1
|
Varshney V, Gabble BC, Bishoyi AK, Varma P, Qahtan SA, Kashyap A, Panigrahi R, Nathiya D, Chauhan AS. Exploring Exosome-Based Approaches for Early Diagnosis and Treatment of Neurodegenerative Diseases. Mol Neurobiol 2025:10.1007/s12035-025-05026-w. [PMID: 40347374 DOI: 10.1007/s12035-025-05026-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 05/02/2025] [Indexed: 05/12/2025]
Abstract
Neurodegenerative diseases (NDs), like Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic Lateral Sclerosis (ALS), present an increasingly significant global health burden, primarily due to the lack of effective early diagnostic tools and treatments. Exosomes-nano-sized extracellular vesicles secreted by nearly all cell types-have emerged as promising candidates for both biomarkers and therapeutic agents in NDs. This review examines the biogenesis, molecular composition, and diverse functions of exosomes in NDs. Exosomes play a crucial role in mediating intercellular communication. They are capable of reflecting the biochemical state of their parent cells and have the ability to cross the blood-brain barrier (BBB). In doing so, they facilitate the propagation of pathological proteins, such as amyloid-beta (Aβ), tau, and alpha-synuclein (α-syn), while also enabling the targeted delivery of neuroprotective compounds. Recent advancements in exosome isolation and engineering have opened up new possibilities for diagnostic and therapeutic strategies. These range from the discovery of non-invasive biomarkers to innovative approaches in gene therapy and drug delivery systems. However, challenges related to standardization, safety, and long-term effects must be addressed before exosomes can be translated into clinical applications. This review highlights both the promising potential and the obstacles that must be overcome to leverage exosomes in the treatment of NDs and the transformation of personalized medicine.
Collapse
Affiliation(s)
- Vibhav Varshney
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Baneen C Gabble
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq.
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq.
| | - Ashok Kumar Bishoyi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, India
| | - Pooja Varma
- Department of Psychology, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Sarraa Ahmad Qahtan
- Department of Anesthesia Techniques, Health and Medical Techniques College, Alnoor University, Mosul, Iraq
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Rajashree Panigrahi
- Department of Microbiology, IMS and SUM Hospital, Siksha O Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Ashish Singh Chauhan
- Division of Research and Innovation, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| |
Collapse
|
2
|
Chu T, Han Q, Shi H, Li C, Ma Q, Li P, Wang F, Zhang J. Aberration of CA3 functionally mediates the pathogenesis of Cardiomyocyte hypertrophy in a miR-138-5p dependent manner. Acta Histochem 2025; 127:152233. [PMID: 39923530 DOI: 10.1016/j.acthis.2025.152233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/11/2025]
Abstract
Cardiomyocyte hypertrophy (CDH) is a critical factor in heart disease, leading to heart failure and increased mortality. Despite extensive research, the precise molecular mechanisms underlying CDH remain unclear. In our study, we conducted total RNA sequencing on blood-derived exosomes from 11 CDH patients and 8 healthy donors. This analysis identified differentially expressed genes (DEGs), which we further validated using real-time qPCR and ROC analysis to demonstrate their diagnostic potential in clinical samples. To explore the functional role of CA3 in CDH, we manipulated its expression using the AAV9 vector in TAC (transverse aortic constriction) rat models(N = 6). We observed a significant increase in CA3 expression in both the blood of CDH patients and TAC rat models. Knockdown of Ca3 using the AAV9 vector resulted in improved cardiac function in TAC rats (N = 6), as evidenced by a ∼30 % reduction in LVEF% (left ventricular ejection fraction) and LVFS% (left ventricular fractional shortening) compared to Sham-operated controls. Additionally, LV (left ventricular) mass and the HW/BW (heart weight to body weight ratio) were significantly higher in the TAC groups. Mechanistically, we identified miR-138-5p as a direct regulator of CA3 through the StarBase bioinformatics tool. This interaction was experimentally validated using a dual-luciferase reporter assay and real-time qPCR. We found that miR-138-5p expression was down-regulated in both CDH patients and TAC rat models. Restoration of miR-138-5p expression mitigated the phenotypes induced by Ca3 overexpression. Our findings reveal a novel miR-138-5p/CA3 axis involved in the pathogenesis of CDH, suggesting potential therapeutic avenues for this heart disease.
Collapse
Affiliation(s)
- Tingting Chu
- Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Cardiology, The Linfen people's Hospital, Linfen, Shanxi 041000, China
| | - Qinghua Han
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| | - Hongtao Shi
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Chao Li
- Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qi Ma
- Department of Cardiology, The Linfen people's Hospital, Linfen, Shanxi 041000, China
| | - Peng Li
- Department of Cardiology, The Linfen people's Hospital, Linfen, Shanxi 041000, China
| | - Fang Wang
- Department of Cardiology, The Linfen people's Hospital, Linfen, Shanxi 041000, China
| | - Jing Zhang
- Department of Cardiology, The Linfen people's Hospital, Linfen, Shanxi 041000, China
| |
Collapse
|
3
|
Saikia B, Dhanushkodi A. Engineered exosome therapeutics for neurodegenerative diseases. Life Sci 2024; 356:123019. [PMID: 39209250 DOI: 10.1016/j.lfs.2024.123019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/14/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
An increase in life expectancy comes with a higher risk for age-related neurological and cognitive dysfunctions. Given the psycho-socioeconomic burden due to unhealthy aging in the coming decades, the United Nations has declared 2021-2030 as a decade of healthy aging. In this line, multipotent mesenchymal stromal cell-based therapeutics received special interest from the research community. Based on decades of research on cell therapy, a consensus has emerged that the therapeutic effects of cell therapy are due to the paracrine mechanisms rather than cell replacement. Exosomes, a constituent of the secretome, are nano-sized vesicles that have been a focus of intense research in recent years as a possible therapeutic agent or as a cargo to deliver drugs of interest into the central nervous system to induce neurogenesis, reduce neuroinflammation, confer neuroregeneration/neuroprotection, and improve cognitive and motor functions. In this review, we have discussed the neuroprotective properties of exosomes derived from adult mesenchymal stem cells, with a special focus on the role of exosomal miRNAs. We also reviewed various strategies to improve exosome production and their content for better therapeutic effects. Further, we discussed the utilization of ectomesenchymal stem cells like dental pulp stem cells and their exosomes in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Biplob Saikia
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal, India
| | - Anandh Dhanushkodi
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
4
|
Saleh RO, Majeed AA, Margiana R, Alkadir OKA, Almalki SG, Ghildiyal P, Samusenkov V, Jabber NK, Mustafa YF, Elawady A. Therapeutic gene delivery by mesenchymal stem cell for brain ischemia damage: Focus on molecular mechanisms in ischemic stroke. Cell Biochem Funct 2024; 42:e3957. [PMID: 38468129 DOI: 10.1002/cbf.3957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024]
Abstract
Cerebral ischemic damage is prevalent and the second highest cause of death globally across patient populations; it is as a substantial reason of morbidity and mortality. Mesenchymal stromal cells (MSCs) have garnered significant interest as a potential treatment for cerebral ischemic damage, as shown in ischemic stroke, because of their potent intrinsic features, which include self-regeneration, immunomodulation, and multi-potency. Additionally, MSCs are easily obtained, isolated, and cultured. Despite this, there are a number of obstacles that hinder the effectiveness of MSC-based treatment, such as adverse microenvironmental conditions both in vivo and in vitro. To overcome these obstacles, the naïve MSC has undergone a number of modification processes to enhance its innate therapeutic qualities. Genetic modification and preconditioning modification (with medications, growth factors, and other substances) are the two main categories into which these modification techniques can be separated. This field has advanced significantly and is still attracting attention and innovation. We examine these cutting-edge methods for preserving and even improving the natural biological functions and therapeutic potential of MSCs in relation to adhesion, migration, homing to the target site, survival, and delayed premature senescence. We address the use of genetically altered MSC in stroke-induced damage. Future strategies for improving the therapeutic result and addressing the difficulties associated with MSC modification are also discussed.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Ali A Majeed
