1
|
Gao X, Zheng Q, Chen S, He H, Wei Y, Zhang T, Wang Y, Wang B, Huang D, Zhang S, Zhang S, Zhai J. BDE-209 toxicity: From spermiogenesis to sexual maturity in F1 male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 297:118231. [PMID: 40311472 DOI: 10.1016/j.ecoenv.2025.118231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
Most studies of enviromental toxic chemicals focused on the meiosis stage during spermatogenesis, however, the research on the spermiogenesis damage phenotype of BDE-209 is limited. This study aimed to evaluate the processes by which BDE-209 regulates the formation of acrosomes and mitochondrial sheath (MS), key structures during spermiogenesis and fertilization. ICR mice were divided into control, low, medium, and high-dose BDE-209 groups and treated for 42 days. A comprehensive method combining ultrastructural analysis, transcriptomics, molecular biology, and fertility experiments was adopted. In mice exposed to BDE-209, testicular dysplasia, altered sex hormone concentrations, decreased semen quality, and head and tail deformities occurred. Chromatin condensation failure was present in BDE-209-exposed spermatozoa with decreased mRNA and protein levels of PRM1 and TNP1. BDE-209 disrupts the acrosome biogenesis process by disrupting the Golgi structure and the apical ectoplasmic specialization (ES) structure. BDE-209 exposure caused multiple damage to the MS and down-regulated the mRNA levels of Akap3, Akap4, Cfap44, Ccdc40, Dhah1, etc. These injuries resulted in subfertility in BDE-209 male mice, and the male offspring also exhibited gonadal dysplasia, sex hormonal changes, and decreased semen quality. Conclusively, BDE-209 exposure induced spermiogenesis defects and subfertility. F0 and F1 males showed a similar injury phenotype. This study advanced the understanding of the damage phenotype of spermiogenesis and complemented the reproductive toxicity of F1 male mice. These findings might be important for the study of related molecular mechanisms and the mitigation of BDE-209 exposure on offspring development.
Collapse
Affiliation(s)
- Xin Gao
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Qi Zheng
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Siju Chen
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Huan He
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Yu Wei
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Taifa Zhang
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Yi Wang
- Department of Biological Engineering, School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Bo Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Dake Huang
- Department of Microbiology and Parasitology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Shengquan Zhang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Sumei Zhang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China.
| | - Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China.
| |
Collapse
|
2
|
Zhu J, Guo S, Cao J, Zhao H, Ma Y, Zou H, Ju H, Liu Z, Li J. Epigenetic Modifications Are Involved in Transgenerational Inheritance of Cadmium Reproductive Toxicity in Mouse Oocytes. Int J Mol Sci 2024; 25:10996. [PMID: 39456778 PMCID: PMC11507422 DOI: 10.3390/ijms252010996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Maternal cadmium exposure during pregnancy has been demonstrated to have detrimental effects on offspring development. However, the impact of maternal cadmium exposure on offspring oocytes remains largely unknown, and the underlying mechanisms are not fully understood. In this study, we found that maternal cadmium exposure during pregnancy resulted in selective alteration in epigenetic modifications of mouse oocytes in offspring, including a decrease in H3K4me2 and H4K12ac, as well as an increase in DNA methylation of H19. Although ROS levels and mitochondrial activity remain at normal levels, the DNA damage marker γH2AX was significantly increased and the DNA repair marker DNA-PKcs was remarkably decreased in offspring oocytes from maternal cadmium exposure. These alterations are responsible for the decrease in the quality of mouse oocytes in offspring induced by maternal cadmium exposure. As a result, the meiotic maturation of oocytes and subsequent early embryonic development are influenced by maternal cadmium exposure. RNA-seq results showed that maternal cadmium exposure elicits modifications in the expression of genes associated with metabolism, signal transduction, and endocrine regulation in offspring ovaries, which also contribute to the disorders of oocyte maturation and failures in early embryonic development. Our research provides direct evidence of transgenerational epigenetic inheritance of cadmium reproductive toxicity in mouse germ cells.
Collapse
Affiliation(s)
- Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.G.); (J.C.); (H.Z.); (Y.M.); (H.Z.); (H.J.); (Z.L.)
- Guangling College, Yangzhou University, Yangzhou 225000, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Shuai Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.G.); (J.C.); (H.Z.); (Y.M.); (H.Z.); (H.J.); (Z.L.)
| | - Jiangqin Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.G.); (J.C.); (H.Z.); (Y.M.); (H.Z.); (H.J.); (Z.L.)
| | - Hangbin Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.G.); (J.C.); (H.Z.); (Y.M.); (H.Z.); (H.J.); (Z.L.)
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.G.); (J.C.); (H.Z.); (Y.M.); (H.Z.); (H.J.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.G.); (J.C.); (H.Z.); (Y.M.); (H.Z.); (H.J.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Huiming Ju
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.G.); (J.C.); (H.Z.); (Y.M.); (H.Z.); (H.J.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.G.); (J.C.); (H.Z.); (Y.M.); (H.Z.); (H.J.); (Z.L.)
- Guangling College, Yangzhou University, Yangzhou 225000, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Junwei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.G.); (J.C.); (H.Z.); (Y.M.); (H.Z.); (H.J.); (Z.L.)
