1
|
Chen Y, Zhao Q, Wu T, Sun F, Fu W. Knockdown of KLF6 ameliorates myocardial infarction by regulating autophagy via transcriptional regulation of PTTG1. Am J Physiol Cell Physiol 2025; 328:C115-C127. [PMID: 39652418 DOI: 10.1152/ajpcell.00191.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/28/2024]
Abstract
Krüppel-like factor 6 (KLF6) knockdown provides protection against kidney ischemia/reperfusion injury and ischemic stroke. However, it is unclear whether it plays a role in myocardial infarction (MI). Here, the expression of KLF6 was analyzed using the Gene Expression Omnibus (GEO) database and determined in patients with MI. The impact of KLF6 knockdown was further confirmed in in vivo and in vitro models of MI. The interaction between KLF6 and pituitary tumor-transforming gene 1 (PTTG1) was also evaluated. According to the GEO database, KLF6 expression was found to be upregulated in mouse hearts after MI compared to sham-operated mice. The upregulation of KLF6 in hearts from mice post-MI and in patients with MI was confirmed. KLF6 knockdown was found to alleviate myocardial injury, diminish infarct size, and suppress apoptosis and autophagy in mice with MI. In addition, inactivation of the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling was observed after KLF6 knockdown in mice with MI. In an in vitro model of MI, the knockdown of KLF6 increased cell survival and inhibited autophagy through the AMPK/mTOR pathway. In addition, KLF6 interacted with the promoter of PTTG1 and negatively regulated its expression. Knockdown of PTTG1 abolished the function of KLF6 knockdown in vitro. This study demonstrates the protective effect of KLF6 knockdown against MI, which is attributed to the elevation of PTTG1 expression and inhibition of the AMPK/mTOR pathway. These findings provide a novel insight into MI treatment.NEW & NOTEWORTHY Our study demonstrates for the first time the role of Krüppel-like factor 6 (KLF6)/PTTG1 axis in myocardial infarction (MI). This study demonstrates the protective effect of KLF6 knockdown against MI, which is attributed to the elevation of PTTG1 expression and inhibition of the AMPK/mTOR pathway. These findings provide a novel insight into MI treatment.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Qian Zhao
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Tengfei Wu
- Department of Laboratory Animal Science, China Medical University, Shenyang, People's Republic of China
| | - Feifei Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Weineng Fu
- Department of Medical Genetics, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
2
|
Băghină RM, Crișan S, Luca S, Pătru O, Lazăr MA, Văcărescu C, Negru AG, Luca CT, Gaiță D. Association between Inflammation and New-Onset Atrial Fibrillation in Acute Coronary Syndromes. J Clin Med 2024; 13:5088. [PMID: 39274304 PMCID: PMC11396258 DOI: 10.3390/jcm13175088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Acute coronary syndrome (ACS) is a complex clinical syndrome that encompasses acute myocardial infarction (AMI) and unstable angina (UA). Its underlying mechanism refers to coronary plaque disruption, with consequent platelet aggregation and thrombosis. Inflammation plays an important role in the progression of atherosclerosis by mediating the removal of necrotic tissue following myocardial infarction and shaping the repair processes that are essential for the recovery process after ACS. As a chronic inflammatory disorder, atherosclerosis is characterized by dysfunctional immune inflammation involving interactions between immune (macrophages, T lymphocytes, and monocytes) and vascular cells (endothelial cells and smooth muscle cells). New-onset atrial fibrillation (NOAF) is one of the most common arrhythmic complications in the setting of acute coronary syndromes, especially in the early stages, when the myocardial inflammatory reaction is at its maximum. The main changes in the atrial substrate are due to atrial ischemia and acute infarcts that can be attributed to neurohormonal factors. The high incidence of atrial fibrillation (AF) post-myocardial infarction may be secondary to inflammation. Inflammatory response and immune system cells have been involved in the initiation and development of atrial fibrillation. Several inflammatory indexes, such as C-reactive protein and interleukins, have been demonstrated to be predictive of prognosis in patients with ACS. The cell signaling activation patterns associated with fibrosis, apoptosis, and hypertrophy are forms of cardiac remodeling that occur at the atrial level, predisposing to AF. According to a recent study, the presence of fibrosis and lymphomononuclear infiltration in the atrial tissue was associated with a prior history of AF. However, inflammation may contribute to both the occurrence/maintenance of AF and its thromboembolic complications.
Collapse
Affiliation(s)
- Ruxandra-Maria Băghină
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Simina Crișan
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Silvia Luca
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Oana Pătru
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Mihai-Andrei Lazăr
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Cristina Văcărescu
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Alina Gabriela Negru
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Constantin-Tudor Luca
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Dan Gaiță
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| |
Collapse
|
3
|
Nguyen JP, Ramirez-Sanchez I, Garate-Carrillo A, Navarrete-Yañez V, Carballo-Castañeda RA, Ceballos G, Moreno-Ulloa A, Villarreal F. Effects of aging and type 2 diabetes on cardiac structure and function: Underlying mechanisms. Exp Gerontol 2023; 173:112108. [PMID: 36708752 DOI: 10.1016/j.exger.2023.112108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
We characterized long-term changes in cardiac structure and function in a high-fat diet/streptozotocin mouse model of aging and type 2 diabetes mellitus (T2D) and examined how the intersection of both conditions alters plasma metabolomics. We also evaluated the possible roles played by oxidative stress, arginase activity and pro-inflammatory cytokines. C57BL/6 male mice (13-month-old) were used. Control animals (n = 13) were fed regular chow for 10 months (aged group). T2D animals (n = 25) were provided a single injection of streptozotocin and fed a high fat diet for 10 months. In select endpoints, young animals were used for comparison. To monitor changes in left ventricular (LV) structure and function, echocardiography was used. At the terminal study (23 months), blood was collected and hearts processed for biochemical or histological analysis. Echo yielded diminished diastolic function with aging and T2D. LV fractional shortening and ejection fraction decreased with T2D by 16 months peaking at 23 months. Western blots noted increases in fibronectin and type I collagen with aging/T2D and greater levels with T2D in α-smooth muscle actin. Increases in plasma and/or myocardial protein carbonyls, arginase activity and pro-inflammatory cytokines occurred with aging and T2D. Untargeted metabolomics and cheminformatics revealed differences in the plasma metabolome of T2D vs. aged mice while select classes of lipid metabolites linked to insulin resistance, were dysregulated. We thus, document changes in LV structure and function with aging that in select endpoints, are accentuated with T2D and link them to increases in OS, arginase activity and pro-inflammatory cytokines.