- Department of Pathological Analyses, Faculty of Science, University of Kufa, Najaf, Iraq
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ola Kamal A Alkadir
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Vadim Samusenkov
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Ahmed Elawady
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
5
|
Ma L, Gilani A, Yi Q, Tang L. MicroRNAs as Mediators of Adipose Thermogenesis and Potential Therapeutic Targets for Obesity. BIOLOGY 2022; 11:1657. [PMID: 36421371 PMCID: PMC9687157 DOI: 10.3390/biology11111657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 07/30/2023]
Abstract
Obesity is a growing health problem worldwide, associated with an increased risk of multiple chronic diseases. The thermogenic activity of brown adipose tissue (BAT) correlates with leanness in adults. Understanding the mechanisms behind BAT activation and the process of white fat "browning" has important implications for developing new treatments to combat obesity. MicroRNAs (miRNAs) are small transcriptional regulators that control gene expression in various tissues, including adipose tissue. Recent studies show that miRNAs are involved in adipogenesis and adipose tissue thermogenesis. In this review, we discuss recent advances in the role of miRNAs in adipocyte thermogenesis and obesity. The potential for miRNA-based therapies for obesity and recommendations for future research are highlighted, which may help provide new targets for treating obesity and obesity-related diseases.
Collapse
Affiliation(s)
- Lunkun Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ankit Gilani
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou 646099, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
6
|
Zhang L, Sui S, Wang S, Sun J. Neuroprotective Effect of Corosolic Acid Against Cerebral Ischemia-Reperfusion Injury in Experimental Rats. J Oleo Sci 2022; 71:1501-1510. [PMID: 36089398 DOI: 10.5650/jos.ess22130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several therapeutic approaches were also urgently needed as ischaemic stroke was one of the most common brain disorders. Many phytochemicals have recently been discovered for the advancement of lead-like libraries that are concentrated on the peripheral and central nervous systems. Science does not yet understand how these drugs work, nor do they comprehend their in vivo characteristics. We investigated the potential benefits of corosolic acid (CA) in the treatment of brain injury caused by ischemia/reperfusion (I/R) in adult male Sprague-Dawley rats. Injury occurs after a 2-hour transient occlusion of the posterior cerebral artery and subsequent reperfusion (after 20 hours). Furthermore, the experiment assessed the size of the infarct, the amount of brain water present, as well as the neurofunctional conditions in rats. In the study, several markers of inflammation and cytokines associated with brain injury were measured. The Elisa kit was used in this study to measure the mRNA expression of interleukin-6 (IL-6), interleukin-10 (IL-10), interleukin 1β, TNF-α (tumor necrosis factor), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and nitrous oxide (NO). The CA treatment significantly reduced brain water content, brain infarction volume, neurological scores, and Evans blue leakage (p < 0.001 and p < 0.001). Experimental rats were treated with CA after a significantly reduced level of anti-inflammatory, pro-inflammatory, and oxidative stress mediators was noted in their body tissues and serum (p < 0.001). By suppressing inflammatory responses in rats, CA demonstrated anti-inflammatory and neuroprotective properties.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University
| | - Songtao Sui
- Department of Neurosurgery, Qingdao West Coast New Area Central Hospital
| | - Si Wang
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University
| | - Jinbo Sun
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University
| |
Collapse
|
7
|
MicroRNA-138-5p Targets Pro-Apoptotic Factors and Favors Neural Cell Survival: Analysis in the Injured Spinal Cord. Biomedicines 2022; 10:biomedicines10071559. [PMID: 35884864 PMCID: PMC9312482 DOI: 10.3390/biomedicines10071559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
The central nervous system microRNA miR-138-5p has attracted much attention in cancer research because it inhibits pro-apoptotic genes including CASP3. We hypothesize that miR-138-5p downregulation after SCI leads to overexpression of pro-apoptotic genes, sensitizing neural cells to noxious stimuli. This study aimed to identify miR-138-5p targets among pro-apoptotic genes overexpressed following SCI and to confirm that miR-138-5p modulates cell death in neural cells. Gene expression and histological analyses revealed that the drop in miR-138-5p expression after SCI is due to the massive loss of neurons and oligodendrocytes and its downregulation in neurons. Computational analyses identified 176 potential targets of miR-138-5p becoming dysregulated after SCI, including apoptotic proteins CASP-3 and CASP-7, and BAK. Reporter, RT-qPCR, and immunoblot assays in neural cell cultures confirmed that miR-138-5p targets their 3′UTRs, reduces their expression and the enzymatic activity of CASP-3 and CASP-7, and protects cells from apoptotic stimuli. Subsequent RT-qPCR and histological analyses in a rat model of SCI revealed that miR-138-5p downregulation correlates with the overexpression of its pro-apoptotic targets. Our results suggest that the downregulation of miR-138-5p after SCI may have deleterious effects on neural cells, particularly on spinal neurons.
Collapse
|
8
|
Exosomal microRNAs have great potential in the neurorestorative therapy for traumatic brain injury. Exp Neurol 2022; 352:114026. [DOI: 10.1016/j.expneurol.2022.114026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/09/2022] [Accepted: 02/22/2022] [Indexed: 11/19/2022]
|
9
|
Yan W, Ren D, Feng X, Huang J, Wang D, Li T, Zhang D. Neuroprotective and Anti-Inflammatory Effect of Pterostilbene Against Cerebral Ischemia/Reperfusion Injury via Suppression of COX-2. Front Pharmacol 2021; 12:770329. [PMID: 34795593 PMCID: PMC8593399 DOI: 10.3389/fphar.2021.770329] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/13/2021] [Indexed: 01/07/2023] Open
Abstract
Background: The incidence of cerebral ischemia disease leading cause of death in human population worldwide. Treatment of cerebral ischemia remains a clinical challenge for researchers and mechanisms of cerebral ischemia remain unknown. During the cerebral ischemia, inflammatory reaction and oxidative stress plays an important role. The current investigation scrutinized the neuroprotective and anti-inflammatory role of pterostilbene against cerebral ischemia in middle cerebral artery occlusion (MCAO) rodent model and explore the underlying mechanism. Methods: The rats were divided into following groups viz., normal, sham, MCAO and MCAO + pterostilbene (25 mg/kg) group, respectively. The groups received the oral administration of pterostilbene for 30 days followed by MCAO induction. The neurological score, brain water content, infarct volume and Evan blue leakage were estimated. Hepatic, renal, heart, inflammatory cytokines and inflammatory mediators were estimated. Results: Pterostilbene treatment significantly (p < 0.001) improved the body weight and suppressed the glucose level and brain weight. Pterostilbene significantly (p < 0.001) reduced the hepatic, renal and heart parameters. Pterostilbene significantly (p < 0.001) decreased the level of glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD) and decreased the level of malonaldehyde (MDA), 8-Hydroxy-2′-deoxyguanosine (8-OHdG). Pterostilbene significantly (p < 0.001) inflammatory cytokines and inflammatory parameters such as cyclooxygenase-2 (COX-2), inducible nitric oxidase synthase (iNOS) and prostaglandin (PGE2). Pterostilbene significantly (p < 0.001) down-regulated the level of metalloproteinases (MMP) such as MMP-2 and MMP-9. Pterostilbene suppressed the cellular swelling, cellular disintegration, macrophage infiltration, monocyte infiltration and polymorphonuclear leucocyte degranulation in the brain. Conclusion: In conclusion, Pterostilbene exhibited the neuroprotective effect against cerebral ischemia in rats via anti-inflammatory mechanism.
