (R. kawakamii and R. laciniastostipulatus) to determine their phylogenetic relationships. The plastomes were highly conserved and the size of the complete plastome sequences ranged from 155,566 to 156,236 bp. The overall GC content ranged from 37.0 to 37.3%. The frequency of codon usage showed similar patterns among species, and 29 of the 73 common protein-coding genes were positively selected. The comparative phylogenomic analysis identified four highly variable intergenic regions (rps16/trnQ, petA/psbJ, rpl32/trnL-UAG, and trnT-UGU/trnL-UAA). Phylogenetic analysis of 31 representative complete plastomes within the family Rosaceae revealed three major lineages within Rubus in Taiwan. However, overall phylogenetic relationships among endemic species require broader taxon sampling to gain new insights into infrageneric relationships and their plastome evolution.
Collapse
Affiliation(s)
- JiYoung Yang
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Tsai-Wen Hsu
- Taiwan Endemic Species Research Institute, 1 Mingshen East Road, Chichi Township, Nantou, 55244, Taiwan
| | - Seon-Hee Kim
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jae-Hong Pak
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
34
|
Li J, Tang J, Zeng S, Han F, Yuan J, Yu J. Comparative plastid genomics of four Pilea (Urticaceae) species: insight into interspecific plastid genome diversity in Pilea. BMC PLANT BIOLOGY 2021; 21:25. [PMID: 33413130 PMCID: PMC7792329 DOI: 10.1186/s12870-020-02793-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/09/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Pilea is a genus of perennial herbs from the family Urticaceae, and some species are used as courtyard ornamentals or for medicinal purposes. At present, there is no information about the plastid genome of Pilea, which limits our understanding of this genus. Here, we report 4 plastid genomes of Pilea taxa (Pilea mollis, Pilea glauca 'Greizy', Pilea peperomioides and Pilea serpyllacea 'Globosa') and performed comprehensive comparative analysis. RESULTS The four plastid genomes all have a typical quartile structure. The lengths of the plastid genomes ranged from 150,398 bp to 152,327 bp, and each genome contained 113 unique genes, including 79 protein-coding genes, 4 rRNA genes, and 30 tRNA genes. Comparative analysis showed a rather high level of sequence divergence in the four genomes. Moreover, eight hypervariable regions were identified (petN-psbM, psbZ-trnG-GCC, trnT-UGU-trnL-UAA, accD-psbI, ndhF-rpl32, rpl32-trnL-UAG, ndhA-intron and ycf1), which are proposed for use as DNA barcode regions. Phylogenetic relationships based on the plastid genomes of 23 species of 14 genera of Urticaceae resulted in the placement of Pilea in the middle and lower part of the phylogenetic tree, with 100% bootstrap support within Urticaceae. CONCLUSION Our results enrich the resources concerning plastid genomes. Comparative plastome analysis provides insight into the interspecific diversity of the plastid genome of Pilea. The identified hypervariable regions could be used for developing molecular markers applicable in various research areas.
Collapse
Affiliation(s)
- Jingling Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Jianmin Tang
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Siyuan Zeng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Fang Han
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Jing Yuan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Jie Yu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China.
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, 400716, China.
| |
Collapse
|
35
|
Abstract
The plastid genome (plastome ) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy, and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations is allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter, we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and the tools of plastid genetic engineering.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Robert K Jansen
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
36
|
Li J, Ye GY, Liu HL, Wang ZH. Complete chloroplast genomes of three important species, Abelmoschus moschatus, A. manihot and A. sagittifolius: Genome structures, mutational hotspots, comparative and phylogenetic analysis in Malvaceae. PLoS One 2020; 15:e0242591. [PMID: 33237925 PMCID: PMC7688171 DOI: 10.1371/journal.pone.0242591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/06/2020] [Indexed: 11/29/2022] Open
Abstract
Abelmoschus is an economically and phylogenetically valuable genus in the family Malvaceae. Owing to coexistence of wild and cultivated form and interspecific hybridization, this genus is controversial in systematics and taxonomy and requires detailed investigation. Here, we present whole chloroplast genome sequences and annotation of three important species: A. moschatus, A. manihot and A. sagittifolius, and compared with A. esculentus published previously. These chloroplast genome sequences ranged from 163121 bp to 163453 bp in length and contained 132 genes with 87 protein-coding genes, 37 transfer RNA and 8 ribosomal RNA genes. Comparative analyses revealed that amino acid frequency and codon usage had similarity among four species, while the number of repeat sequences in A. esculentus were much lower than other three species. Six categories of simple sequence repeats (SSRs) were detected, but A. moschatus and A. manihot did not contain hexanucleotide SSRs. Single nucleotide polymorphisms (SNPs) of A/T, T/A and C/T were the largest number type, and the ratio of transition to transversion was from 0.37 to 0.55. Abelmoschus species showed relatively independent inverted-repeats (IR) boundary traits with different boundary genes compared with the other related Malvaceae species. The intergenic spacer regions had more polymorphic than protein-coding regions and intronic regions, and thirty mutational hotpots (≥200 bp) were identified in Abelmoschus, such as start-psbA, atpB-rbcL, petD-exon2-rpoA, clpP-intron1 and clpP-exon2.These mutational hotpots could be used as polymorphic markers to resolve taxonomic discrepancies and biogeographical origin in genus Abelmoschus. Moreover, phylogenetic analysis of 33 Malvaceae species indicated that they were well divided into six subfamilies, and genus Abelmoschus was a well-supported clade within genus Hibiscus.