- Guangling College, Yangzhou University, Yangzhou 225000, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Zhang Y, Wang B, Sun W, Wang G, Liu Z, Zhang X, Ding J, Han Y, Zhang H. Paternal exposures to endocrine-disrupting chemicals induce intergenerational epigenetic influences on offspring: A review. ENVIRONMENT INTERNATIONAL 2024; 187:108689. [PMID: 38688236 DOI: 10.1016/j.envint.2024.108689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are ubiquitous in ecological environments and have become a great issue of public health concern since the 1990 s. There is a deep scientific understanding of the toxicity of EDCs. However, recent studies have found that the abnormal physiological functions of the parents caused by EDCs could be transmitted to their unexposed offspring, leading to intergenerational toxicity. We questioned whether sustained epigenetic changes occur through the male germline. In this review, we (1) systematically searched the available research on the intergenerational impacts of EDCs in aquatic and mammal organisms, including 42 articles, (2) summarized the intergenerational genetic effects, such as decreased offspring survival, abnormal reproductive dysfunction, metabolic disorders, and behavioral abnormalities, (3) summarized the mechanisms of intergenerational toxicity through paternal interactions, and (4) propose suggestions on future research directions to develop a deeper understanding of the ecological risk of EDCs.
Collapse
Affiliation(s)
- Yinan Zhang
- Hangzhou Normal University, Hangzhou 310018, China
| | - Bingyi Wang
- Hangzhou Normal University, Hangzhou 310018, China
| | - Wenhui Sun
- Hangzhou Normal University, Hangzhou 310018, China
| | | | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou 310018, China; Hangzhou International Urbanology Research Center, Hangzhou 311121, China
| | | | - Jiafeng Ding
- Hangzhou Normal University, Hangzhou 310018, China
| | - Yu Han
- Hangzhou Normal University, Hangzhou 310018, China
| | - Hangjun Zhang
- Hangzhou Normal University, Hangzhou 310018, China; Hangzhou International Urbanology Research Center, Hangzhou 311121, China.
| |
Collapse
|
4
|
Hao F, Bu Y, Huang S, Li W, Feng H, Wang Y. Maternal exposure to deltamethrin during pregnancy and lactation impairs neurodevelopment of male offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116196. [PMID: 38461575 DOI: 10.1016/j.ecoenv.2024.116196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Deltamethrin (DM) is a highly effective and widely used pyrethroid pesticide. It is an environmental factor affecting public and occupational health and exerts direct toxic effects on the central nervous system. As the major target organs for neurotoxicity of DM, the hippocampus and the cerebellum are critical to the learning and motor function. Pregnant Wistar rats were randomly divided into four groups and gavaged at doses of 0, 1, 4or 10 mg/kg/d DM from gestational day (GD) 0 to postnatal day (PN) 21. The PC12 cells were selected to further verify the regulatory mechanisms of DM on the neurodevelopmental injury. We found that maternal exposure to DM caused learning, memory and motor dysfunction in male offspring. Maternal exposure to DM induced the decrease in the density of hippocampal dendritic spines in male offspring through the reduced expression of M1 mAchRs, which in turn reduced the mediated AKT/mTOR signaling pathway, contributing to the inhibition of dynamic changes of GluA1. Meanwhile, DM exposure inhibited the BDNF/TrkB signaling pathway, thereby reducing phosphorylation of stathmin and impairing cerebellar purkinje cell dendrite growth and development. Taken together, maternal exposure to DM during pregnancy and lactation could impair neurodevelopment of male offspring.
Collapse
Affiliation(s)
- Fei Hao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China; The Center for Disease Control and Prevention, Dalian Jinzhou New District, Dalian, China
| | - Ye Bu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China; Department of Planned Immunization, Liaoning Provincial Center for Disease Control and Prevention, Shenyang, China
| | - Shasha Huang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Wanqi Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Huiwen Feng
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Yuan Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Tan LL, Xiong YW, Zhang J, Li DX, Huang Y, Wang H. Like father, like daughter:Paternal cadmium exposure causes hepatic glucose metabolic disorder and phospholipids accumulation in adult female offspring. CHEMOSPHERE 2023; 338:139437. [PMID: 37451636 DOI: 10.1016/j.chemosphere.2023.139437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/21/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Cadmium (Cd), is a well-known reproductive toxicant. The impacts of paternal Cd exposure on offspring glucose and lipid metabolism remain unclear, despite the abundance of adverse reports following early exposure from the mother. Here, we assessed paternally acquired metabolic derailment using a mouse model. LC-MS/MS, transcriptomics and molecular experimental techniques were subsequently applied in this study to explore the potential mechanism. We found that paternal Cd exposure caused glucose intolerance, lower insulin sensitivity and abnormal hepatic glycogen storage in adult female offspring, but not in males. LC-MS/MS data showed that hepatic phospholipids accumulation was also only observed in adult female offspring after paternal Cd exposure. Gene expression data showed that the level of insulin signaling and lipid transport-related genes was decreased in Cd-treated adult female offspring livers. Meanwhile, AHR, a transcription factor that combines with phospholipids to promote insulin resistance, was increased in Cd-treated adult female offspring livers. In addition, the escalation of the afore-mentioned lipid metabolites in the liver occurred as early as fetal stages in the female pups following paternal Cd exposure, suggesting the potential for these lipid species to be selected as early markers of disease for metabolic derailment later in life. Altogether, paternal Cd exposure causes offspring glucose metabolism disorder and phospholipids accumulation in a sex-dependent manner. This study provides a theoretical framework for future understanding of paternal-originated metabolic diseases.