Collapse
Affiliation(s)
- Wenjun Yan
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Dongqing Ren
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Xiaoxue Feng
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Jinwen Huang
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Dabin Wang
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Ting Li
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Dong Zhang
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
10
|
Nasirishargh A, Kumar P, Ramasubramanian L, Clark K, Hao D, Lazar SV, Wang A. Exosomal microRNAs from mesenchymal stem/stromal cells: Biology and applications in neuroprotection. World J Stem Cells 2021; 13:776-794. [PMID: 34367477 PMCID: PMC8316862 DOI: 10.4252/wjsc.v13.i7.776] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/29/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are extensively studied as cell-therapy agents for neurological diseases. Recent studies consider exosomes secreted by MSCs as important mediators for MSCs' neuroprotective functions. Exosomes transfer functional molecules including proteins, lipids, metabolites, DNAs, and coding and non-coding RNAs from MSCs to their target cells. Emerging evidence shows that exosomal microRNAs (miRNAs) play a key role in the neuroprotective properties of these exosomes by targeting several genes and regulating various biological processes. Multiple exosomal miRNAs have been identified to have neuroprotective effects by promoting neurogenesis, neurite remodeling and survival, and neuroplasticity. Thus, exosomal miRNAs have significant therapeutic potential for neurological disorders such as stroke, traumatic brain injury, and neuroinflammatory or neurodegenerative diseases and disorders. This review discusses the neuroprotective effects of selected miRNAs (miR-21, miR-17-92, miR-133, miR-138, miR-124, miR-30, miR146a, and miR-29b) and explores their mechanisms of action and applications for the treatment of various neurological disease and disorders. It also provides an overview of state-of-the-art bioengineering approaches for isolating exosomes, optimizing their yield and manipulating the miRNA content of their cargo to improve their therapeutic potential.
Collapse
Affiliation(s)
- Aida Nasirishargh
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Lalithasri Ramasubramanian
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States
| | - Kaitlin Clark
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Dake Hao
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Sabrina V Lazar
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States.
| |
Collapse
|
11
|
Li H, Tang C, Wang D. LncRNA H19 promotes inflammatory response induced by cerebral ischemia-reperfusion injury through regulating the miR-138-5p-p65 axis. Biochem Cell Biol 2021; 98:525-536. [PMID: 32114772 DOI: 10.1139/bcb-2019-0281] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent studies have shown that long non-coding RNA(LncRNA) H19 is up-regulated in the brain of rats suffering from cerebral ischemia-reperfusion (I/R) injury, inducing severe disability and mortality. Little was known about the molecular mechanisms underlying the involvement of H19 in cerebral I/R injury. In this study, a rat model of I/R was induced by transient middle cerebral artery occlusion (tMCAO). PC-12 cells exposed to oxygen and glucose deprivation/reoxygenation (OGD/R) were used as an in vitro model. Our results show that H19 is up-regulated in both in vivo and in our in vitro model. Further study indicated that knockdown of H19 promotes cell proliferation, decreases the rate of cell apoptosis, and ameliorates inflammation after OGD/R simulation. Our in vivo study shows that H19 knockdown ameliorates inflammation and improves neurological function in our rat model of tMCAO. Remarkably, the results from our luciferase reporter assays suggest that H19 negatively regulates the expression of miR-138-5p, and p65 was identified as a target of miR-138-5p. To sum up, this study demonstrated that H19 promotes an inflammatory response and improves neurological function in a rat model of tMCAO by regulating the expression of miR-138-5p and p65. This study reveals the important role and underlying mechanism of H19 in the progress of cerebral I/R injury, which could serve as a potential target for further treatment.
Collapse
Affiliation(s)
- Hui Li
- Department of Neurology, The First People's Hospital of Tianmen city in Hubei Province, Tianmen City, Hubei Province, 431700, China
| | - Chenglu Tang
- Department of Gastroenterology, Wuhan Fifth Hospital, Wuhan City, Hubei Province, 430050, China
| | - Dan Wang
- Department of Geriatrics, Hefei Binhu Hospital, Hefei City, Anhui Province, 230601, China
| |
Collapse
|
12
|
Wei L, Peng Y, Yang XJ, Zhou P. Knockdown of long non-coding RNA RMRP protects cerebral ischemia-reperfusion injury via the microRNA-613/ATG3 axis and the JAK2/STAT3 pathway. Kaohsiung J Med Sci 2021; 37:468-478. [PMID: 33560543 DOI: 10.1002/kjm2.12362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/29/2020] [Accepted: 12/27/2020] [Indexed: 12/17/2022] Open
Abstract
Cerebral ischemia-reperfusion (I/R) injury can induce the mitophagy of neurons in the ischemic brain. Long non-coding RNAs (lncRNAs) play an important role in the pathogenesis of various injuries, especially in cerebral I/R injury. The purpose of this study is to investigate the molecular mechanism of lncRNA RNA component of mitochondrial RNA processing endoribonuclease (RMRP) in cerebral I/R injury. The middle cerebral artery occlusion (MCAO) mouse model was established. Neurological deficit score, pathological structure, infarcted area, neuron number, cell apoptosis, and coagulation ability of MCAO mice were evaluated. The expressions of RMRP, microRNA (miR)-613, and ATG3 in MCAO mice were detected. The binding relationships among miR-613, RMRP, and ATG3 were predicted and verified. Neuro 2A (N2a) cells were treated with oxygen-glucose deprivation/reperfusion (OGD/R) to simulate I/R injury. Cell viability and apoptosis assays were performed. The effects of miR-613, ATG3, and RMRP on I/R injury were verified by functional rescue experiments. JAK2/STAT3 phosphorylation level was detected. We found significantly upregulated RMRP and ATG3, and downregulated miR-613 expressions in MCAO mice. RMRP could escalate ATG3 mRNA expression through miR-613. RMRP knockdown promoted viability and inhibited apoptosis of OGD/R-treated N2a cells, which could be reversed by miR-613 inhibition or ATG3 overexpression. RMRP overexpression inhibited the activation of JAK2/STAT3 signaling pathway. We demonstrated that lncRNA RMRP competitively bound to miR-613, leading to the increase of ATG3 expression and the inhibition the JAK2/STAT3 pathway, thus promoting cerebral I/R injury in mice.