Collapse
Affiliation(s)
- Jie Li
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guang-ying Ye
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hai-lin Liu
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zai-hua Wang
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
37
|
Yang J, Takayama K, Youn JS, Pak JH, Kim SC. Plastome Characterization and Phylogenomics of East Asian Beeches with a Special Emphasis on Fagus multinervis on Ulleung Island, Korea. Genes (Basel) 2020; 11:E1338. [PMID: 33198274 PMCID: PMC7697516 DOI: 10.3390/genes11111338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 01/18/2023] Open
Abstract
Beech trees of the genus Fagus (Fagaceae) are monoecious and distributed in the Northern Hemisphere. They represent an important component of mixed broad-leaved evergreen-deciduous forests and are an economically important source of timber. Despite their ecological and economical importance, however, little is known regarding the overall plastome evolution among Fagus species in East Asia. In particular, the taxonomic position and status of F. multinervis, a beech species endemic to Ulleung Island of Korea, remains unclear even today. Therefore, in this study, we characterized four newly completed plastomes of East Asian Fagus species (one accession each of F. crenata and F. multinervis and two accessions of F. japonica). Moreover, we performed phylogenomic analyses comparing these four plastomes with F. sylvatica (European beech) plastome. The four plastomes were highly conserved, and their size ranged from 158,163 to 158,348 base pair (bp). The overall GC content was 37.1%, and the sequence similarity ranged from 99.8% to 99.99%. Codon usage patterns were similar among species, and 7 of 77 common protein-coding genes were under positive selection. Furthermore, we identified five highly variable hotspot regions of the Fagus plastomes (ccsA/ndhD, ndhD/psaC, ndhF/rpl32, trnS-GCU/trnG-UCC, and ycf1). Phylogenetic analysis revealed the monophyly of Fagus as well as early divergence of the subgenus Fagus and monophyletic Engleriana. Finally, phylogenetic results supported the taxonomic distinction of F. multinervis from its close relatives F. engleriana and F. japonica. However, the sister species and geographic origin of F. multinervis on Ulleung Island could not be determined.
Collapse
Affiliation(s)
- JiYoung Yang
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Gyeongsangbuk-do, Daegu 41566, Korea; (J.Y.); (J.-S.Y.)
| | - Koji Takayama
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan;
| | - Jin-Suk Youn
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Gyeongsangbuk-do, Daegu 41566, Korea; (J.Y.); (J.-S.Y.)
| | - Jae-Hong Pak
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Gyeongsangbuk-do, Daegu 41566, Korea; (J.Y.); (J.-S.Y.)