Collapse
Affiliation(s)
- Lu-Lu Tan
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Dai-Xin Li
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| |
Collapse
|
6
|
Zhang Y, Zhou J, Zeng L, Xiong Y, Wang X, Xiang W, Su P. Paternal cadmium exposure affects estradiol synthesis by impairing intracellular cholesterol homeostasis and mitochondrial function in offspring female mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115280. [PMID: 37481860 DOI: 10.1016/j.ecoenv.2023.115280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/29/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal commonly found in nature and an endocrine disrupting chemical (EDC). Previous studies found that Cd can damage several organs, including the kidneys, bones, cardiovascular system and reproductive system. However, the effect of paternal Cd exposure on the offspring is unclear. In this study, 1 mg/kg of cadmium chloride (CdCl2) was injected intraperitoneally every other day in 8-week-old C57BL/6 J male mice to study the effects on their female offspring. Our results showed an increase in body weight, water intake and food intake in F1 female mice from the Cd-exposed group. The development of secondary follicles and antral follicles in the ovaries of Cd-treated was inhibited. Serum estradiol (E2) was found to be decreased. Further analysis revealed significant downregulation of StAR, P450scc, 17β-HSD, CYP17A1 and CYP19A1, which are related to E2 synthesis. Serum total cholesterol was increased and free cholesterol was reduced. Total cholesterol in ovarian tissue was decreased. qRT-PCR and Western blot analysis revealed a decrease in the mRNA and protein expression of HMGCR, LDLR, and ABCA1, which are associated with cholesterol homeostasis. Oil red O staining indicated that lipid droplets (LDs) were accumulated in ovarian tissues, while the expression of ATGL and HSL proteins associated with lipid droplet degradation was significantly downregulated. In juvenile female mice, ultrastructural alterations of mitochondria in the ovaries were observed by transmission electron microscopy (TEM). In adult female mice, the expression of proteins associated with mitochondrial dynamics (DRP1 and MFN2) was significantly reduced in the ovaries. Overall, our study suggests that paternal Cd exposure inhibits follicular development, and affects serum E2 synthesis by impairing cholesterol homeostasis and affecting mitochondrial function.
Collapse
Affiliation(s)
- Yanwei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinzhao Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Zeng
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Yifan Xiong
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaofei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Wuhan Huake Reproductive Hospital, Wuhan, Hubei 430013, China
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Wuhan Huake Reproductive Hospital, Wuhan, Hubei 430013, China.
| |
Collapse
|
7
|
Ruczaj A, Brzóska MM. Environmental exposure of the general population to cadmium as a risk factor of the damage to the nervous system: A critical review of current data. J Appl Toxicol 2023; 43:66-88. [PMID: 35304765 PMCID: PMC10084305 DOI: 10.1002/jat.4322] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/14/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
Abstract
Nowadays, more and more attention has been focused on the risk of the neurotoxic action of cadmium (Cd) under environmental exposure. Due to the growing incidence of nervous system diseases, including neurodegenerative changes, and suggested involvement of Cd in their aetiopathogenesis, this review aimed to discuss critically this element neurotoxicity. Attempts have been made to recognize at which concentrations in the blood and urine Cd may increase the risk of damage to the nervous system and compare it to the risk of injury of other organs and systems. The performed overview of the available literature shows that Cd may have an unfavourable impact on the human's nervous system at the concentration >0.8 μg Cd/L in the urine and >0.6 μg Cd/L in the blood. Because such concentrations are currently noted in the general population of industrialized countries, it can be concluded that environmental exposure to this xenobiotic may create a risk of damage to the nervous system and be involved in the aetiopathogenesis of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, as well as worsening cognitive and behavioural functions. The potential mechanism of Cd neurotoxicity consists in inducing oxidative stress, disrupting the activity of enzymes essential to the proper functioning of the nervous system and destroying the homoeostasis of bioelements in the brain. Thus, further studies are necessary to recognize accurately both the risk of nervous system damage in the general population due to environmental exposure to Cd and the mechanism of this action.
Collapse
Affiliation(s)
- Agnieszka Ruczaj
- Department of ToxicologyMedical University of BialystokBialystokPoland
| | | |
Collapse
|
8
|
Su L, Li H, Qiu N, Wu Y, Hu B, Wang R, Liu J, Wang J. Effects of cadmium exposure during the breeding period on development and reproductive functions in rare minnow ( Gobiocypris rarus). Front Physiol 2023; 14:1163168. [PMID: 37153224 PMCID: PMC10160419 DOI: 10.3389/fphys.2023.1163168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
Cadmium is a common reproductive toxin in aquatic systems. Cd exposure of fish species at high concentrations can severely affect the reproductive function of fish. However, the underlying toxicity of cadmium exposure at low concentrations on the reproductive function in parental fish remains unclear. To investigate the impacts of cadmium exposure on reproductive capability, eighty-one male and eighty-one female rare minnows (Gobiocypris rarus) were exposed to cadmium at 0 (control group), 5 and 10 μg/L for 28 days, and then transferred into clean water to pair spawn. The results showed that cadmium exposure at 5 or 10 μg/L for 28 days in rare minnows could reduce the success rates of pair spawning in parent rare minnows, lessen no-spawning activities, and prolong the time for first spawning. Furthermore, the mean egg production of the cadmium exposure group increased. The fertility rate of the control group was significantly higher than that of the 5 μg/L cadmium exposure group. Anatomical and histological data further revealed that the intensity of atretic vitellogenic follicles significantly increased and spermatozoa vacuolated after cadmium exposure (p < 0.05), but slightly increased the condition factor (CF), and relatively stable gonadosomatic index (GSI) values were also observed in the cadmium exposure groups. These observed results indicated that cadmium exposure at 5 or 10 μg/L affected the reproductive activity of paired rare minnow by accumulating Cd in the gonads, and the effect diminished over time. The reproductive risk of low-dose cadmium exposure to fish species remains a cause for concern.