Collapse
Affiliation(s)
- Li Wei
- Department of Blood Transfusion, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ya Peng
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xiao-Jun Yang
- Department of Blood Transfusion, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Peng Zhou
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
13
|
Li Z, Ma Y, Zhou F, Jia X, Zhan J, Tan H, Wang X, Yang T, Liu Q. Identification of MicroRNA-Potassium Channel Messenger RNA Interactions in the Brain of Rats With Post-traumatic Epilepsy. Front Mol Neurosci 2021; 13:610090. [PMID: 33597846 PMCID: PMC7882489 DOI: 10.3389/fnmol.2020.610090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Dysregulated expression of microRNAs and potassium channels have been reported for their contributions to seizure onset. However, the microRNA–potassium channel gene interactions in traumatic brain injury-induced post-traumatic epilepsy (PTE) remain unknown. Methods: PTE was induced in male rats by intracranial injection with ferrous chloride (0.1 mol/L, 1 μl/min) at the right frontal cortex. Electroencephalography was recorded at 60 min, as well as day 1, 7, and 30, and the behavioral seizures were assessed before injection and at different time points after injection. Rats were killed on day 30 after injection. The right frontal cortex samples were collected and subjected to high throughput messenger RNA (mRNA) and microRNA sequencing. A network of differentially expressed potassium channel mRNAs and microRNAs was constructed using OryCun2.0 and subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. The differential mRNA and microRNA expressions were verified using quantitative real-time-PCR. The microRNA–mRNA was subject to the Pearson correlation analysis. Results: A PTE rat model was successfully established, as evidenced by behavioral seizures and epileptiform discharges on electroencephalography in PTE rats compared with sham rats. Among the 91 mRNAs and 40 microRNAs that were significantly differentially expressed in the PTE rat brain, 4 mRNAs and 10 microRNAs were associated with potassium channels. Except for potassium calcium-activated channel subfamily N member 2, the other three potassium channel mRNAs were negatively correlated with seven microRNAs. These microRNA–mRNA pairs were enriched in annotations and pathways related to neuronal ion channels and neuroinflammation. Quantitative real-time-PCR and correlation analysis verified negative correlations in miR-449a-5p-KCNH2, miR-98-5p-KCNH2, miR-98-5p-KCNK15, miR-19b-3p-KCNK15, and miR-301a-3p-KCNK15 pairs. Conclusion: We identified microRNA–potassium channel mRNA interactions associated with PTE, providing potential diagnostic markers and therapeutic targets for PTE.
Collapse
Affiliation(s)
- Zheng Li
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China.,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Yixun Ma
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China.,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Fengjuan Zhou
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China.,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Xiao Jia
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China.,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Jingjing Zhan
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China.,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Huachao Tan
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China.,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Xu Wang
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China.,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Tiantong Yang
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China.,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Quan Liu
- Hubei University of Police, Wuhan, China
| |
Collapse
|
14
|
Yi S, Zhang C, Li N, Fu Y, Li H, Zhang J. miR-325-3p Protects Neurons from Oxygen-Glucose Deprivation and Reoxygenation Injury via Inhibition of RIP3. Dev Neurosci 2020; 42:83-93. [PMID: 33130681 DOI: 10.1159/000509108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Recent reports have corroborated that micro-RNAs (miRs) are related to the pathological changes of cerebral ischemia-reperfusion (CIR) induced injury. This work aimed to unearth the role and potential mechanism of miR-325-3p in regulating neuronal survival in CIR injury. METHODS To conduct this investigation, we established an in vitro model of CIR injury by subjecting neurons to oxygen-glucose deprivation and reoxygenation (OGD/R). Gain and loss of function of miR-325-3p and receptor-interacting serine-threonine kinase 3 (RIP3) in neurons were performed to observe its effect on cell apoptosis and the release of lactate dehydrogenase. The levels of miR-325-3p and RIP3 in neurons were detected by qRT-PCR. Western blot was employed to inspect the levels of caspase3, Bax, and Bcl-2, as well as p38 and JNK phosphorylation. The relationship between miR-325-3p and RIP3 was detected by TargetScan and validated by dual-luciferase reporter assay. RESULTS Firstly, miR-325-3p expression was obviously downregulated while RIP3 expression was upregulated in neurons following OGD/R treatment. Overexpressed miR-325-3p or downexpressed RIP3 ameliorated OGD/R-induced neuronal injury. Besides, RIP3 was a direct target mRNA of miR-325-3p. Additionally, Western blot revealed the mitogen-activated protein kinase (MAPK) pathway was involved in the regulation of miR-325-3p on OGD/R-induced neuronal injury. Furthermore, miR-325-3p was verified to hinder OGD/R-induced neuronal injury through downregulating RIP3. CONCLUSION This study demonstrated that miR-325-3p targets RIP3 to inactivate the MAPK pathway, thereby protecting neurons against OGD/R-induced injury.
Collapse
Affiliation(s)
- Song Yi
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Chuqin Zhang
- Department of Otorhinolaryngology, The 2nd Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Na Li
- Department of Stomatology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yajing Fu
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Hongkun Li
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China,
| |
Collapse
|
15
|
Zhao XR, Zhang Z, Gao M, Li L, Sun PY, Xu LN, Qi Y, Yin LH, Peng JY. MicroRNA-27a-3p aggravates renal ischemia/reperfusion injury by promoting oxidative stress via targeting growth factor receptor-bound protein 2. Pharmacol Res 2020; 155:104718. [PMID: 32084559 DOI: 10.1016/j.phrs.2020.104718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/28/2020] [Accepted: 02/18/2020] [Indexed: 12/24/2022]
Abstract
Renal ischemia-reperfusion (RI/R) injury with high morbidity and mortality is one common clinical disease. Development of drug targets to treat the disorder is critical important. MiR-27a-3p plays important roles in regulating oxidative stress. However, its effects on RI/R injury have not been reported. In this paper, hypoxia/reoxygenation (H/R) models on NRK-52E and HK-2 cells, and RI/R model in C57BL/6 mice were established. The results showed that H/R in vitro decreased cell viability and increased ROS levels in cells, and RI/R caused renal injury and oxidative damage in mice. The expression levels of miR-27a-3p were up-regulated based on real-time PCR and FISH assays in model groups compared with control groups, which directly targeted Grb2 based on dual luciferase reporter assay and co-transfaction test. In addition, miR-27a- 3p markedly reduced Grb2 expression to down-regulate the expression levels of p-PI3K, p-AKT, Nrf2, HO-1, and up-regulate Keap1 expression in model groups. MiR-27a-3p mimics in vitro enhanced H/R-caused oxidative stress via increasing ROS levels and decreasing Grb2 expression to down-regulate PI3K-AKT signal. In contrary, miR-27a-3p inhibitor in vitro significantly reduced H/R-caused oxidative damage via decreasing ROS levels and increasing Grb2 expression to up-regulate PI3K-AKT signal. In vivo, miR-27a- 3p agomir exacerbated RI/R-caused renal damage by decreasing SOD level and increasing Cr, BUN, MDA levels via suppressing Grb2 expression to down-regulate PI3K- AKT signal. However, miR-27a -3p antagomir alleviated RI/R-caused oxidative damage via increasing Grb2 expression to up-regulate PI3k-AKT signal. Grb2siRNA in mice further enhanced RI/R-caused renal injury by increasing Cr, BUN, MDA levels and decreasing SOD level via inhibiting the expression levels of Grb2, Nrf2, HO-1, and increasing Keap1 expression. Our data showed that miR-27a-3p aggravated RI/R injury by promoting oxidative stress via targeting Grb2, which should be considered as one new drug target to treat RI/R injury.