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Gyeonggi-do, Suwon 16419, Korea
| |
Collapse
|
38
|
Naranpanawa DNU, Chandrasekara CHWMRB, Bandaranayake PCG, Bandaranayake AU. Raw transcriptomics data to gene specific SSRs: a validated free bioinformatics workflow for biologists. Sci Rep 2020; 10:18236. [PMID: 33106560 PMCID: PMC7588437 DOI: 10.1038/s41598-020-75270-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Recent advances in next-generation sequencing technologies have paved the path for a considerable amount of sequencing data at a relatively low cost. This has revolutionized the genomics and transcriptomics studies. However, different challenges are now created in handling such data with available bioinformatics platforms both in assembly and downstream analysis performed in order to infer correct biological meaning. Though there are a handful of commercial software and tools for some of the procedures, cost of such tools has made them prohibitive for most research laboratories. While individual open-source or free software tools are available for most of the bioinformatics applications, those components usually operate standalone and are not combined for a user-friendly workflow. Therefore, beginners in bioinformatics might find analysis procedures starting from raw sequence data too complicated and time-consuming with the associated learning-curve. Here, we outline a procedure for de novo transcriptome assembly and Simple Sequence Repeats (SSR) primer design solely based on tools that are available online for free use. For validation of the developed workflow, we used Illumina HiSeq reads of different tissue samples of Santalum album (sandalwood), generated from a previous transcriptomics project. A portion of the designed primers were tested in the lab with relevant samples and all of them successfully amplified the targeted regions. The presented bioinformatics workflow can accurately assemble quality transcriptomes and develop gene specific SSRs. Beginner biologists and researchers in bioinformatics can easily utilize this workflow for research purposes.
Collapse
Affiliation(s)
- D N U Naranpanawa
- Agricultural Biotechnology Centre, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - C H W M R B Chandrasekara
- Agricultural Biotechnology Centre, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - P C G Bandaranayake
- Agricultural Biotechnology Centre, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - A U Bandaranayake
- Department of Computer Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| |
Collapse
|
39
|
Yang J, Kang GH, Pak JH, Kim SC. Characterization and Comparison of Two Complete Plastomes of Rosaceae Species ( Potentilla dickinsii var. glabrata and Spiraea insularis) Endemic to Ulleung Island, Korea. Int J Mol Sci 2020; 21:E4933. [PMID: 32668601 PMCID: PMC7404287 DOI: 10.3390/ijms21144933] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 01/04/2023] Open
Abstract
Potentilla dickinsii var. glabrata and Spiraea insularis in the family Rosaceae are species endemic to Ulleung Island, Korea, the latter of which is listed as endangered. In this study, we characterized the complete plastomes of these two species and compared these with previously reported plastomes of other Ulleung Island endemic species of Rosaceae (Cotoneaster wilsonii, Prunus takesimensis, Rubus takesimensis, and Sorbus ulleungensis). The highly conserved complete plastomes of P. dickinsii var. glabrata and S. insularis are 158,637 and 155,524 base pairs with GC contents of 37% and 36.9%, respectively. Comparative phylogenomic analysis identified three highly variable intergenic regions (trnT-UGU/trnL-UAA, rpl32/trnL-UAG, and ndhF/rpl32) and one variable genic region (ycf1). Only 14 of the 75 protein-coding genes have been subject to strong purifying selection. Phylogenetic analysis of 23 representative plastomes within the Rosaceae supported the monophyly of Potentilla and the sister relationship between Potentilla and Fragaria and indicated that S. insularis is sister to a clade containing Cotoneaster, Malus, Pyrus, and Sorbus. The plastome resources generated in this study will contribute to elucidating the plastome evolution of insular endemic Rosaceae on Ulleung Island and also in assessing the genetic consequences of anagenetic speciation for various endemic lineages on the island.
Collapse
Affiliation(s)
- JiYoung Yang
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, Gyeongsangbuk-do 41566, Korea;
| | - Gi-Ho Kang
- Baekdudaegan National Arboretum, 1501 Chunyang-ro, Chungyang-myeon, Bonghwa-gun, Gyeongsangbuk-do 36209, Korea;
| | - Jae-Hong Pak
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, Gyeongsangbuk-do 41566, Korea;
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Suwon, Gyeonggi-do 16419, Korea
| |
Collapse
|
40
|
Barrett CF. Plastid genomes of the North American Rhus integrifolia-ovata complex and phylogenomic implications of inverted repeat structural evolution in Rhus L. PeerJ 2020; 8:e9315. [PMID: 32587799 PMCID: PMC7304433 DOI: 10.7717/peerj.9315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/17/2020] [Indexed: 12/12/2022] Open
Abstract
Plastid genomes (plastomes) represent rich sources of information for phylogenomics, from higher-level studies to below the species level. The genus Rhus (sumac) has received a significant amount of study from phylogenetic and biogeographic perspectives, but genomic studies in this genus are lacking. Rhus integrifolia and R. ovata are two shrubby species of high ecological importance in the southwestern USA and Mexico, where they occupy coastal scrub and chaparral habitats. They hybridize frequently, representing a fascinating system in which to investigate the opposing effects of hybridization and divergent selection, yet are poorly characterized from a genomic perspective. In this study, complete plastid genomes were sequenced for one accession of R. integrifolia and one each of R. ovata from California and Arizona. Sequence variation among these three accessions was characterized, and PCR primers potentially useful in phylogeographic studies were designed. Phylogenomic analyses were conducted based on a robustly supported phylogenetic framework based on 52 complete plastomes across the order Sapindales. Repeat content, rather than the size of the inverted repeat, had a stronger relative association with total plastome length across Sapindales when analyzed with phylogenetic least squares regression. Variation at the inverted repeat boundary within Rhus was striking, resulting in major shifts and independent gene losses. Specifically, rps19 was lost independently in the R. integrifolia-ovata complex and in R. chinensis, with a further loss of rps22 and a major contraction of the inverted repeat in two accessions of the latter. Rhus represents a promising novel system to study plastome structural variation of photosynthetic angiosperms at and below the species level.