Collapse
Affiliation(s)
- Liangxia Su
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Huanhuan Li
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Ning Qiu
- Tianjin Research Institute for Water Transport Engineering, Tianjin, China
| | - Yinrui Wu
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Bing Hu
- Fujian Key Laboratory of Special Aquatic Formula Feed, Fuzhou, China
| | - Rui Wang
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Jun Liu
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
- *Correspondence: Jun Liu, ; Jianwei Wang,
| | - Jianwei Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- *Correspondence: Jun Liu, ; Jianwei Wang,
| |
Collapse
|
9
|
Ibiwoye MO, Snyder EA, Lyons J, Vasauskas AA, Hernandez MJ, Summerlin AR, Foster JD. The Effect of Short-Term Exposure to Cadmium on the Expression of Vascular Endothelial Barrier Antigen in the Developing Rat Forebrain and Cerebellum: A Computerized Quantitative Immunofluorescent Study. Cureus 2022; 14:e23848. [PMID: 35402117 PMCID: PMC8986507 DOI: 10.7759/cureus.23848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/05/2022] [Indexed: 11/05/2022] Open
Abstract
Clinical and laboratory studies have shown that environmental exposure to cadmium produces damage to several organs, including bones, lungs, and kidneys. The involvement of cadmium in central nervous system (CNS) disorders has also been widely reported, but the precise pathophysiological mechanism is not yet fully understood. Children who were exposed to cadmium during pregnancy are known to suffer from developmental delays, learning difficulties, attention deficit hyperactivity disorder (ADHD), and other cognitive and neurobehavioral deficits. Results from numerous studies suggest that dysfunction of the blood-brain barrier (BBB) structures is an important step in the neurotoxicity of cadmium. A rat-specific BBB marker protein, the endothelial barrier antigen (EBA), has been previously isolated and classified by Sternberger and others. The mouse IgG1 clone, anti-endothelial barrier antigen (anti-EBA), detects a protein triplet (23.5kDa, 25 kDa, and 30kDa) localized to the luminal surface of central and peripheral nervous system (CNS and PNS) vascular endothelial cells with selective permeability barrier functions. This marker has been widely used for characterizing BBB alterations under demyelinating, inflammatory, and other CNS pathologies. Many studies have been published using the rat model system for studying the neurotoxic effect of acute and chronic exposure to cadmium. We applied the indirect immunofluorescent techniques using the anti-EBA antibody in conjunction with the Olympus cellSens computerized image analysis to detect and quantify the surface areas of BBB-competent microvessel profiles in paraformaldehyde-fixed, paraffin-embedded brains of term-delivered young rats after intraperitoneal injection of a single dose of cadmium chloride. We detected a statistically significant reduction in EBA-positive microvessel surface areas in the forebrain (t = 5.86, df = 1789, p-value < 0.001) and cerebellum (t=73.40, df=1337, p < 0.001) of cadmium-treated rats compared to the normal controls. Thus, this study supports the hypothesis that the EBA is a sensitive and measurable indicator for quantitative assessment of the impact of cadmium exposure in the developing rat brain.
Collapse
Affiliation(s)
- Michael O Ibiwoye
- Anatomy and Molecular Medicine, Alabama College of Osteopathic Medicine, Dothan, USA
| | - Emily A Snyder
- Research, Alabama College of Osteopathic Medicine, Dothan, USA
| | - James Lyons
- Department Clinical Sciences, Alabama College of Osteopathic Medicine, Dothan, USA
| | - Audrey A Vasauskas
- Institutional Effectiveness, Alabama College of Osteopathic Medicine, Dothan, USA
| | - Mark J Hernandez
- Anatomy and Molecular Medicine, Alabama College of Osteopathic Medicine, Dothan, USA
| | | | - James D Foster
- Anatomy and Molecular Medicine, Alabama College of Osteopathic Medicine, Dothan, USA
| |
Collapse
|
10
|
LIU Y, WEN X, WANG D, LIAO X. Maternal exposure to trace cadmium affects gonadal differentiation and development in male offspring rats though a star pathway. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.24420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yan LIU
- North Sichuan Medical College, China
| | | | - Dan WANG
- North Sichuan Medical College, China
| | | |
Collapse
|
11
|
Zhu J, Huang Z, Yang F, Zhu M, Cao J, Chen J, Lin Y, Guo S, Li J, Liu Z. Cadmium disturbs epigenetic modification and induces DNA damage in mouse preimplantation embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112306. [PMID: 33984557 DOI: 10.1016/j.ecoenv.2021.112306] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Cadmium is an environmental pollutant that has extensive deleterious effects on the reproductive system. However, the mechanisms underlying the effects of cadmium on preimplantation embryos are unclear. Here, we used a mouse model to investigate the effects of maternal cadmium (32 mg/l) exposure in drinking water for 2 days on early embryonic development, and studied the mechanisms associated with epigenetic modifications and DNA damage induced by oxidative stress. We observed that maternal cadmium exposure impaired preimplantation embryo development by inducing embryo death, fragmentation, or developmental blockade. After cadmium exposure, the most survived embryos were at the 8-cell stage, which were used for all measurements. Histone acetylation, not methylation, was disturbed by increasing histone deacetylase 1 (HDAC1) levels after cadmium exposure. Cadmium also disrupted DNA methylation of H19; however genomic DNA methylation can be normally reprogrammed in embryos. Furthermore, cadmium increased reactive oxygen species (ROS) levels and DNA damage, and partly inhibited gene expression related to DNA repair. The distribution and activity of mitochondria was increased; therefore, embryos maintain intracellular homeostasis for survival. Collectively, our findings revealed that maternal cadmium exposure impairs preimplantation embryo development by disturbing the epigenetic modification and inducing DNA damage.