Collapse
Affiliation(s)
- X-R Zhao
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Z Zhang
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - M Gao
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - L Li
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - P-Y Sun
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - L-N Xu
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Y Qi
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - L-H Yin
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - J-Y Peng
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China; Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, China; National-Local Joint Engineering Research Center for Drug Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China.
| |
Collapse
|
16
|
Hu YH, Sun J, Zhang J, Hua FZ, Liu Q, Liang YP. Long non-coding RNA ROR sponges miR-138 to aggravate hypoxia/reoxygenation-induced cardiomyocyte apoptosis via upregulating Mst1. Exp Mol Pathol 2020; 114:104430. [PMID: 32240614 DOI: 10.1016/j.yexmp.2020.104430] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/21/2019] [Accepted: 03/28/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hypoxia/reoxygenation (H/R) injury of cardiomyocytes causes an irreversible damage to heart and largely results in acute myocardial infarction. Study has indicated lncRNA ROR aggravates myocardial ischemia/reperfusion (I/R) injury. Also, lncRNA ROR sponges miR-138 to promote osteogenesis. MiR-138 involves in hypoxic pulmonary vascular remodelling by targeting Mst1. However, the interaction between lncRNA ROR, miR-138 and Mst1 involved in myocardial H/R injury is still unknown. METHODS H9C2 cells were used to establish H/R injury model. The expression levels of lncRNA ROR and miR-138 were modified by transfection with the miR-138 mimics or lncRNA ROR overexpression plasmid. MTT and flow cytometry analysis were performed to detect cell proliferation and apoptosis. Dual luciferase reporter assay was used to determine interaction between lncRNA ROR and miR-138 or miR-138 and Mst1. Expression levels of lncRNA ROR, miR-138, Mst1 and apoptosis-related markers were determined by qRT-PCR or western blotting. RESULTS LncRNA ROR was significantly up-regulated, while miR-138 was obviously down-regulated in H/R-induced injury of H9C2 cells. Furthermore, miR-138 overexpression alleviated cardiac cell apoptosis induced by H/R injury. Mst1 was revealed to be a target of miR-138 and negatively regulated by miR-138. Mst1 overexpression reversed the protective effects of miR-138 on H/R injury of H9C2 cells. LncRNA ROR was identified as a sponge for miR-138. MiR-138 could protect H9C2 cells form H/R injury induced by lncRNA ROR overexpression. CONCLUSION Our study provides that lncRNA ROR sponges miR-138 to aggravate H/R-induced myocardial cell injury by upregulating the expression of Mst1.
Collapse
Affiliation(s)
- Yan-Hui Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Jing Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Fu-Zhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Qin Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Ying-Ping Liang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
17
|
Ghasemi A, Hashemy SI, Azimi-Nezhad M, Dehghani A, Saeidi J, Mohtashami M. The cross-talk between adipokines and miRNAs in health and obesity-mediated diseases. Clin Chim Acta 2019; 499:41-53. [PMID: 31476303 DOI: 10.1016/j.cca.2019.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Multiple studies have revealed a direct correlation between obesity and the development of multiple comorbidities, including metabolic diseases, cardiovascular disorders, chronic inflammatory disease, and cancers. However, the molecular mechanism underlying the link between obesity and the progression of these diseases is not completely understood. Adipokines are factors that are secreted by adipocytes and play a key role in whole body homeostasis. Collaboratively, miRNAs are suggested to have key functions in the development of obesity and obesity-related disorders. Based on recently emerging evidence, obesity leads to the dysregulation of both adipokines and obesity-related miRNAs. In the present study, we described the correlations between obesity and its related diseases that are mediated by the mutual regulatory effects of adipokines and miRNAs. METHODS We reviewed current knowledge of the modulatory effects of adipokines on miRNAs activity and their relevant functions in pathological conditions and vice versa. RESULTS Our research reveals the ability of adipokines and miRNAs to control the expression and activity of the other class of molecules, and their effects on obesity-related diseases. CONCLUSIONS This study may help researchers develop a roadmap for future investigations and provide opportunities to develop new therapeutic and diagnostic methods for treating obesity-related diseases.
Collapse
Affiliation(s)
- Ahmad Ghasemi
- Non-communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohsen Azimi-Nezhad
- Non-communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran; UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment en Physiopathologie Cardiovascular Université de Lorraine, France
| | - Alireza Dehghani
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Jafar Saeidi
- Department of Physiology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Mahnaz Mohtashami
- Department of Biology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| |
Collapse
|
18
|
Deng Y, Chen D, Gao F, Lv H, Zhang G, Sun X, Liu L, Mo D, Ma N, Song L, Huo X, Yan T, Zhang J, Miao Z. Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2. J Biol Eng 2019; 13:71. [PMID: 31485266 PMCID: PMC6714399 DOI: 10.1186/s13036-019-0193-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/30/2019] [Indexed: 12/16/2022] Open
Abstract
Background MicroRNAs (miRNAs) are implicated in the progression of ischemic stroke (IS) and bone marrow-derived mesenchymal stem cells (BMSCs)-derived exosomes play a role in IS therapy. Herein we hypothesized that the BMSCs-derived exosomes containing overexpressed miR-138-5p could protect the astrocytes following IS involved with lipocalin 2 (LCN2). Methods The differentially expressed gene related to IS was initially identified by bioinformatics analysis. miR-138-5p was predicted to regulate LCN2. The expression of miR-138-5p and LCN2 was altered in the oxygen-glucose deprivation (OGD)-induced astrocytes. Furthermore, the cell behaviors and inflammatory responses were evaluated both in astrocytes alone and astrocytes co-cultured with exosomes derived from BMSCs overexpressing miR-138-5p to explore the involvement of miR-138-5p and LCN2 in IS. Besides, middle cerebral artery occlusion (MCAO) mouse model was established to explore the effect of BMSCs-derived exosomal miR-138-5p in IS in vivo. Results LCN2 was highly expressed in IS. Besides, LCN2 was a target gene of miR-138-5p. BMSCs-derived exosomes could be endocytosed by astrocytes via co-culture. Overexpression of miR-138-5p promoted the proliferation and inhibited apoptosis of astrocytes injured by OGD, accompanied by the reduced expression of inflammatory factors, which was achieved by down-regulating LCN2. More importantly, BMSCs delivered miR-138-5p to the astrocytes via exosomes and BMSCs-derived exosomal miR-138-5p alleviated neuron injury in IS mice. Conclusion BMSCs-derived exosomal miR-138-5p reduces neurological impairment by promoting proliferation and inhibiting inflammatory responses of astrocytes following IS by targeting LCN2, which may provide a novel target for IS treatment.