Collapse
Affiliation(s)
- Craig F. Barrett
- Department of Biology, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
41
|
Wang L, He N, Li Y, Fang Y, Zhang F. Complete Chloroplast Genome Sequence of Chinese Lacquer Tree ( Toxicodendron vernicifluum, Anacardiaceae) and Its Phylogenetic Significance. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9014873. [PMID: 32071921 PMCID: PMC7011389 DOI: 10.1155/2020/9014873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/11/2019] [Accepted: 11/25/2019] [Indexed: 11/29/2022]
Abstract
Chinese lacquer tree (Toxicodendron vernicifluum) is an important commercial arbor species widely cultivated in East Asia for producing highly durable lacquer. Here, we sequenced and analyzed the complete chloroplast (cp) genome of T. vernicifluum and reconstructed the phylogeny of Sapindales based on 52 cp genomes of six families. The plastome of T. vernicifluum is 159,571 bp in length, including a pair of inverted repeats (IRs) of 26,511 bp, separated by a large single-copy (LSC) region of 87,475 bp and a small single-copy (SSC) region of 19,074 bp. A total of 126 genes were identified, of which 81 are protein-coding genes, 37 are transfer RNA genes, and eight are ribosomal RNA genes. Forty-nine mononucleotide microsatellites, one dinucleotide microsatellite, two complex microsatellites, and 49 long repeats were determined. Structural differences such as inversion variation in LSC and gene loss in IR were detected across cp genomes of the six genera in Anacardiaceae. Phylogenetic analyses revealed that the genus Toxicodendron is closely related to Pistacia and Rhus. The phylogenetic relationships of the six families in Sapindales were well resolved. Overall, this study providing complete cp genome resources will be beneficial for determining potential molecular markers and evolutionary patterns of T. vernicifluum and its closely related species.
Collapse
Affiliation(s)
- Lu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Na He
- Xi'an Raw Lacquer and Research Institute, Xi'an 710061, China
| | - Yao Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Feilong Zhang
- Xi'an Raw Lacquer and Research Institute, Xi'an 710061, China
| |
Collapse
|
42
|
Jo S, Kim YK, Cheon SH, Fan Q, Kim KJ. Characterization of 20 complete plastomes from the tribe Laureae (Lauraceae) and distribution of small inversions. PLoS One 2019; 14:e0224622. [PMID: 31675370 PMCID: PMC6824564 DOI: 10.1371/journal.pone.0224622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/17/2019] [Indexed: 01/24/2023] Open
Abstract
Lindera Thunb. (Lauraceae) consists of approximately 100 species, mainly distributed in the temperate and tropical regions of East Asia. In this study, we report 20 new, complete plastome sequences including 17 Lindera species and three related species, Actinodaphne lancifolia, Litsea japonica and Sassafras tzumu. The complete plastomes of Lindera range from 152,502 bp (L. neesiana) to 154,314 bp (L. erythrocarpa) in length. Eleven small inversion (SI) sites are documented among the plastomes. Six of the 11 SI sites are newly reported and they locate in rpoB-trnC, psbC-trnS, petA-psbJ, rpoA and ycf2 regions. The distribution patterns of SIs are useful for species identification. An average of 83 simple sequence repeats (SSRs) were detected in each plastome. The mono-SSRs accounted for 72.7% of total SSRs, followed by di- (12.4%), tetra- (9.4%), tri- (4.2%), and penta-SSRs (1.3%). Of these SSRs, 64.6% were distributed in an intergenic spacer (IGS) region. In addition, 79.8% of the SSRs are located in a large single copy (LSC) region. In contrast, almost no SSRs are distributed in inverted repeat (IR) regions. The SSR loci are useful to identifying species but the phylogenetic value is low because the majority of them show autapomorphic status or highly homoplastic characteristics. The nucleotide diversity (Pi) values also indicated the conserved nature of the IR region compared to LSC and small single copy (SSC) regions. Five spacer regions with high Pi values, trnH-psbA, petA-psbJ and ndhF-rpl32, rpl32-trnL and Ψycf1-ndhF, have a potential use for the molecular identification study of Lindera and related species. Lindera species form a paraphyletic group in the plastome tree because of the inclusion of related genera such as Actinodaphne, Laurus, Litsea and Neolitsea. A former member of tribe Laureae, Sassafras, forms a clade with the tribe Cinnamomeae. The SIs do not affect the phylogenetic relationship of Laureae. This result indicated that ancient plastome captures may have contribute to the mixed intergeneric relationship of Laureae. Alternatively, the result may indicate that the morphological characters defined the genera of Lauraceae originated for several times.