Collapse
Affiliation(s)
- Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China.
| | - Zhutao Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Laboratory Animal Center, Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Fan Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Shen Zhen Heng Sheng Hospital, Southern Medical University, Shen Zhen, Guangdong, PR China
| | - Min Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Jiangqin Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Jiali Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Yan Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Shuai Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Junwei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China.
| |
Collapse
|
12
|
Hardneck F, de Villiers C, Maree L. Effect of Copper Sulphate and Cadmium Chloride on Non-Human Primate Sperm Function In Vitro. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6200. [PMID: 34201151 PMCID: PMC8228149 DOI: 10.3390/ijerph18126200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 01/04/2023]
Abstract
In order to address the large percentage of unexplained male infertility in humans, more detailed investigations using sperm functional tests are needed to identify possible causes for compromised fertility. Since many environmental and lifestyle factors might be contributing to infertility, future studies aiming to elucidate the effect of such factors on male fertility will need the use of appropriate research models. The current study aimed to assess the effects of two heavy metals, namely copper sulphate, and cadmium chloride, on non-human primate (NHP) sperm function in order to establish the possibility of using these primate species as models for reproductive studies. Our combined results indicated that the functionality of NHP spermatozoa is inhibited by the two heavy metals investigated. After in vitro exposure, detrimental effects, and significant lowered values (p < 0.05) were obtained for sperm motility, viability and vitality, acrosome intactness, and hyperactivation. These metals, at the tested higher concentrations, therefore, have the ability to impair sperm quality thereby affecting sperm fertilizing capability in both humans and NHPs.
Collapse
Affiliation(s)
- Farren Hardneck
- Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| | - Charon de Villiers
- PUDAC-Delft Animal Facility, South African Medical Research Council, Cape Town 7505, South Africa;
| | - Liana Maree
- Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| |
Collapse
|
13
|
Rimawi I, Ornoy A, Yanai J. Paternal and/or maternal preconception-induced neurobehavioral teratogenicity in animal and human models. Brain Res Bull 2021; 174:103-121. [PMID: 34087361 DOI: 10.1016/j.brainresbull.2021.05.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/28/2021] [Indexed: 01/15/2023]
Abstract
Prenatal insult exposure effects on the offspring, have and are still considered the main interest of most teratological studies, while paternal and maternal preconception effects have received relatively little interest. Once thought to be a myth, paternal exposure to insults leading to numerous detrimental effects in the offspring, has been confirmed on several occasions and is gaining increased attention. These effects could be demonstrated molecularly, biochemically and/or behaviorally. Different epigenetic mechanisms have been proposed for these effects to occur, including DNA methylation, histone modification and sperm RNA transmission. Paternal insult exposure has been shown to cause several neurobehavioral and developmental defects in the offspring. Findings on parental insult exposure effects on the progeny will be discussed in this review, with the main focus being on neurobehavioral effects after parental preconceptional exposure. The exposure to the insults induced long-lasting, mostly marked, defects. A few pioneering, prevention and reversal studies were published. Interestingly, most studies were conducted on paternal exposure and, at the present state of this field, on animal models. Clinical translation remains the subsequent challenge.
Collapse
Affiliation(s)
- Issam Rimawi
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada and The Hebrew University-Hadassah Medical School, Box 12272, 91120, Jerusalem, Israel
| | - Asher Ornoy
- Adelson School of Medicine, Ariel University, Israel; Laboratory of Teratology, department of Medical Neurobiology, Institute for Medical Research - Israel-Canada and The Hebrew University-Hadassah Medical School, Box 12272, 91120 Jerusalem, Israel
| | - Joseph Yanai
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada and The Hebrew University-Hadassah Medical School, Box 12272, 91120, Jerusalem, Israel; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
14
|
Rutkowska J, Lagisz M, Bonduriansky R, Nakagawa S. Mapping the past, present and future research landscape of paternal effects. BMC Biol 2020; 18:183. [PMID: 33246472 PMCID: PMC7694421 DOI: 10.1186/s12915-020-00892-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although in all sexually reproducing organisms an individual has a mother and a father, non-genetic inheritance has been predominantly studied in mothers. Paternal effects have been far less frequently studied, until recently. In the last 5 years, research on environmentally induced paternal effects has grown rapidly in the number of publications and diversity of topics. Here, we provide an overview of this field using synthesis of evidence (systematic map) and influence (bibliometric analyses). RESULTS We find that motivations for studies into paternal effects are diverse. For example, from the ecological and evolutionary perspective, paternal effects are of interest as facilitators of response to environmental change and mediators of extended heredity. Medical researchers track how paternal pre-fertilization exposures to factors, such as diet or trauma, influence offspring health. Toxicologists look at the effects of toxins. We compare how these three research guilds design experiments in relation to objects of their studies: fathers, mothers and offspring. We highlight examples of research gaps, which, in turn, lead to future avenues of research. CONCLUSIONS The literature on paternal effects is large and disparate. Our study helps in fostering connections between areas of knowledge that develop in parallel, but which could benefit from the lateral transfer of concepts and methods.
Collapse
Affiliation(s)
- Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| |
Collapse
|
15
|
Nan Y, Yi SJ, Zhu HL, Xiong YW, Shi XT, Cao XL, Zhang C, Gao L, Zhao LL, Zhang J, Xu DX, Wang H. Paternal cadmium exposure increases the susceptibility to diet-induced testicular injury and spermatogenic disorders in mouse offspring. CHEMOSPHERE 2020; 246:125776. [PMID: 31918093 DOI: 10.1016/j.chemosphere.2019.125776] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
The impairments of gestational cadmium (Cd) exposure on testicular development and male fertility in offspring have been reported. Here, we investigated the effect of paternal low-concentration cadmium exposure on testicular development and spermatogenesis in offspring. Five-week-old male mice were exposed to cadmium chloride (100 mg/L) in drinking water for 20 weeks. Results presented that Cd did not affect the testicular histology and sperm count in mice. After mating with untreated females, pregnant mice and pups were then evaluated. No significant difference in the rate for successful pregnancy and the body weight of pups was observed in Cd-exposed mice compared to the controls. Male offspring were given with a chow and high-fat diet from postnatal day (PND) 35 to PND70. Our data indicated that high-fat diet obviously decreased No. of sperm in epididymides of adult offspring due to paternal Cd exposure. Testicular histology revealed that the percentage of seminiferous tubules in stages IX-XII and the atypical residual bodies positive tubules in CdH (paternal cadmium exposure and pubertal high-fat diet) group were higher than these in CdC (paternal cadmium exposure and pubertal chow diet) group. Further analysis demonstrated that high-fat diet markedly accelerated testicular apoptosis, as determined by TUNEL assay and immunostaining for cleaved caspase-3, in male offspring due to paternal Cd exposure. Collectively, high-fat diet exacerbates the damage of testicular development and spermatogenesis in offspring due to paternal cadmium exposure.