Collapse
Affiliation(s)
| | - Israel Ramirez-Sanchez
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | - Alejandra Garate-Carrillo
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | - Viridiana Navarrete-Yañez
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | | | - Guillermo Ceballos
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | - Aldo Moreno-Ulloa
- Laboratorio MS2, Departamento de Innovación Biomédica, CICESE, Mexico
| | - Francisco Villarreal
- Veteran Affairs San Diego Health Care, San Diego, CA, USA; Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Chen X, Xie K, Sun X, Zhang C, He H. The Mechanism of miR-21-5p/TSP-1-Mediating Exercise on the Function of Endothelial Progenitor Cells in Aged Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1255. [PMID: 36674009 PMCID: PMC9858635 DOI: 10.3390/ijerph20021255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
(1) Background: The declined function of peripheral circulating endothelial progenitor cells (EPCs) in aging individuals resulted in decreased endothelial cell regeneration and vascular endothelial function. Improving EPCs function in aging individuals plays an important role in preventing cardiovascular diseases. (2) Methods: Thirty aged (18-month-old) male Sprague-Dawley rats were randomly divided into control and exercise groups. An aerobic exercise intervention was performed 5 days/week for 8 weeks. EPCs functions, miR-21-5p, and TSP-1 expressions were detected after the intervention. The senescence rate, proliferation, and migration of EPCs were examined after overexpression of miR-21-5p and inhibition of TSP-1 expression. (3) Results: The senescence rate, proliferation, and migration of EPCs in exercise groups were significantly improved after exercise intervention. The miR-21-5p expression was increased and the TSP-1 mRNA expression was decreased in the EPCs after the intervention. miR-21-5p overexpression can improve EPCs function and inhibit TSP-1 expression but has no effect on senescence rate. Inhibition of TSP-1 expression could improve the function and reduce the senescence rate. (4) Conclusions: Our results indicate that long-term aerobic exercise can improve the functions of EPCs in aging individuals by downregulating TSP-1 expression via miR-21-5p, which reveals the mechanism of exercise in improving cardiovascular function.
Collapse
Affiliation(s)
- Xiaoke Chen
- School of Sports Science, Beijing Sport University, Beijing 100084, China
| | - Kejia Xie
- School of Sports Science, Beijing Sport University, Beijing 100084, China
| | - Xinzheng Sun
- School of Sports Science, Beijing Sport University, Beijing 100084, China
| | - Chengzhu Zhang
- School of Sports Science, Beijing Sport University, Beijing 100084, China
| | - Hui He
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
5
|
Ghimire K, Li Y, Chiba T, Julovi SM, Li J, Ross MA, Straub AC, O’Connell PJ, Rüegg C, Pagano PJ, Isenberg JS, Rogers NM. CD47 Promotes Age-Associated Deterioration in Angiogenesis, Blood Flow and Glucose Homeostasis. Cells 2020; 9:E1695. [PMID: 32679764 PMCID: PMC7407670 DOI: 10.3390/cells9071695] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/07/2020] [Accepted: 07/11/2020] [Indexed: 02/06/2023] Open
Abstract
The aged population is currently at its highest level in human history and is expected to increase further in the coming years. In humans, aging is accompanied by impaired angiogenesis, diminished blood flow and altered metabolism, among others. A cellular mechanism that impinges upon these manifestations of aging can be a suitable target for therapeutic intervention. Here we identify cell surface receptor CD47 as a novel age-sensitive driver of vascular and metabolic dysfunction. With the natural aging process, CD47 and its ligand thrombospondin-1 were increased, concurrent with a reduction of self-renewal transcription factors OCT4, SOX2, KLF4 and cMYC (OSKM) in arteries from aged wild-type mice and older human subjects compared to younger controls. These perturbations were prevented in arteries from aged CD47-null mice. Arterial endothelial cells isolated from aged wild-type mice displayed cellular exhaustion with decreased proliferation, migration and tube formation compared to cells from aged CD47-null mice. CD47 suppressed ex vivo sprouting, in vivo angiogenesis and skeletal muscle blood flow in aged wild-type mice. Treatment of arteries from older humans with a CD47 blocking antibody mitigated the age-related deterioration in angiogenesis. Finally, aged CD47-null mice were resistant to age- and diet-associated weight gain, glucose intolerance and insulin desensitization. These results indicate that the CD47-mediated signaling maladapts during aging to broadly impair endothelial self-renewal, angiogenesis, perfusion and glucose homeostasis. Our findings provide a strong rationale for therapeutically targeting CD47 to minimize these dysfunctions during aging.