Collapse
Affiliation(s)
- Sangjin Jo
- School of Life Sciences, Korea University, Seoul, Korea
| | - Young-Kee Kim
- School of Life Sciences, Korea University, Seoul, Korea
| | - Se-Hwan Cheon
- School of Life Sciences, Korea University, Seoul, Korea
| | - Qiang Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ki-Joong Kim
- School of Life Sciences, Korea University, Seoul, Korea
| |
Collapse
|
43
|
Ding H, Zhu R, Dong J, Bi D, Jiang L, Zeng J, Huang Q, Liu H, Xu W, Wu L, Kan X. Next-Generation Genome Sequencing of Sedum plumbizincicola Sheds Light on the Structural Evolution of Plastid rRNA Operon and Phylogenetic Implications within Saxifragales. PLANTS (BASEL, SWITZERLAND) 2019; 8:E386. [PMID: 31569538 PMCID: PMC6843225 DOI: 10.3390/plants8100386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 01/21/2023]
Abstract
The genus Sedum, with about 470 recognized species, is classified in the family Crassulaceae of the order Saxifragales. Phylogenetic relationships within the Saxifragales are still unresolved and controversial. In this study, the plastome of S. plumbizincicola was firstly presented, with a focus on the structural analysis of rrn operon and phylogenetic implications within the order Saxifragaceae. The assembled complete plastome of S. plumbizincicola is 149,397 bp in size, with a typical circular, double-stranded, and quadripartite structure of angiosperms. It contains 133 genes, including 85 protein-coding genes (PCGs), 36 tRNA genes, 8 rRNA genes, and four pseudogenes (one ycf1, one rps19, and two ycf15). The predicted secondary structure of S. plumbizincicola 16S rRNA includes three main domains organized in 74 helices. Further, our results confirm that 4.5S rRNA of higher plants is associated with fragmentation of 23S rRNA progenitor. Notably, we also found the sequence of putative rrn5 promoter has some evolutionary implications within the order Saxifragales. Moreover, our phylogenetic analyses suggested that S. plumbizincicola had a closer relationship with S. sarmentosum than S. oryzifolium, and supported the taxonomic revision of Phedimus. Our findings of the present study will be useful for further investigation of the evolution of plastid rRNA operon and phylogenetic relationships within Saxifragales.
Collapse
Affiliation(s)
- Hengwu Ding
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
- The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu 241000, Anhui, China.
| | - Ran Zhu
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
| | - Jinxiu Dong
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
| | - De Bi
- National Engineering Laboratory of Soil Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China.
| | - Lan Jiang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
| | - Juhua Zeng
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
| | - Qingyu Huang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
| | - Huan Liu
- National Engineering Laboratory of Soil Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China.
| | - Wenzhong Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Longhua Wu
- National Engineering Laboratory of Soil Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China.
| | - Xianzhao Kan
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
- The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu 241000, Anhui, China.