Collapse
Affiliation(s)
- Yiming Deng
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| | - Duanduan Chen
- 4School of Life Science, Beijing Institute of Technology, Beijing, 100081 China
| | - Feng Gao
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| | - Hong Lv
- 5Departments of Clinical Laboratory, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050 People's Republic of China
| | - Guojun Zhang
- 5Departments of Clinical Laboratory, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050 People's Republic of China
| | - Xuan Sun
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| | - Lian Liu
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| | - Dapeng Mo
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| | - Ning Ma
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| | - Ligang Song
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| | - Xiaochuan Huo
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| | - Tianyi Yan
- 4School of Life Science, Beijing Institute of Technology, Beijing, 100081 China
| | - Jingbo Zhang
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| | - Zhongrong Miao
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| |
Collapse
|
19
|
Fu C, Chen S, Cai N, Liu Z, Wang P, Zhao J. Potential Neuroprotective Effect of miR-451 Against Cerebral Ischemia/Reperfusion Injury in Stroke Patients and a Mouse Model. World Neurosurg 2019; 130:e54-e61. [PMID: 31150847 DOI: 10.1016/j.wneu.2019.05.194] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Recently, microRNAs (miRs) have been reported to be novel regulators in ischemic stroke. In this study, we investigated the pattern of miR-451 expression along with its clinical application in human ischemic stroke and in an in vivo mouse model. METHODS The level of miR-451 was evaluated in patients and mice after ischemic stroke. National Institute of Health Stroke Scale scores and brain infarct volume were analyzed to the correlation of miR-451 expression and clinical information. In addition, blood samples and brain tissues were collected from an established middle cerebral artery occlusion model consisting of 12 adult male mice at 24 hours after the middle cerebral artery occlusion. RESULTS The results showed that miR-451 levels in the circulating blood of ischemic stroke patients were greatly decreased compared with the control. Further correlation analysis revealed a negative association between miR-451 and National Institute of Health Stroke Scale scores (r = -0.6104, P < 0.001) and infarct volume (r = -0.5442, P < 0.001). Moreover, miR-451 was down-regulated in response to middle cerebral artery occlusion in vivo, along with a negative correlation between miR-451 in brain and blood (r = 0.9240, P < 0.01). In addition, forced expression of miR-451 weakened ischemic brain infarction and apoptosis levels in focal ischemia-stroked mice, while downregulation of miR-451 significantly augmented ischemic injury. CONCLUSIONS In conclusion, miR-451 displays the neuroprotective effect in ischemic stroke and might serve as a novel therapeutic target of ischemic stroke.
Collapse
Affiliation(s)
- Chuanyi Fu
- Department of Neurosurgery, The National Key Clinic Specialty, Hainan General Hospital, Hainan Clinical Medicine Research Institution, Haikou, Hainan P.R. China
| | - Shuijie Chen
- Department of Neurosurgery, The National Key Clinic Specialty, Hainan General Hospital, Hainan Clinical Medicine Research Institution, Haikou, Hainan P.R. China
| | - Nanhua Cai
- Department of Neurosurgery, The National Key Clinic Specialty, Hainan General Hospital, Hainan Clinical Medicine Research Institution, Haikou, Hainan P.R. China
| | - Zhaohui Liu
- Department of Neurosurgery, The National Key Clinic Specialty, Hainan General Hospital, Hainan Clinical Medicine Research Institution, Haikou, Hainan P.R. China
| | - Pengcheng Wang
- Department of Neurosurgery, The National Key Clinic Specialty, Hainan General Hospital, Hainan Clinical Medicine Research Institution, Haikou, Hainan P.R. China
| | - Jiannong Zhao
- Department of Neurosurgery, The National Key Clinic Specialty, Hainan General Hospital, Hainan Clinical Medicine Research Institution, Haikou, Hainan P.R. China.
| |
Collapse
|
20
|
Zhang X, Qin Q, Dai H, Cai S, Zhou C, Guan J. Emodin protects H9c2 cells from hypoxia-induced injury by up-regulating miR-138 expression. ACTA ACUST UNITED AC 2019; 52:e7994. [PMID: 30810622 PMCID: PMC6393853 DOI: 10.1590/1414-431x20187994] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022]
Abstract
Myocardial infarction (MI) is a common presentation for ischemic heart disease, which is a leading cause of death. Emodin is a Chinese herbal anthraquinone used in several diseases. However, the effect of emodin in hypoxia-induced injury in cardiomyocytes has not been clearly elucidated. Our study aimed to clarify the functions of emodin in hypoxia-induced injury in rat cardiomyocytes H9c2 and explore the underlying mechanism. The effects of emodin on cell viability and apoptosis were analyzed by the Cell counting kit-8 assay and flow cytometry assay, respectively. The cell proliferation- and cell apoptosis-related proteins were detected by western blot. qRT-PCR was used to determine the relative expression of miR-138. Cell transfection was performed to alter miR-138 and MLK3 expression. miR-138 target was performed by dual luciferase activity assay. Sirt1/AKT and Wnt/β-catenin pathways-related factors phosphorylation were analyzed by western blot. Emodin inhibited hypoxia-induced injury in H9c2 cells by promoting cell viability and reducing cell apoptosis. miR-138 was down-regulated by hypoxia treatment but up-regulated by emodin. Up-regulation of miR-138 alleviated hypoxia-induced cell injury. Down-regulation of miR-138 attenuated the growth-promoting effect of emodin on hypoxia-induced injury, whereas up-regulation of miR-138 enhanced the growth-promoting effects of emodin. The underlying mechanism might be by inactivating Sirt1/AKT and Wnt/β-catenin pathways. MLK3 was negatively regulated by miR-138 expression and inactivated Sirt1/AKT and Wnt/β-catenin pathways. Emodin alleviated hypoxia-induced injury in H9c2 cells via up-regulation of miR-138 modulated by MLK3, as well as by activating Sirt1/AKT and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Xuezhi Zhang
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiaoji Qin
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongyan Dai
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao, China
| | - Shanglang Cai
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Changyong Zhou
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jun Guan
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
21
|
Zheng Y, Pan C, Chen M, Pei A, Xie L, Zhu S. miR‑29a ameliorates ischemic injury of astrocytes in vitro by targeting the water channel protein aquaporin 4. Oncol Rep 2019; 41:1707-1717. [PMID: 30628716 PMCID: PMC6365700 DOI: 10.3892/or.2019.6961] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 12/13/2018] [Indexed: 01/22/2023] Open
Abstract
Ischemic stroke is the main cause of brain injury and results in a high rate of morbidity, disability and mortality. In the present study, we aimed to determine whether miR-29a played a protective role in oxygen glucose deprivation (OGD) injury via regulation of the water channel protein aquaporin 4 (AQP4). Real-time PCR and western blotting were used to assess miR-29a levels and AQP4 protein levels, respectively. Apoptosis was detected by flow cytometry, and lactate dehydrogenase (LDH) was determined by enzyme-linked immunosorbent assay (ELISA). Overexpression of miR-29a was significantly downregulated in OGD-induced primary astrocytes, and transfection with a miR-29a mimic decreased LDH release and apoptosis, and improved cell health in OGD-induced astrocytes. AQP4 was the target of miR-29a, which suppressed AQP4 expression, and knockdown of AQP4 mitigated OGD-induced astrocyte injury. Furthermore, miR-29a regulated AQP4 expression in OGD-induced astrocytes. AQP4 exacerbated astrocyte injury following ischemic stroke, and knockdown of AQP4 protected OGD/RX-induced primary cultured astrocytes against injury. The effect of miR-29a inhibitor on primary astrocytes was lost following AQP4 knockdown. These findings indicated that miR-29a prevented astrocyte injury in vitro by inhibiting AQP4. Thus, miR-29a may protect primary cultured astrocytes after OGD-induced injury by targeting AQP4, and may be a potential therapeutic target for ischemic injury of astrocytes.