Collapse
Affiliation(s)
- Kedar Ghimire
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Rd, Sydney 2145, NSW, Australia; (S.M.J.); (J.L.); (P.J.O.)
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, BST Starzl Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA; (Y.L.); (T.C.); (A.C.S.); (P.J.P.)
| | - Yao Li
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, BST Starzl Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA; (Y.L.); (T.C.); (A.C.S.); (P.J.P.)
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, BST Starzl Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Takuto Chiba
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, BST Starzl Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA; (Y.L.); (T.C.); (A.C.S.); (P.J.P.)
| | - Sohel M. Julovi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Rd, Sydney 2145, NSW, Australia; (S.M.J.); (J.L.); (P.J.O.)
| | - Jennifer Li
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Rd, Sydney 2145, NSW, Australia; (S.M.J.); (J.L.); (P.J.O.)
| | - Mark A. Ross
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, BST, 200 Lothrop Street, Pittsburgh, PA 15261, USA;
| | - Adam C. Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, BST Starzl Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA; (Y.L.); (T.C.); (A.C.S.); (P.J.P.)
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, BST Starzl Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Philip J. O’Connell
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Rd, Sydney 2145, NSW, Australia; (S.M.J.); (J.L.); (P.J.O.)
| | - Curzio Rüegg
- Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Chemin du Musée 18, PER 17, 1700 Fribourg, Switzerland;
| | - Patrick J. Pagano
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, BST Starzl Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA; (Y.L.); (T.C.); (A.C.S.); (P.J.P.)
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, BST Starzl Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Jeffrey S. Isenberg
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, BST Starzl Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA; (Y.L.); (T.C.); (A.C.S.); (P.J.P.)
- Department of Medicine, University of Pittsburgh, BST Starzl Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Natasha M. Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Rd, Sydney 2145, NSW, Australia; (S.M.J.); (J.L.); (P.J.O.)
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, BST Starzl Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA; (Y.L.); (T.C.); (A.C.S.); (P.J.P.)
| |
Collapse
|
6
|
Isenberg JS, Roberts DD. Thrombospondin-1 in maladaptive aging responses: a concept whose time has come. Am J Physiol Cell Physiol 2020; 319:C45-C63. [PMID: 32374675 DOI: 10.1152/ajpcell.00089.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Numerous age-dependent alterations at the molecular, cellular, tissue and organ systems levels underlie the pathophysiology of aging. Herein, the focus is upon the secreted protein thrombospondin-1 (TSP1) as a promoter of aging and age-related diseases. TSP1 has several physiological functions in youth, including promoting neural synapse formation, mediating responses to ischemic and genotoxic stress, minimizing hemorrhage, limiting angiogenesis, and supporting wound healing. These acute functions of TSP1 generally require only transient expression of the protein. However, accumulating basic and clinical data reinforce the view that chronic diseases of aging are associated with accumulation of TSP1 in the extracellular matrix, which is a significant maladaptive contributor to the aging process. Identification of the relevant cell types that chronically produce and respond to TSP1 and the molecular mechanisms that mediate the resulting maladaptive responses could direct the development of therapeutic agents to delay or revert age-associated maladies.
Collapse
Affiliation(s)
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
7
|
Toba H, Lindsey ML. Extracellular matrix roles in cardiorenal fibrosis: Potential therapeutic targets for CVD and CKD in the elderly. Pharmacol Ther 2019; 193:99-120. [PMID: 30149103 PMCID: PMC6309764 DOI: 10.1016/j.pharmthera.2018.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Whereas hypertension, diabetes, and dyslipidemia are age-related risk factors for cardiovascular disease (CVD) and chronic kidney disease (CKD), aging alone is an independent risk factor. With advancing age, the heart and kidney gradually but significantly undergo inflammation and subsequent fibrosis, which eventually results in an irreversible decline in organ physiology. Through cardiorenal network interactions, cardiac dysfunction leads to and responds to renal injury, and both facilitate aging effects. Thus, a comprehensive strategy is needed to evaluate the cardiorenal aging network. Common hallmarks shared across systems include extracellular matrix (ECM) accumulation, along with upregulation of matrix metalloproteinases (MMPs) including MMP-9. The wide range of MMP-9 substrates, including ECM components and inflammatory cytokines, implicates MMP-9 in a variety of pathological and age-related processes. In particular, there is strong evidence that inflammatory cell-derived MMP-9 exacerbates cardiorenal aging. This review explores the potential therapeutic targets against CVD and CKD in the elderly, focusing on ECM and MMP roles.
Collapse
Affiliation(s)
- Hiroe Toba
- Department of Clinical Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan.
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, and Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA.
| |
Collapse
|
8
|
Rogers NM, Ghimire K, Calzada MJ, Isenberg JS. Matricellular protein thrombospondin-1 in pulmonary hypertension: multiple pathways to disease. Cardiovasc Res 2018; 113:858-868. [PMID: 28472457 DOI: 10.1093/cvr/cvx094] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/03/2017] [Indexed: 12/24/2022] Open
Abstract
Matricellular proteins are secreted molecules that have affinities for both extracellular matrix and cell surface receptors. Through interaction with structural proteins and the cells that maintain the matrix these proteins can alter matrix strength. Matricellular proteins exert control on cell activity primarily through engagement of membrane receptors that mediate outside-in signaling. An example of this group is thrombospondin-1 (TSP1), first identified as a component of the secreted product of activated platelets. As a result, TSP1 was initially studied in relation to coagulation, growth factor signaling and angiogenesis. More recently, TSP1 has been found to alter the effects of the gaseous transmitter nitric oxide (NO). This latter capacity has provided motivation to study TSP1 in diseases associated with loss of NO signaling as observed in cardiovascular disease and pulmonary hypertension (PH). PH is characterized by progressive changes in the pulmonary vasculature leading to increased resistance to blood flow and subsequent right heart failure. Studies have linked TSP1 to pre-clinical animal models of PH and more recently to clinical PH. This review will provide analysis of the vascular and non-vascular effects of TSP1 that contribute to PH, the experimental and translational studies that support a role for TSP1 in disease promotion and frame the relevance of these findings to therapeutic strategies.