| |
Collapse
|
44
|
Kim SH, Yang J, Park J, Yamada T, Maki M, Kim SC. Comparison of Whole Plastome Sequences between Thermogenic Skunk Cabbage Symplocarpus renifolius and Nonthermogenic S. nipponicus (Orontioideae; Araceae) in East Asia. Int J Mol Sci 2019; 20:E4678. [PMID: 31547213 PMCID: PMC6801674 DOI: 10.3390/ijms20194678] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 01/10/2023] Open
Abstract
Symplocarpus, a skunk cabbage genus, includes two sister groups, which are drastically different in life history traits and thermogenesis, as follows: The nonthermogenic summer flowering S. nipponicus and thermogenic early spring flowering S. renifolius. Although the molecular basis of thermogenesis and complete chloroplast genome (plastome) of thermogenic S. renifolius have been well characterized, very little is known for that of S. nipponicus. We sequenced the complete plastomes of S. nipponicus sampled from Japan and Korea and compared them with that of S. renifolius sampled from Korea. The nonthermogenic S. nipponicus plastomes from Japan and Korea had 158,322 and 158,508 base pairs, respectively, which were slightly shorter than the thermogenic plastome of S. renifolius. No structural or content rearrangements between the species pairs were found. Six highly variable noncoding regions (psbC/trnS, petA/psbJ, trnS/trnG, trnC/petN, ycf4/cemA, and rpl3/rpl22) were identified between S. nipponicus and S. renifolius and 14 hot-spot regions were also identified at the subfamily level. We found a similar total number of SSR (simple sequence repeat) motifs in two accessions of S. nipponicus sampled from Japan and Korea. Phylogenetic analysis supported the basal position of subfamily Orontioideae and the monophyly of genus Symplocarpus, and also revealed an unexpected evolutionary relationship between S. nipponicus and S. renifolius.
Collapse
Affiliation(s)
- Seon-Hee Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| | - JiYoung Yang
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, Kyungpook National University, Daegu, Gyeongsangbuk-do 41566, Korea.
| | | | - Takayuki Yamada
- Botanical Gardens, Tohoku University, Sendai 980-0862, Japan.
| | - Masayuki Maki
- Botanical Gardens, Tohoku University, Sendai 980-0862, Japan.
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| |
Collapse
|
45
|
The Complete Chloroplast Genomes of Punica granatum and a Comparison with Other Species in Lythraceae. Int J Mol Sci 2019; 20:ijms20122886. [PMID: 31200508 PMCID: PMC6627765 DOI: 10.3390/ijms20122886] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/02/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023] Open
Abstract
Pomegranates (Punica granatum L.) are one of the most popular fruit trees cultivated in arid and semi-arid tropics and subtropics. In this study, we determined and characterized three complete chloroplast (cp) genomes of P. granatum cultivars with different phenotypes using the genome skimming approach. The complete cp genomes of three pomegranate cultivars displayed the typical quadripartite structure of angiosperms, and their length ranged from 156,638 to 156,639 bp. They encoded 113 unique genes and 17 are duplicated in the inverted regions. We analyzed the sequence diversity of pomegranate cp genomes coupled with two previous reports. The results showed that the sequence diversity is extremely low and no informative sites were detected, which suggests that cp genome sequences may be not be suitable for investigating the genetic diversity of pomegranate genotypes. Further, we analyzed the codon usage pattern and identified the potential RNA editing sites. A comparative cp genome analysis with other species within Lythraceae revealed that the gene content and organization are highly conserved. Based on a site-specific model, 11 genes with positively selected sites were detected, and most of them were photosynthesis-related genes and genetic system-related genes. Together with previously released cp genomes of the order Myrtales, we determined the taxonomic position of P. granatum based on the complete chloroplast genomes. Phylogenetic analysis suggested that P. granatum form a single clade with other species from Lythraceae with a high support value. The complete cp genomes provides valuable information for understanding the phylogenetic position of P. gramatum in the order Myrtales.
Collapse
|
46
|
Raman G, Park S, Lee EM, Park S. Evidence of mitochondrial DNA in the chloroplast genome of Convallaria keiskei and its subsequent evolution in the Asparagales. Sci Rep 2019; 9:5028. [PMID: 30903007 PMCID: PMC6430787 DOI: 10.1038/s41598-019-41377-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/07/2019] [Indexed: 11/10/2022] Open
Abstract
DNA transfer between internal organelles such as the nucleus, mitochondrion, and plastid is a well-known phenomenon in plant evolution, and DNA transfer from the plastid and mitochondrion to the nucleus, from the plastid to the mitochondrion, and from the nucleus to the mitochondrion has been well-documented in angiosperms. However, evidence of the transfer of mitochondrial DNA (mtDNA) to the plastid has only been found in three dicotyledons and one monocotyledon. In the present study, we characterised and analysed two chloroplast (cp) genome sequences of Convallaria keiskei and Liriope spicata, and found that C. keiskei has the largest cp genome (162,109 bp) in the Asparagaceae. Interestingly, C. keiskei had a ~3.3-kb segment of mtDNA in its cp genome and showed similarity with the mt gene rpl10 as a pseudogene. Further analyses revealed that mtDNA transfer only occurred in C. keiskei in the Nolinoideae, which diverged very recently (7.68 million years ago (mya); 95% highest posterior density (HPD): 14.55–2.97 mya). These findings indicate that the C. keiskei cp genome is unique amongst monocotyledon land plants, but further work is necessary to understand the direction and mechanism involved in the uptake of mtDNA by the plastid genome of C. keiskei.