Collapse
Affiliation(s)
- Yueying Zheng
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Caifei Pan
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Manli Chen
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Aijie Pei
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Liwei Xie
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shengmei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
22
|
Zhong W, Huang Q, Zeng L, Hu Z, Tang X. Caveolin-1 and MLRs: A potential target for neuronal growth and neuroplasticity after ischemic stroke. Int J Med Sci 2019; 16:1492-1503. [PMID: 31673241 PMCID: PMC6818210 DOI: 10.7150/ijms.35158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022] Open
Abstract
Ischemic stroke is a leading cause of morbidity and mortality worldwide. Thrombolytic therapy, the only established treatment to reduce the neurological deficits caused by ischemic stroke, is limited by time window and potential complications. Therefore, it is necessary to develop new therapeutic strategies to improve neuronal growth and neurological function following ischemic stroke. Membrane lipid rafts (MLRs) are crucial structures for neuron survival and growth signaling pathways. Caveolin-1 (Cav-1), the main scaffold protein present in MLRs, targets many neural growth proteins and promotes growth of neurons and dendrites. Targeting Cav-1 may be a promising therapeutic strategy to enhance neuroplasticity after cerebral ischemia. This review addresses the role of Cav-1 and MLRs in neuronal growth after ischemic stroke, with an emphasis on the mechanisms by which Cav-1/MLRs modulate neuroplasticity via related receptors, signaling pathways, and gene expression. We further discuss how Cav-1/MLRs may be exploited as a potential therapeutic target to restore neuroplasticity after ischemic stroke. Finally, several representative pharmacological agents known to enhance neuroplasticity are discussed in this review.
Collapse
Affiliation(s)
- Wei Zhong
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qianyi Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Liuwang Zeng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
23
|
Zhang A, Wang G, Jia L, Su T, Zhang L. Exosome-mediated microRNA-138 and vascular endothelial growth factor in endometriosis through inflammation and apoptosis via the nuclear factor-κB signaling pathway. Int J Mol Med 2018; 43:358-370. [PMID: 30431056 PMCID: PMC6257842 DOI: 10.3892/ijmm.2018.3980] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 10/19/2018] [Indexed: 12/04/2022] Open
Abstract
Endometriosis (Ems) is a condition that refers to the ectopic implantation and growth of endometrial tissue outside the uterine cavity. The aim of the present study was to investigate the role of microRNA-138 (miR-138) in Ems and the possible underlying mechanism. Flow cytometry was measured CD11b level, cell proliferation was measured using MTT assay and lactate dehydrogenase (LDH) assays was analyzed using LDH activity kits. Cell apoptosis was measured using Annexin V-FITC/PI double staining apoptosis detection kit and DAPI assays. ELISA assay and western blot analysis were used to measure protein expression determination. It was first observed that miR-138 expression was markedly downregulated and the CD11b level was reduced in Ems mice compared with the control group. Subsequently, miR-138 expression was downregulated in the uterine endothelial cells co-cultured with THP-1 cells, which resulted in decreased apoptosis and increased inflammation in the uterine endothelial cells. By contrast, upregulation of miR-138 by mimic transfection increased the proliferation and reduced inflammation in uterine endothelial cells. In addition, in the co-culture of uterine endothelial and THP-1 cells, downregulation of miR-138 induced the expression of nuclear factor (NF)-κB and vascular endothelial growth factor (VEGF) proteins in THP-1 cells. Furthermore, treatment with an NF-κB inhibitor and downregulation of miR-138 in the co-culture of uterine endothelial and THP-1 cells reduced inflammation. VEGF inhibitor treatment and downregulation of miR-138 in this cell co-culture promoted the proliferation of uterine endothelial cells. These results suggested that uterine endothelial cells promoted miR-138 to induce exosome-mediated inflammation and apoptosis in Ems through the VEGF/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Aifeng Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guoyun Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lihua Jia
- Department of Obstetrics and Gynecology, Tongzhou Maternal and Child Health Hospital of Beijing, Beijing 101100, P.R. China
| | - Tao Su
- Department of Obstetrics and Gynecology, Tongzhou Maternal and Child Health Hospital of Beijing, Beijing 101100, P.R. China
| | - Lili Zhang
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
24
|
Tian F, Yuan C, Yue H. MiR-138/SIRT1 axis is implicated in impaired learning and memory abilities of cerebral ischemia/reperfusion injured rats. Exp Cell Res 2018; 367:232-240. [DOI: 10.1016/j.yexcr.2018.03.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/22/2018] [Accepted: 03/30/2018] [Indexed: 12/25/2022]
|
25
|
microRNA-21 Confers Neuroprotection Against Cerebral Ischemia-Reperfusion Injury and Alleviates Blood-Brain Barrier Disruption in Rats via the MAPK Signaling Pathway. J Mol Neurosci 2018; 65:43-53. [DOI: 10.1007/s12031-018-1067-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/11/2018] [Indexed: 02/02/2023]
|
26
|
Yang X, Ji H, Yao Y, Lai X, Jiang Y, Wu D, Cai L, Zhu W, Gu X, Hu R, Li L, Xu L, Jiang M. Downregulation of circ_008018 protects against cerebral ischemia-reperfusion injury by targeting miR-99a. Biochem Biophys Res Commun 2018; 499:758-764. [PMID: 29605297 DOI: 10.1016/j.bbrc.2018.03.218] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/29/2018] [Indexed: 11/28/2022]
Abstract
Circular RNAs (circRNAs) are highly expressed in eukaryotic cells and regulate physiological and pathophysiological processes. However, the role of circRNAs in cerebral ischemia-reperfusion (I/R) injury remains largely unknown. In this study, we found that circ_008018 level was higher in the cortical tissue of mice with middle cerebral artery occlusion as compared to those in the sham group 24 h after reperfusion. Knockdown of circ_008018 attenuated cerebral I/R-induced brain tissue damage and neurological deficits in mice by inducing microRNA miR-99a overexpression. The decreased phosphorylation of Akt and glycogen synthase kinase 3β caused by I/R was partly reversed by circ_008018 silencing or miR-99a overexpression. Taken together, these results provide new insight into the mechanisms of apoptosis resulting from cerebral I/R injury and suggest that targeted inhibition of circ_008018 can protect against subsequent neurological damage.