Collapse
Affiliation(s)
- Natasha M Rogers
- Medicine, Westmead Clinical School, University of Sydney, Sydney, New South Wales 2145, Australia
| | - Kedar Ghimire
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Maria J Calzada
- Department of Medicine, Universidad Autónoma of Madrid, Diego de León, Hospital Universitario of the Princesa, 62?28006 Madrid, Spain
| | - Jeffrey S Isenberg
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
9
|
Rosini S, Pugh N, Bonna AM, Hulmes DJS, Farndale RW, Adams JC. Thrombospondin-1 promotes matrix homeostasis by interacting with collagen and lysyl oxidase precursors and collagen cross-linking sites. Sci Signal 2018; 11:eaar2566. [PMID: 29844053 DOI: 10.1126/scisignal.aar2566] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Fibrillar collagens of the extracellular matrix are critical for tissue structure and physiology; however, excessive or abnormal deposition of collagens is a defining feature of fibrosis. Regulatory mechanisms that act on collagen fibril assembly potentially offer new targets for antifibrotic treatments. Tissue weakening, altered collagen fibril morphologies, or both, are shared phenotypes of mice lacking matricellular thrombospondins. Thrombospondin-1 (TSP1) plays an indirect role in collagen homeostasis through interactions with matrix metalloproteinases and transforming growth factor-β1 (TGF-β1). We found that TSP1 also affects collagen fibril formation directly. Compared to skin from wild-type mice, skin from Thbs1-/- mice had reduced collagen cross-linking and reduced prolysyl oxidase (proLOX) abundance with increased conversion to catalytically active LOX. In vitro, TSP1 bound to both the C-propeptide domain of collagen I and the highly conserved KGHR sequences of the collagen triple-helical domain that participate in cross-linking. TSP1 also bound to proLOX and inhibited proLOX processing by bone morphogenetic protein-1. In human dermal fibroblasts (HDFs), TSP1 and collagen I colocalized in intracellular vesicles and on extracellular collagen fibrils, whereas TSP1 and proLOX colocalized only in intracellular vesicles. Inhibition of LOX-mediated collagen cross-linking did not prevent the extracellular association between collagen and TSP1; however, treatment of HDFs with KGHR-containing, TSP1-binding, triple-helical peptides disrupted the collagen-TSP1 association, perturbed the collagen extracellular matrix, and increased myofibroblastic differentiation in a manner that depended on TGF-β receptor 1. Thus, the extracellular KGHR-dependent interaction of TSP1 with fibrillar collagens contributes to fibroblast homeostasis.
Collapse
Affiliation(s)
- Silvia Rosini
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Nicholas Pugh
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Arkadiusz M Bonna
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - David J S Hulmes
- Tissue Biology and Therapeutic Engineering Unit (LBTI), UMR5305, CNRS/University of Lyon I, 69367 Lyon Cedex 07, France
| | - Richard W Farndale
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | | |
Collapse
|
10
|
Zhao C, Isenberg JS, Popel AS. Human expression patterns: qualitative and quantitative analysis of thrombospondin-1 under physiological and pathological conditions. J Cell Mol Med 2018; 22:2086-2097. [PMID: 29441713 PMCID: PMC5867078 DOI: 10.1111/jcmm.13565] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/07/2018] [Indexed: 12/12/2022] Open
Abstract
Thrombospondin-1 (TSP-1), a matricellular protein and one of the first endogenous anti-angiogenic molecules identified, has long been considered a potent modulator of human diseases. While the therapeutic effect of TSP-1 to suppress cancer was investigated in both research and clinical settings, the mechanisms of how TSP-1 is regulated in cancer remain elusive, and the scientific answers to the question of whether TSP-1 expressions can be utilized as diagnostic or prognostic marker for patients with cancer are largely inconsistent. Moreover, TSP-1 plays crucial functions in angiogenesis, inflammation and tissue remodelling, which are essential biological processes in the progression of many cardiovascular diseases, and therefore, its dysregulated expressions in such conditions may have therapeutic significance. Herein, we critically analysed the literature pertaining to TSP-1 expression in circulating blood and pathological tissues in various types of cancer as well as cardiovascular and inflammation-related diseases in humans. We compare the secretion rates of TSP-1 by different cancer and non-cancer cells and discuss the potential connection between the expression changes of TSP-1 and vascular endothelial growth factor (VEGF) observed in patients with cancer. Moreover, the pattern and emerging significance of TSP-1 profiles in cardiovascular disease, such as peripheral arterial disease, diabetes and other related non-cancer disorders, are highlighted. The analysis of published TSP-1 data presented in this review may have implications for the future exploration of novel TSP-1-based treatment strategies for cancer and cardiovascular-related diseases.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Biomedical EngineeringSchool of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| | - Jeffrey S. Isenberg
- Division of Pulmonary, Allergy and Critical CareDepartment of MedicineHeart, Lung, Blood and Vascular Medicine InstituteUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Aleksander S. Popel
- Department of Biomedical EngineeringSchool of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| |
Collapse
|
11
|
Li L, Zhao Q, Kong W. Extracellular matrix remodeling and cardiac fibrosis. Matrix Biol 2018; 68-69:490-506. [PMID: 29371055 DOI: 10.1016/j.matbio.2018.01.013] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/19/2022]
Abstract
Cardiac fibrosis, characterized by excessive deposition of extracellular matrix (ECM) proteins in the myocardium, distorts the architecture of the myocardium, facilitates the progression of arrhythmia and cardiac dysfunction, and influences the clinical course and outcome in patients with heart failure. This review describes the composition and homeostasis in normal cardiac interstitial matrix and introduces cellular and molecular mechanisms involved in cardiac fibrosis. We also characterize the ECM alteration in the fibrotic response under diverse cardiac pathological conditions and depict the role of matricellular proteins in the pathogenesis of cardiac fibrosis. Moreover, the diagnosis of cardiac fibrosis based on imaging and biomarker detection and the therapeutic strategies are addressed. Understanding the comprehensive molecules and pathways involved in ECM homeostasis and remodeling may provide important novel potential targets for preventing and treating cardiac fibrosis.