Collapse
Affiliation(s)
- Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
| | - Seongjun Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
| | - Eun Mi Lee
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea.
| |
Collapse
|
47
|
Maughan PJ, Chaney L, Lightfoot DJ, Cox BJ, Tester M, Jellen EN, Jarvis DE. Mitochondrial and chloroplast genomes provide insights into the evolutionary origins of quinoa (Chenopodium quinoa Willd.). Sci Rep 2019; 9:185. [PMID: 30655548 PMCID: PMC6336861 DOI: 10.1038/s41598-018-36693-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/23/2018] [Indexed: 11/18/2022] Open
Abstract
Quinoa has recently gained international attention because of its nutritious seeds, prompting the expansion of its cultivation into new areas in which it was not originally selected as a crop. Improving quinoa production in these areas will benefit from the introduction of advantageous traits from free-living relatives that are native to these, or similar, environments. As part of an ongoing effort to characterize the primary and secondary germplasm pools for quinoa, we report the complete mitochondrial and chloroplast genome sequences of quinoa accession PI 614886 and the identification of sequence variants in additional accessions from quinoa and related species. This is the first reported mitochondrial genome assembly in the genus Chenopodium. Inference of phylogenetic relationships among Chenopodium species based on mitochondrial and chloroplast variants supports the hypotheses that 1) the A-genome ancestor was the cytoplasmic donor in the original tetraploidization event, and 2) highland and coastal quinoas were independently domesticated.
Collapse
Affiliation(s)
- Peter J Maughan
- Brigham Young University, Department of Plant and Wildlife Sciences, College of Life Sciences, Provo, Utah 84602, USA
| | - Lindsay Chaney
- Snow College, Department of Biological Sciences, Division of Natural Science and Mathematics, Ephraim, Utah, 84627, USA
| | - Damien J Lightfoot
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Brian J Cox
- Brigham Young University, Department of Plant and Wildlife Sciences, College of Life Sciences, Provo, Utah 84602, USA
| | - Mark Tester
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Eric N Jellen
- Brigham Young University, Department of Plant and Wildlife Sciences, College of Life Sciences, Provo, Utah 84602, USA
| | - David E Jarvis
- Brigham Young University, Department of Plant and Wildlife Sciences, College of Life Sciences, Provo, Utah 84602, USA.
| |
Collapse
|
48
|
Santos V, Almeida C. The complete chloroplast genome sequences of three Spondias species reveal close relationship among the species. Genet Mol Biol 2019; 42:132-138. [PMID: 30856242 PMCID: PMC6428118 DOI: 10.1590/1678-4685-gmb-2017-0265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 06/17/2018] [Indexed: 12/21/2022] Open
Abstract
This study reports the complete chloroplast sequences of three Spondias species. The genome sequences were obtained for Spondias tuberosa, Spondias bahienses, and Spondias mombin using the Illumina sequencing technology by a combination of de novo methods and a reference-guided assembly using Sapindus mukorossi as reference. The genomes of S. tuberosa, S. bahiensis, and S. mombin had 162,036, 162,218, and 162,302 bp, respectively. The coding regions exhibited 130 genes, including 34-35 tRNAs and 4 rRNAs. The results revealed synteny among the genomes, with high conservation in the gene order and content and CG content. The inverted repeat regions (IRA and IRB) and the large and small single copies were very similar among the three genomes. The phylogenomic analysis reported similar topologies as that of previous studies, which used partial chloroplast, wherein S. mombin was the first diverging lineage, while S. tuberosa and S. bahiensis were derived, indicating that the phylogenetic analysis using partial or complete genome produces similar results. In summary, (1) we presented the first complete chloroplast genome for the genus Spondias, (2) phylogenies analyzed using the complete chloroplast genomes revealed a robust phylogenetic topology for Spondias, and (3) gene order, content, and orientation in Spondias are highly conserved.