Collapse
Affiliation(s)
- Xuelian Yang
- Department of Neurology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, PR China
| | - Haifeng Ji
- Department of Neurology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, PR China
| | - Yulan Yao
- Department of Critical Care Medicine, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, PR China
| | - Xiaoyin Lai
- Department of Neurology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, PR China
| | - Yufeng Jiang
- Department of Clinical Medicine, Clinical Medical School of Anhui Medical University, Anhui 230000, PR China
| | - Dayu Wu
- Department of Neurology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, PR China
| | - Liying Cai
- Department of Neurology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, PR China
| | - Wei Zhu
- Department of Neurology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, PR China
| | - Xiaju Gu
- Department of Neurology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, PR China
| | - Rongguo Hu
- Department of Neurology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, PR China
| | - Longxuan Li
- Department of Neurology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, PR China
| | - Lijuan Xu
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135 PR China.
| | - Mei Jiang
- Department of Neurology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, PR China.
| |
Collapse
|
27
|
Han X, Wen X, Wang Y, Wang S, Shen M, Zhang Z, Fan S, Shan Q, Wang L, Li M, Hu B, Sun C, Wu D, Lu J, Zheng Y. Retracted
: Protective effects of microRNA‐431 against cerebral ischemia‐reperfusion injury in rats by targeting the Rho/Rho‐kinase signaling pathway. J Cell Physiol 2018; 233:5895-5907. [DOI: 10.1002/jcp.26394] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Xin‐Rui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Yong‐Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Shan Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Min Shen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Zi‐Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Shao‐Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Liang Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Meng‐Qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Chun‐Hui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Dong‐Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Yuan‐Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| |
Collapse
|
28
|
Shao Y, Chen Y. Pathophysiology and Clinical Utility of Non-coding RNAs in Epilepsy. Front Mol Neurosci 2017; 10:249. [PMID: 28848386 PMCID: PMC5554344 DOI: 10.3389/fnmol.2017.00249] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022] Open
Abstract
Epilepsy is a common neurologic disorder. The underlying pathological processes include synaptic strength, inflammation, ion channels, and apoptosis. Acting as epigenetic factors, non-coding RNAs (ncRNAs) participate in the regulation of pathophysiologic processes of epilepsy and are dysregulated during epileptogenesis. Aberrant expression of ncRNAs are observed in epilepsy patients and animal models of epilepsy. Furthermore, ncRNAs might also be used as biomarkers for diagnosis and the prognosis of treatment response in epilepsy. In this review, we will summarize the role of ncRNAs in the pathophysiology of epilepsy and the putative utilization of ncRNAs as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yiye Shao
- Department of Neurology, Jinshan Hospital, Fudan UniversityShanghai, China.,Department of Neurology, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Yinghui Chen
- Department of Neurology, Jinshan Hospital, Fudan UniversityShanghai, China.,Department of Neurology, Shanghai Medical College, Fudan UniversityShanghai, China
| |
Collapse
|
29
|
Shi F, Dong Z, Li H, Liu X, Liu H, Dong R. MicroRNA-137 protects neurons against ischemia/reperfusion injury through regulation of the Notch signaling pathway. Exp Cell Res 2017; 352:1-8. [DOI: 10.1016/j.yexcr.2017.01.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/27/2016] [Accepted: 01/25/2017] [Indexed: 12/19/2022]
|
30
|
Wu Y, Gu C, Huang X. Sevoflurane protects against hepatic ischemia/reperfusion injury by modulating microRNA-200c regulation in mice. Biomed Pharmacother 2016; 84:1126-1136. [PMID: 27780142 DOI: 10.1016/j.biopha.2016.10.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 09/14/2016] [Accepted: 10/09/2016] [Indexed: 12/22/2022] Open
Abstract
This present study was aimed to investigate the molecular mechanisms involved in sevoflurane protection of hepatic ischemia-reperfusion (I/R) injury. Firstly, we investigated the protective effects of sevoflurane against hepatic I/R injury. Biochemical analysis results showed that sevoflurane preconditioning significantly protected against hepatic I/R injury by reducing liver enzymes and improving antioxidant defense markers. We also found that sevoflurane attenuates I/R-induced hepatic cell death, by TUNEL staining, DNA fragmentation ELISA and PARP activity determination. Next, In order to find the molecular mechanism of sevoflurane preconditioning in hepatic I/R injury, we poured our attention to microRNAs regulation. We focused on miR-200c, one of microRNAs which screened from the gene expression omnibus (GEO). Furthermore, a hydrogen peroxide (H2O2)-induced oxidative stress apoptosis model was also established to mimic hepatic I/R injury, the effects of MiR-200c was investigated. We observed that MiR-200c inhibition decreased the H2O2-induced apoptosis of hepatic AML-12 cells. And also, ZEB1 is found as a target gene of miR-200c and is involved in H2O2-induced apoptosis. On the other hand, the in vivo model was established to examine whether sevoflurane protect against hepatic IR injury by downregulating MiR-200c. Together with the biochemical tests and apoptosis detection, results showed that over-expression of miR-200c significantly inhibited the protect effect of sevoflurane in Hepatic IR injury. Summarizing, sevoflurane preconditioning seems to ameliorate hepatic I/R injury in mice, mediated by mechanisms that include microRNA 200c down regulation. However, further more studies need to be carried out to verify this point.
Collapse
Affiliation(s)
- Yamou Wu
- Department of Anesthesiology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Chengyong Gu
- Department of Anesthesiology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu 215000, China.
| | - Xiaochen Huang
- Department of Anesthesiology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu 215000, China
| |
Collapse
|
31
|
Patent Highlights April-May 2016. Pharm Pat Anal 2016; 5:301-6. [PMID: 27531596 DOI: 10.4155/ppa-2016-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
32
|
Yang Y, Hu Q, Zhang Q, Jiang K, Lin W, Yang Y, Cui Y, Qian G. A Large Capacity Cationic Metal–Organic Framework Nanocarrier for Physiological pH Responsive Drug Delivery. Mol Pharm 2016; 13:2782-6. [DOI: 10.1021/acs.molpharmaceut.6b00374] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yanyu Yang
- State
Key Laboratory of Silicon Material, Cyrus Tang Center for Sensor Material
and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Quan Hu
- Department
of Pharmacology, School of Medicine, Hangzhou Normal University, Hangzhou 310036, P.R. China
| | - Qi Zhang
- State
Key Laboratory of Silicon Material, Cyrus Tang Center for Sensor Material
and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Ke Jiang
- State
Key Laboratory of Silicon Material, Cyrus Tang Center for Sensor Material
and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Wenxin Lin
- State
Key Laboratory of Silicon Material, Cyrus Tang Center for Sensor Material
and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Yu Yang
- State
Key Laboratory of Silicon Material, Cyrus Tang Center for Sensor Material
and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Yuanjing Cui
- State
Key Laboratory of Silicon Material, Cyrus Tang Center for Sensor Material
and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Guodong Qian
- State
Key Laboratory of Silicon Material, Cyrus Tang Center for Sensor Material
and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| |
Collapse
|