Collapse
Affiliation(s)
- Li Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Qian Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
12
|
Stenina-Adognravi O, Plow EF. Thrombospondin-4 in tissue remodeling. Matrix Biol 2017; 75-76:300-313. [PMID: 29138119 DOI: 10.1016/j.matbio.2017.11.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/11/2017] [Accepted: 11/08/2017] [Indexed: 01/09/2023]
Abstract
Thrombospondin-4 (TSP-4) belongs to the thrombospondin protein family that consists of five highly homologous members. A number of novel functions have been recently assigned to TSP-4 in cardiovascular and nervous systems, inflammation, cancer, and the motor unit, which have attracted attention to this extracellular matrix (ECM) protein. These newly discovered functions set TSP-4 apart from other thrombospondins. For example, TSP-4 promotes angiogenesis while other TSPs either prevent it or have no effect on new blood vessel growth; TSP-4 reduces fibrosis and collagen production while TSP-1 and TSP-2 promote fibrosis in several organs; unlike other TSPs, TSP-4 appears to have some structural functions in ECM. The current information about TSP-4 functions in different organs and physiological systems suggests that this evolutionary conserved protein is a major regulator of the extracellular matrix (ECM) organization and production and tissue remodeling during the embryonic development and response to injury. In this review article, we summarize the properties and functions of TSP-4 and discuss its role in tissue remodeling.
Collapse
Affiliation(s)
- Olga Stenina-Adognravi
- Department of Molecular Cardiology, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA.
| | - Edward F Plow
- Department of Molecular Cardiology, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA.
| |
Collapse
|
13
|
LeBlanc AJ, Kelm NQ. Thrombospondin-1, Free Radicals, and the Coronary Microcirculation: The Aging Conundrum. Antioxid Redox Signal 2017; 27:785-801. [PMID: 28762749 PMCID: PMC5647494 DOI: 10.1089/ars.2017.7292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SIGNIFICANCE Successful matching of cardiac metabolism to perfusion is accomplished primarily through vasodilation of the coronary resistance arterioles, but the mechanism that achieves this effect changes significantly as aging progresses and involves the contribution of reactive oxygen species (ROS). Recent Advances: A matricellular protein, thrombospondin-1 (Thbs-1), has been shown to be a prolific contributor to the production and modulation of ROS in large conductance vessels and in the peripheral circulation. Recently, the presence of physiologically relevant circulating Thbs-1 levels was proven to also disrupt vasodilation to nitric oxide (NO) in coronary arterioles from aged animals, negatively impacting coronary blood flow reserve. CRITICAL ISSUES This review seeks to reconcile how ROS can be successfully utilized as a substrate to mediate vasoreactivity in the coronary microcirculation as "normal" aging progresses, but will also examine how Thbs-1-induced ROS production leads to dysfunctional perfusion and eventual ischemia and why this is more of a concern in advancing age. FUTURE DIRECTIONS Current therapies that may effectively disrupt Thbs-1 and its receptor CD47 in the vascular wall and areas for future exploration will be discussed. Antioxid. Redox Signal. 27, 785-801.
Collapse
Affiliation(s)
- Amanda J LeBlanc
- Department of Physiology, Cardiovascular Innovation Institute, University of Louisville , Louisville, Kentucky
| | - Natia Q Kelm
- Department of Physiology, Cardiovascular Innovation Institute, University of Louisville , Louisville, Kentucky
| |
Collapse
|
14
|
Thrombospondins: A Role in Cardiovascular Disease. Int J Mol Sci 2017; 18:ijms18071540. [PMID: 28714932 PMCID: PMC5536028 DOI: 10.3390/ijms18071540] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 12/16/2022] Open
Abstract
Thrombospondins (TSPs) represent extracellular matrix (ECM) proteins belonging to the TSP family that comprises five members. All TSPs have a complex multidomain structure that permits the interaction with various partners including other ECM proteins, cytokines, receptors, growth factors, etc. Among TSPs, TSP1, TSP2, and TSP4 are the most studied and functionally tested. TSP1 possesses anti-angiogenic activity and is able to activate transforming growth factor (TGF)-β, a potent profibrotic and anti-inflammatory factor. Both TSP2 and TSP4 are implicated in the control of ECM composition in hypertrophic hearts. TSP1, TSP2, and TSP4 also influence cardiac remodeling by affecting collagen production, activity of matrix metalloproteinases and TGF-β signaling, myofibroblast differentiation, cardiomyocyte apoptosis, and stretch-mediated enhancement of myocardial contraction. The development and evaluation of TSP-deficient animal models provided an option to assess the contribution of TSPs to cardiovascular pathology such as (myocardial infarction) MI, cardiac hypertrophy, heart failure, atherosclerosis, and aortic valve stenosis. Targeting of TSPs has a significant therapeutic value for treatment of cardiovascular disease. The activation of cardiac TSP signaling in stress and pressure overload may be therefore beneficial.