Collapse
Affiliation(s)
- Vanessa Santos
- Universidade Federal de
AlagoasUniversidade Federal de
AlagoasLaboratório de Recursos
GenéticosArapiracaBrazilLaboratório de Recursos Genéticos, Campus
Arapiraca, Universidade Federal de Alagoas, Arapiraca, Brazil
| | - Cícero Almeida
- Universidade Federal de
AlagoasUniversidade Federal de
AlagoasLaboratório de Recursos
GenéticosArapiracaBrazilLaboratório de Recursos Genéticos, Campus
Arapiraca, Universidade Federal de Alagoas, Arapiraca, Brazil
| |
Collapse
|
49
|
Kim HT, Kim KJ. Evolution of six novel ORFs in the plastome of Mankyua chejuense and phylogeny of eusporangiate ferns. Sci Rep 2018; 8:16466. [PMID: 30405200 PMCID: PMC6220310 DOI: 10.1038/s41598-018-34825-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/26/2018] [Indexed: 11/17/2022] Open
Abstract
In this paper, three plastomes of Mankyua chejuense, Helminthostachys zeylanica, and Botrychium ternatum in Ophioglossaceae were completely sequenced in order to investigate the plastome evolution and phylogeny of eusporangiate ferns. They were similar to each other in terms of length and the gene orders; however, six unknown open reading frames (ORFs) were found between rps4 and trnL-UAA genes in M. chejuense. Similar sequence regions of six ORFs of M. chejuense were found at the plastomes of Ophioglossum californicum and H. zeylanica, as well as the mitochondrial genome (mitogenome) of H. zeylanica, but not in B. ternatum. Interestingly, the translated amino acid sequences of three ORFs were more similar to the proteins of distantly related taxa such as algae and bacteria than they were to proteins in land plants. It is likely that the six ORFs region arose from endosymbiotic gene transfer (EGT) or horizontal gene transfer (HGT), but further study is needed to verify this. Phylogenetic analyses suggested that Mankyua was resolved as the earliest diverging lineage and that Ophioglossum was subsequently diverged in Ophioglossaceae. This result supports why the plastome of M. chejuense have contained the most ancestral six ORFs in the family.
Collapse
Affiliation(s)
- Hyoung Tae Kim
- Division of Life Sciences, School of Life Sciences, Korea University, Seoul, 02841, Korea
- Institute of Agricultural Science and Technology, Chungbuk National University, Chengju, 41566, Korea
| | - Ki-Joong Kim
- Division of Life Sciences, School of Life Sciences, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
50
|
Robison TA, Grusz AL, Wolf PG, Mower JP, Fauskee BD, Sosa K, Schuettpelz E. Mobile Elements Shape Plastome Evolution in Ferns. Genome Biol Evol 2018; 10:2558-2571. [PMID: 30165616 PMCID: PMC6166771 DOI: 10.1093/gbe/evy189] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2018] [Indexed: 12/22/2022] Open
Abstract
Plastid genomes display remarkable organizational stability over evolutionary time. From green algae to angiosperms, most plastid genomes are largely collinear, with only a few cases of inversion, gene loss, or, in extremely rare cases, gene addition. These plastome insertions are mostly clade-specific and are typically of nuclear or mitochondrial origin. Here, we expand on these findings and present the first family-level survey of plastome evolution in ferns, revealing a novel suite of dynamic mobile elements. Comparative plastome analyses of the Pteridaceae expose several mobile open reading frames that vary in sequence length, insertion site, and configuration among sampled taxa. Even between close relatives, the presence and location of these elements is widely variable when viewed in a phylogenetic context. We characterize these elements and refer to them collectively as Mobile Open Reading Frames in Fern Organelles (MORFFO). We further note that the presence of MORFFO is not restricted to Pteridaceae, but is found across ferns and other plant clades. MORFFO elements are regularly associated with inversions, intergenic expansions, and changes to the inverted repeats. They likewise appear to be present in mitochondrial and nuclear genomes of ferns, indicating that they can move between genomic compartments with relative ease. The origins and functions of these mobile elements are unknown, but MORFFO appears to be a major driver of structural genome evolution in the plastomes of ferns, and possibly other groups of plants.
Collapse
Affiliation(s)
| | - Amanda L Grusz
- Department of Biology, University of Minnesota Duluth
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, District of Colombia
| | - Paul G Wolf
- Department of Biology, Utah State University
| | - Jeffrey P Mower
- Department of Agronomy, Center for Plant Science Innovation, University of Nebraska
| | | | | | - Eric Schuettpelz
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, District of Colombia
| |
Collapse
|