Collapse
Affiliation(s)
- Yuan Nan
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Song-Jia Yi
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xue-Ting Shi
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xue-Lin Cao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lan Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Ling-Li Zhao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jun Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China.
| |
Collapse
|
16
|
Bircsak KM, Copes LT, King S, Prantner AM, Hwang WT, Gerton GL. The aryl hydrocarbon receptor mediates sex ratio distortion in the embryos sired by TCDD-exposed male mice. Reprod Toxicol 2020; 94:75-83. [PMID: 32335222 DOI: 10.1016/j.reprotox.2020.04.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/25/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
Many reports describe an association between preconceptional paternal exposure to environmental chemicals, including the persistent organic pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) with an increased number of female offspring. We chronically treated wild-type C57BL/6 male mice with TCDD to investigate a role for the aryl hydrocarbon receptor (AHR) transcription factor. These mice had a 14 % lower male:female sex ratio than control mice, which was not observed in TCDD-treated Ahr knock out mice. AHR target genes Cyp1a1 and Ahrr were upregulated in the liver and testis of WT mice and Ahr expression was higher in the epididymis (2-fold) and liver (18-fold) than in whole testis tissue. The AHR protein was localized to round spermatids, elongating spermatids, and Leydig cells in the testis of WT mice. These studies demonstrate AHR involvement in the sex ratio distortion of TCDD-exposed males and the need for evaluating the molecular and genetic mechanism of this process.
Collapse
Affiliation(s)
- Kristin M Bircsak
- Department of Obstetrics and Gynecology, Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Latresa T Copes
- Department of Obstetrics and Gynecology, Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sara King
- Department of Obstetrics and Gynecology, Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew M Prantner
- Department of Obstetrics and Gynecology, Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei-Ting Hwang
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - George L Gerton
- Department of Obstetrics and Gynecology, Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
17
|
Kumar S, Sharma A. Cadmium toxicity: effects on human reproduction and fertility. REVIEWS ON ENVIRONMENTAL HEALTH 2019; 34:327-338. [PMID: 31129655 DOI: 10.1515/reveh-2019-0016] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Background Cadmium (Cd) is a non-essential toxic heavy metal, an environmental toxicant, and toxic at a low concentration, and it has no known beneficial role in the human body. Its exposure induces various health impairments including hostile reproductive health. Objective The present review discusses the information on exposure to Cd and human reproductive health impairments including pregnancy or its outcome with respect to environmental and occupational exposure. Methods The present review provides current information on the reproductive toxic potential of Cd in humans. The data were collected using various websites and consulting books, reports, etc. We have included recent data which were published from 2000 onward in this review. Results Cd exposure affects human male reproductive organs/system and deteriorates spermatogenesis, semen quality especially sperm motility and hormonal synthesis/release. Based on experimental and human studies, it also impairs female reproduction and reproductive hormonal balance and affects menstrual cycles. Based on the literature, it might be concluded that exposure to Cd at low doses has adverse effects on both human male and female reproduction and affects pregnancy or its outcome. Further, maternal prenatal Cd exposure might have a differential effect on male and female offspring especially affecting more female offspring. Hence, efforts must be made to prevent exposure to Cd. Conclusion Cd affects both male and female reproduction, impairs hormone synthesis/regulation and deteriorates pregnancy rate or its outcome even at lower doses.
Collapse
Affiliation(s)
- Sunil Kumar
- Retd, Former, Director-in-Charge, Scientist 'G', NIOH, A-10, Radhey Kunj Apartment, B/H Circuit House, Shahi Baugh, Ahmedabad, 380004, India
- ICMR - National Institute of Occupational Health, Ahmedabad, 380016, India
| | - Anupama Sharma
- ICMR - National Institute of Occupational Health, Ahmedabad, 380016, India
| |
Collapse
|
18
|
Riesco MF, Valcarce DG, Martínez-Vázquez JM, Robles V. Effect of low sperm quality on progeny: a study on zebrafish as model species. Sci Rep 2019; 9:11192. [PMID: 31371755 PMCID: PMC6671952 DOI: 10.1038/s41598-019-47702-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/22/2019] [Indexed: 12/23/2022] Open
Abstract
Nowadays a decrease tendency in human sperm quality has been reported mainly in developed countries. Reproductive technologies have been very valuable in achieving successful pregnancies with low quality sperm samples. However, considering that spermatozoa molecular contribution is increasingly important in recent studies, it is crucial to study whether fertilization with low sperm quality could leave a molecular mark on progeny. This study explores the consequences that fertilization with low sperm quality may have on progeny, using zebrafish as a model. Good and bad breeders were established attending to sperm quality analyses and were individually tracked. Significant differences in fertilization and malformation rates were obtained in progenies between high and low quality sperm samples. Moreover an altered miR profile was found in the progenies of bad zebrafish breeders (upregulation of miR-141 and miR -122 in 24 hpf embryos) and as a consequence, some of their targets involved in male sex development such as dmrt1, suffered downregulation. Our results indicate that fertilizing with high sperm quality samples becomes relevant from a new perspective: to avoid molecular alterations in the progeny that could remain masked and therefore produce unexpected consequences in it.