Collapse
|
15
|
Kuo AH, Li C, Li J, Huber HF, Nathanielsz PW, Clarke GD. Cardiac remodelling in a baboon model of intrauterine growth restriction mimics accelerated ageing. J Physiol 2017; 595:1093-1110. [PMID: 27988927 PMCID: PMC5309359 DOI: 10.1113/jp272908] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/15/2016] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Rodent models of intrauterine growth restriction (IUGR) successfully identify mechanisms that can lead to short-term and long-term detrimental cardiomyopathies but differences between rodent and human cardiac physiology and placental-fetal development indicate a need for models in precocial species for translation to human development. We developed a baboon model for IUGR studies using a moderate 30% global calorie restriction of pregnant mothers and used cardiac magnetic resonance imaging to evaluate offspring heart function in early adulthood. Impaired diastolic and systolic cardiac function was observed in IUGR offspring with differences between male and female subjects, compared to their respective controls. Aspects of cardiac impairment found in the IUGR offspring were similar to those found in normal controls in a geriatric cohort. Understanding early cardiac biomarkers of IUGR using non-invasive imaging in this susceptible population, especially taking into account sexual dimorphisms, will aid recognition of the clinical presentation, development of biomarkers suitable for use in humans and management of treatment strategies. ABSTRACT Extensive rodent studies have shown that reduced perinatal nutrition programmes chronic cardiovascular disease. To enable translation to humans, we developed baboon offspring cohorts from mothers fed ad libitum (control) or 70% of the control ad libitum diet in pregnancy and lactation, which were growth restricted at birth. We hypothesized that intrauterine growth restriction (IUGR) offspring hearts would show impaired function and a premature ageing phenotype. We studied IUGR baboons (8 male, 8 female, 5.7 years), control offspring (8 male, 8 female, 5.6 years - human equivalent approximately 25 years), and normal elderly (OLD) baboons (6 male, 6 female, mean 15.9 years). Left ventricular (LV) morphology and systolic and diastolic function were evaluated with cardiac MRI and normalized to body surface area. Two-way ANOVA by group and sex (with P < 0.05) indicated ejection fraction, 3D sphericity indices, cardiac index, normalized systolic volume, normalized LV wall thickness, and average filling rate differed by group. Group and sex differences were found for normalized LV wall thickening and normalized myocardial mass, without interactions. Normalized peak LV filling rate and diastolic sphericity index were not correlated in control but strongly correlated in OLD and IUGR baboons. IUGR programming in baboons produces myocardial remodelling, reduces systolic and diastolic function, and results in the emergence of a premature ageing phenotype in the heart. To our knowledge, this is the first demonstration of the specific characteristics of cardiac programming and early life functional decline with ageing in an IUGR non-human primate model. Further studies across the life span will determine progression of cardiac dysfunction.
Collapse
Affiliation(s)
- Anderson H. Kuo
- Department of RadiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTXUSA
| | - Cun Li
- Department of Animal ScienceUniversity of WyomingLaramieWYUSA
| | - Jinqi Li
- Research Imaging InstituteUniversity of Texas Health Science Center at San AntonioSan AntonioTXUSA
| | | | - Peter W. Nathanielsz
- Department of Animal ScienceUniversity of WyomingLaramieWYUSA
- Southwest National Primate CenterSan AntonioTXUSA
| | - Geoffrey D. Clarke
- Department of RadiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTXUSA
- Research Imaging InstituteUniversity of Texas Health Science Center at San AntonioSan AntonioTXUSA
- Southwest National Primate CenterSan AntonioTXUSA
| |
Collapse
|
16
|
Zhao C, Isenberg JS, Popel AS. Transcriptional and Post-Transcriptional Regulation of Thrombospondin-1 Expression: A Computational Model. PLoS Comput Biol 2017; 13:e1005272. [PMID: 28045898 PMCID: PMC5207393 DOI: 10.1371/journal.pcbi.1005272] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/29/2016] [Indexed: 01/09/2023] Open
Abstract
Hypoxia is an important physiological stress signal that drives angiogenesis, the formation of new blood vessels. Besides an increase in the production of pro-angiogenic signals such as vascular endothelial growth factor (VEGF), hypoxia also stimulates the production of anti-angiogenic signals. Thrombospondin-1 (TSP-1) is one of the anti-angiogenic factors whose synthesis is driven by hypoxia. Cellular synthesis of TSP-1 is tightly regulated by different intermediate biomolecules including proteins that interact with hypoxia-inducible factors (HIFs), transcription factors that are activated by receptor and intracellular signaling, and microRNAs which are small non-coding RNA molecules that function in post-transcriptional modification of gene expression. Here we present a computational model that describes the mechanistic interactions between intracellular biomolecules and cooperation between signaling pathways that together make up the complex network of TSP-1 regulation both at the transcriptional and post-transcriptional level. Assisted by the model, we conduct in silico experiments to compare the efficacy of different therapeutic strategies designed to modulate TSP-1 synthesis in conditions that simulate tumor and peripheral arterial disease microenvironment. We conclude that TSP-1 production in endothelial cells depends on not only the availability of certain growth factors but also the fine-tuned signaling cascades that are initiated by hypoxia.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| | - Jeffrey S. Isenberg