Collapse
Affiliation(s)
- Marta F Riesco
- IEO, Spanish Institute of Oceanography, Planta de Cultivos el Bocal, Santander, 39012, Spain
| | - David G Valcarce
- IEO, Spanish Institute of Oceanography, Planta de Cultivos el Bocal, Santander, 39012, Spain
| | | | - Vanesa Robles
- IEO, Spanish Institute of Oceanography, Planta de Cultivos el Bocal, Santander, 39012, Spain.
- MODCELL GROUP, Department of Molecular Biology, Universidad de León, 24071, León, Spain.
| |
Collapse
|
19
|
Atere TG, Akinloye OA. High dose of standardised extract ofCostus aferleaves potentiates cadmium reproductive toxicity in Wistar rats. Andrologia 2019; 51:e13360. [DOI: 10.1111/and.13360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/13/2019] [Accepted: 05/31/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Tope Gafar Atere
- Department of Biochemistry College of Health Sciences, Osun State University Osogbo Nigeria
- Department of Biochemistry, College of Biological Sciences Federal University of Agriculture Abeokuta Nigeria
| | - Oluseyi Adeboye Akinloye
- Department of Biochemistry, College of Biological Sciences Federal University of Agriculture Abeokuta Nigeria
| |
Collapse
|
20
|
Fu Y, Dong J, You M, Cong Z, Wei L, Fu H, Wang Y, Wang Y, Chen J. Maternal di-(2-ethylhexyl) phthalate exposure inhibits cerebellar granule precursor cell proliferation via down-regulating the Shh signaling pathway in male offspring. CHEMOSPHERE 2019; 215:313-322. [PMID: 30336312 DOI: 10.1016/j.chemosphere.2018.10.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/04/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is an endocrine disrupting chemical (EDC) widely used as a plasticizer in many materials. Epidemiological investigations have shown that DEHP exposure during early development is related to cerebellar-related adverse neurodevelopmental outcomes. However, animal studies involving the effect of DEHP exposure on cerebellar development have rarely been reported and the potential mechanisms are unclear. The aim of this study was to investigate the effect of maternal DEHP exposure on the proliferation of cerebellar granule cell precursor cells (GCPs) and the mechanisms involved. Wistar rats were randomly assigned to four exposure groups and given 0, 30, 300, or 750 mg/kg/d DEHP by intragastric administration from gestational day (GD) 0 to postnatal day (PN) 21. Exposure to 300 and 750 mg/kg/d DEHP restrained GCPs proliferation and impaired neurodevelopment for males. Furthermore, exposure to 300 and 750 mg/kg/d DEHP decreased male pups protein expressions and mRNA levels of molecules related to proliferation, including Shh, Gli1, N-Myc, CyclinD1. In addition, the estrogen level and aromatase expression also reduced in male pups after maternal exposure to DEHP. However, effects on females were not obvious. These results suggested that 300 and 750 mg/kg/d DEHP exposure inhibit the proliferation of GCPs in male offspring and ultimately contribute to the impairment of neuromotor development. This, may be caused by the down-regulation of Shh signaling. And the susceptibility of male offspring to DEHP exposure may be attributed to the decreased estrogen level and aromatase expression in male pup's cerebellum.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China
| | - Jing Dong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China
| | - Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China
| | - Zhangzhao Cong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China
| | - Lingling Wei
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China
| | - Hui Fu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China
| | - Yuan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China.
| |
Collapse
|
21
|
Halder S, Kar R, Chandra N, Nimesh A, Mehta AK, Bhattacharya SK, Mediratta PK, Banerjee BD. Alteration in cognitive behaviour, brain antioxidant enzyme activity and their gene expression in F1 generation mice, following Cd exposure during the late gestation period: modulation by quercetin. Metab Brain Dis 2018; 33:1935-1943. [PMID: 30069621 DOI: 10.1007/s11011-018-0299-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/26/2018] [Indexed: 12/27/2022]
Abstract
We investigated whether in-utero Cd(II) chloride exposure of the dams between 14th to 21st day of gestation affects memory and learning, oxidative stress, antioxidant enzyme activity and their gene expression in brain of the pups in their adulthood. In the Morris water maze, cadmium (Cd) exposure impaired spatial memory which was reversed following co-treatment with quercetin (100 mg/kg). In the passive avoidance paradigm, retention memory was adversely affected but was significantly reversed by co treatment with quercetin (25, 50, 100 mg/kg). The malondialdehyde and catalase (CAT) levels and glutathione-S-transferase (GST) activity were increased significantly in Cd-treated group, but were reversed by quercetin (all doses). The gene expression for CAT and GST in brain tissue of Cd treated animals also increased many folds as compared to the control, and this effect was decreased on co-treatment with quercetin (all doses), thus matching with the respective enzyme activities. Quercetin (25 mg/kg) when co-treated with Cd caused a decrease in GST activity compared to control, which points towards a complex interplay with oxidative free radicals and promoters and transcription factors. Thus, Cd exposure during late gestation causes impaired spatial and retention memory in the next generation which may be due to alteration of activity as well as gene expression of the antioxidant enzymes, CAT and GST. Quercetin may offer some protection of memory impairment probably by modulating these effects.