- Vascular Medicine Institute, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Aleksander S. Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
17
|
Nevitt C, McKenzie G, Christian K, Austin J, Hencke S, Hoying J, LeBlanc A. Physiological levels of thrombospondin-1 decrease NO-dependent vasodilation in coronary microvessels from aged rats. Am J Physiol Heart Circ Physiol 2016; 310:H1842-50. [PMID: 27199114 DOI: 10.1152/ajpheart.00086.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/21/2016] [Indexed: 11/22/2022]
Abstract
Aging and cardiovascular disease are associated with the loss of nitric oxide (NO) signaling and a decline in the ability to increase coronary blood flow reserve (CFR). Thrombospondin-1 (Thbs-1), through binding of CD47, has been shown to limit NO-dependent vasodilation in peripheral vascular beds via formation of superoxide (O2 (-)). The present study tests the hypothesis that, similar to the peripheral vasculature, blocking CD47 will improve NO-mediated vasoreactivity in coronary arterioles from aged individuals, resulting in improved CFR. Isolated coronary arterioles from young (4 mo) or old (24 mo) female Fischer 344 rats were challenged with the NO donor, DEA-NONO-ate (1 × 10(-7) to 1 × 10(-4) M), and vessel relaxation and O2 (-) production was measured before and after Thbs-1, αCD47, and/or Tempol and catalase exposure. In vivo CFR was determined in anesthetized rats (1-3% isoflurane-balance O2) via injected microspheres following control IgG or αCD47 treatment (45 min). Isolated coronary arterioles from young and old rats relax similarly to exogenous NO, but addition of 2.2 nM Thbs-1 inhibited NO-mediated vasodilation by 24% in old rats, whereas young vessels were unaffected. Thbs-1 increased O2 (-) production in coronary arterioles from rats of both ages, but this was exaggerated in old rats. The addition of CD47 blocking antibody completely restored NO-dependent vasodilation in isolated arterioles from aged rats and attenuated O2 (-) production. Furthermore, αCD47 treatment increased CFR from 9.6 ± 9.3 (IgG) to 84.0 ± 23% in the left ventricle in intact, aged animals. These findings suggest that the influence of Thbs-1 and CD47 on coronary perfusion increases with aging and may be therapeutically targeted to reverse coronary microvascular dysfunction.
Collapse
Affiliation(s)
- Chris Nevitt
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky; Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky; and
| | - Grant McKenzie
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| | - Katelyn Christian
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| | - Jeff Austin
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| | - Sarah Hencke
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| | - James Hoying
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky; Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Amanda LeBlanc
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky; Department of Physiology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
18
|
Fonfara S, Hetzel U, Hahn S, Kipar A. Age- and gender-dependent myocardial transcription patterns of cytokines and extracellular matrix remodelling enzymes in cats with non-cardiac diseases. Exp Gerontol 2015; 72:117-23. [DOI: 10.1016/j.exger.2015.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/01/2015] [Accepted: 09/25/2015] [Indexed: 11/29/2022]
|
19
|
Rosin NL, Sopel MJ, Falkenham A, Lee TDG, Légaré JF. Disruption of collagen homeostasis can reverse established age-related myocardial fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:631-42. [PMID: 25701883 DOI: 10.1016/j.ajpath.2014.11.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 10/29/2014] [Accepted: 11/06/2014] [Indexed: 02/06/2023]
Abstract
Heart failure, the leading cause of hospitalization of elderly patients, is correlated with myocardial fibrosis (ie, deposition of excess extracellular matrix proteins such as collagen). A key regulator of collagen homeostasis is lysyl oxidase (LOX), an enzyme responsible for cross-linking collagen fibers. Our objective was to ameliorate age-related myocardial fibrosis by disrupting collagen cross-linking through inhibition of LOX. The nonreversible LOX inhibitor β-aminopropionitrile (BAPN) was administered by osmotic minipump to 38-week-old C57BL/6J male mice for 2 weeks. Sirius Red staining of myocardial cross sections revealed a reduction in fibrosis, compared with age-matched controls (5.84 ± 0.30% versus 10.17 ± 1.34%) (P < 0.05), to a level similar to that of young mice at 8 weeks (4.9 ± 1.2%). BAPN significantly reduced COL1A1 mRNA, compared with age-matched mice (3.5 ± 0.3-fold versus 15.2 ± 4.9-fold) (P < 0.05), suggesting that LOX is involved in regulation of collagen synthesis. In accord, fibrotic factor mRNA expression was reduced after BAPN. There was also a novel increase in Ly6C expression by resident macrophages. By interrupting collagen cross-linking by LOX, the BAPN treatment reduced myocardial fibrosis. A novel observation is that BAPN treatment modulated the transforming growth factor-β pathway, collagen synthesis, and the resident macrophage population. This is especially valuable in terms of potential therapeutic targeting of collagen regulation and thereby age-related myocardial fibrosis.