Collapse
Affiliation(s)
- Sumita Halder
- Department of Pharmacology, University College of Medical Sciences and G. T. B. Hospital, New Delhi, 110095, India.
| | - Rajarshi Kar
- Department of Biochemistry, University College of Medical Sciences and G. T. B. Hospital, New Delhi, 110095, India
| | - Nilesh Chandra
- Department of Biochemistry, University College of Medical Sciences and G. T. B. Hospital, New Delhi, 110095, India
| | - Archana Nimesh
- Department of Biochemistry, University College of Medical Sciences and G. T. B. Hospital, New Delhi, 110095, India
| | - Ashish K Mehta
- Department of Pharmacology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, 110029, India
| | | | - Pramod K Mediratta
- Department of Pharmacology, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201306, India
| | - Basu D Banerjee
- Department of Biochemistry, University College of Medical Sciences and G. T. B. Hospital, New Delhi, 110095, India
| |
Collapse
|
22
|
Ascorbic acid co-administered with rosuvastatin reduces reproductive impairment in the male offspring from male rats exposed to the statin at pre-puberty. Food Chem Toxicol 2018; 118:416-429. [DOI: 10.1016/j.fct.2018.05.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/24/2022]
|
23
|
Tian H, Chen S, Leng Y, Li T, Li Z, Chen H, Zhang Q. Exposure to cadmium during gestation and lactation affects development and function of Leydig cells in male offspring. ENVIRONMENTAL TOXICOLOGY 2018; 33:351-360. [PMID: 29214744 DOI: 10.1002/tox.22522] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/09/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Toxic effects of maternal exposure to Cadmium (Cd) on Leydig cells of male offspring arises much concern recently, but its toxic effects on the development of Leydig cells and androgen synthesis have not been elucidated. In this study, female rats were exposed to Cd during gestation and lactation, and the development of Leydig cells in the first filial-generation (F1) male rats was investigated. The steroidogenic signaling pathway and biomarkers related to the development of Leydig cells were detected to disclose how maternal Cd-exposure caused reproductive damage. F1 male rats with maternal Cd-exposure gained a low relative weight of testis and declined levels of steroid hormones. Maternal Cd-exposure interrupted the development of Leydig cells with high expression of SRD5α and cell morphology of immature Leydig cells in adulthood, inhibited the activation of cyclic adenosine monophosphate/ protein kinase A signaling pathway and down-regulated the steroidogenic enzymes. These results would help to disclose the origin of male sexual dysfunction in the developmental stages of Leydig cells.
Collapse
Affiliation(s)
- Huajian Tian
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Shaomin Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Yang Leng
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Teng Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Zengli Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Hongxia Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Qihao Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
24
|
Leite GAA, Figueiredo TM, Pacheco TL, Guerra MT, Anselmo-Franci JA, Kempinas WDG. Reproductive outcomes in rat female offspring from male rats co-exposed to rosuvastatin and ascorbic acid during pre-puberty. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:873-892. [PMID: 30081759 DOI: 10.1080/15287394.2018.1504702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/23/2018] [Indexed: 05/23/2023]
Abstract
Dyslipidemias are occurring earlier in different countries due to the increase of obesity, bad eating habits, and sedentary lifestyle. Rosuvastatin reduces serum cholesterol; however, several studies associated statin exposure with male reproduction impairment. Ascorbic acid (AA) is an antioxidant substance that plays a protective role in the male reproductive system. Male rats were randomly divided into 6 experimental groups (n = 10), which received saline solution 0.9%, 3 or 10 mg/kg/day of rosuvastatin, 150 mg/day of AA or 3 or 10 mg/kg/day of rosuvastatin associated with 150 mg/day of AA from post-natal day (PND) 23 until PND 53. On PND 100, males were mated with non-treated female rats to obtain the female pups. The day of vaginal opening and the first estrus were assessed in the offspring. Two sets of females were euthanized on the first estrus after PND 42 and PND 75 to evaluate the histology of reproductive organs and hormone levels. A third set was used for sexual behavior and fertility test around PND 75. Female offspring from males exposed or co-exposed to the higher dose of statin exhibited a lower number of corpora lutea during puberty. On sexual maturity, the experimental group from males that were exposed to 3 mg displayed lower uterine luminal epithelium area. Paternal exposure to rosuvastatin at pre-puberty diminished uterine luminal epithelium in female offspring suggesting epigenetic changes were initiated by statin. Ascorbic acid co-administered to pre-pubertal males was able to ameliorate the reproductive damage in rat female offspring in adulthood.
Collapse
Affiliation(s)
- Gabriel Adan Araujo Leite
- a Graduate Program in Cell and Structural Biology, Institute of Biology , State University of Campinas - UNICAMP , Campinas , Brazil
- b Department of Morphology , São Paulo State University (Unesp), Institute of Biosciences , Botucatu , Brazil
| | - Thamiris Moreira Figueiredo
- b Department of Morphology , São Paulo State University (Unesp), Institute of Biosciences , Botucatu , Brazil
| | - Tainá Louise Pacheco
- b Department of Morphology , São Paulo State University (Unesp), Institute of Biosciences , Botucatu , Brazil
| | - Marina Trevizan Guerra
- b Department of Morphology , São Paulo State University (Unesp), Institute of Biosciences , Botucatu , Brazil
| | - Janete Aparecida Anselmo-Franci
- c Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto , USP - University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Wilma De Grava Kempinas
- b Department of Morphology , São Paulo State University (Unesp), Institute of Biosciences , Botucatu , Brazil
| |
Collapse
|
25
|
Chemek M, Venditti M, Boughamoura S, Mimouna SB, Messaoudi I, Minucci S. Involvement of testicular DAAM1 expression in zinc protection against cadmium‐induced male rat reproductive toxicity. J Cell Physiol 2017; 233:630-640. [DOI: 10.1002/jcp.25923] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/20/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Marouane Chemek
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut de BiotechnologieUniversité de MonastirMonastirTunisia
| | - Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate “F. Bottazzi”Università della Campania Luigi VanvitelliNapoliItaly
| | - Sana Boughamoura
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut de BiotechnologieUniversité de MonastirMonastirTunisia
| | - Safa B. Mimouna
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut de BiotechnologieUniversité de MonastirMonastirTunisia
| | - Imed Messaoudi
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut de BiotechnologieUniversité de MonastirMonastirTunisia
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate “F. Bottazzi”Università della Campania Luigi VanvitelliNapoliItaly
| |
Collapse
|