Collapse
Affiliation(s)
- Nicole L Rosin
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mryanda J Sopel
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alec Falkenham
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Timothy D G Lee
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jean-Francois Légaré
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
20
|
Massaro M, Martinelli R, Gatta V, Scoditti E, Pellegrino M, Carluccio MA, Calabriso N, Buonomo T, Stuppia L, Storelli C, De Caterina R. Transcriptome-based identification of new anti-inflammatory and vasodilating properties of the n-3 fatty acid docosahexaenoic acid in vascular endothelial cell under proinflammatory conditions [corrected]. PLoS One 2015; 10:e0129652. [PMID: 26114549 PMCID: PMC4482638 DOI: 10.1371/journal.pone.0129652] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 05/12/2015] [Indexed: 01/01/2023] Open
Abstract
Scope High intakes of n-3 fatty acids exert anti-inflammatory effects and cardiovascular protection, but the underlying molecular basis is incompletely defined. By genome-wide analysis we searched for novel effects of docosahexaenoic acid (DHA) on gene expression and pathways in human vascular endothelium under pro-inflammatory conditions. Methods and Results Human umbilical vein endothelial cells were treated with DHA and then stimulated with interleukin(IL)-1β. Total RNA was extracted, and gene expression examined by DNA microarray. DHA alone altered the expression of 188 genes, decreasing 92 and increasing 96. IL-1β changed the expression of 2031 genes, decreasing 997 and increasing 1034. Treatment with DHA before stimulation significantly affected the expression of 116 IL-1β-deregulated genes, counter-regulating the expression of 55 genes among those decreased and of 61 among those increased. Functional and network analyses identified immunological, inflammatory and metabolic pathways as the most affected. Newly identified DHA-regulated genes are involved in stemness, cellular growth, cardiovascular system function and cancer, and included cytochrome p450 4F2(CYP4F2), transforming growth factor(TGF)-β2, Cluster of Differentiation (CD)47, caspase recruitment domain(CARD)11 and phosphodiesterase(PDE)5α. Conclusions Endothelial exposure to DHA regulates novel genes and related pathways. Such unbiased identification should increase our understanding of mechanisms by which n-3 fatty acids affect human diseases.
Collapse
Affiliation(s)
- Marika Massaro
- National Research Council (CNR), Institute of Clinical Physiology, Lecce, Italy
| | - Rosanna Martinelli
- CEINGE Biotecnologie Avanzate, Naples, Italy
- Department of Medicine and Surgery of Salerno University, Salerno, Italy
| | - Valentina Gatta
- “Gabriele d’Annunzio” University and Center of Excellence on Aging, Chieti, Italy
| | - Egeria Scoditti
- National Research Council (CNR), Institute of Clinical Physiology, Lecce, Italy
| | - Mariangela Pellegrino
- National Research Council (CNR), Institute of Clinical Physiology, Lecce, Italy
- Department of Biological and Environmental Science and Technology (Disteba), University of Salento, Lecce, Italy
| | | | - Nadia Calabriso
- National Research Council (CNR), Institute of Clinical Physiology, Lecce, Italy
| | | | - Liborio Stuppia
- “Gabriele d’Annunzio” University and Center of Excellence on Aging, Chieti, Italy
| | - Carlo Storelli
- Department of Biological and Environmental Science and Technology (Disteba), University of Salento, Lecce, Italy
| | - Raffaele De Caterina
- “Gabriele d’Annunzio” University and Center of Excellence on Aging, Chieti, Italy
- Fondazione Toscana “Gabriele Monasterio”, Pisa, Italy
- * E-mail:
| |
Collapse
|
21
|
|
22
|
Stenina-Adognravi O. Invoking the power of thrombospondins: regulation of thrombospondins expression. Matrix Biol 2014; 37:69-82. [PMID: 24582666 DOI: 10.1016/j.matbio.2014.02.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/05/2014] [Accepted: 02/08/2014] [Indexed: 12/21/2022]
Abstract
Increasing evidence suggests critical functions of thrombospondins (TSPs) in a variety of physiological and pathological processes. With the growing understanding of the importance of these matricellular proteins, the need to understand the mechanisms of regulation of their expression and potential approaches to modulate their levels is also increasing. The regulation of TSP expression is multi-leveled, cell- and tissue-specific, and very precise. However, the knowledge of mechanisms modulating the levels of TSPs is fragmented and incomplete. This review discusses the known mechanisms of regulation of TSP levels and the gaps in our knowledge that prevent us from developing strategies to modulate the expression of these physiologically important proteins.
Collapse
Affiliation(s)
- Olga Stenina-Adognravi
- Department of Molecular Cardiology, Cleveland Clinic, 9500 Euclid Ave NB50, Cleveland, OH 44195, United States.
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Thrombospondins (TSPs) are secreted extracellular matrix (ECM) proteins from TSP family, which consists of five homologous members. They share a complex domain structure and have numerous binding partners in ECM and multiple cell surface receptors. Information that has emerged over the past decade identifies TSPs as important mediators of cellular homeostasis, assigning new important roles in cardiovascular pathology to these proteins. RECENT FINDINGS Recent studies of the functions of TSP in the cardiovascular system, diabetes and aging, which placed several TSPs in a position of critical regulators, demonstrated the involvement of these proteins in practically every aspect of cardiovascular pathophysiology related to atherosclerosis: inflammation, immunity, leukocyte recruitment and function, function of vascular cells, angiogenesis, and responses to hypoxia, ischemia and hyperglycemia. TSPs are also critically important in the development and ultimate outcome of the complications associated with atherosclerosis--myocardial infarction, and heart hypertrophy and failure. Their expression and significance increase with age and with the progression of diabetes, two major contributors to the development of atherosclerosis and its complications. SUMMARY This overview of recent literature examines the latest information on the newfound functions of TSPs that emphasize the importance of ECM in cardiovascular homeostasis and pathology. The functions of TSPs in myocardium, vasculature, vascular complications of diabetes, aging and immunity are discussed.
Collapse
|