1
|
Lee SY, Kim JH, Song Y, Kim S, Kang HJ, Kim J, Lee YJ, Seo HR. Inhibition of 11β-hydroxysteroid dehydrogenase 1 alleviates pulmonary fibrosis through inhibition of endothelial-to-mesenchymal transition and M2 macrophage polarization by upregulating heme oxygenase-1. Cell Death Dis 2025; 16:196. [PMID: 40118823 PMCID: PMC11928689 DOI: 10.1038/s41419-025-07522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 03/24/2025]
Abstract
The intracellular enzyme 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) catalyzes the interconversion of active glucocorticoid (cortisol) and its intrinsically inert form (cortisone) in metabolic tissues. Although 11βHSD1 is considered a promising therapeutic target in metabolic disorders such as type 2 diabetes, obesity, and nonalcoholic steatohepatitis because of its hepatic functions, its roles in other tissues have received less attention. In this study, we show that the 11βHSD1-specific inhibitor J2H-1702 facilitates the reversion of endothelial-to-mesenchymal transition in multicellular lung spheroid models encapsulating the complex crosstalk among lung cancer cells, vascular endothelial cells, and macrophages. In vascular endothelial cells, J2H-1702 not only suppressed interleukin-1α (IL-1α) expression but also attenuated reactive oxygen species-induced DNA damage by upregulating heme oxygenase-1. Additionally, in macrophages, which are key regulators of fibrogenesis, inhibition of 11βHSD1 markedly reduced IL-1β expression, thereby modulating the pro-inflammatory phenotype of activated macrophages. In mouse models of pulmonary fibrosis, including a bleomycin-induced idiopathic model and a radiation-induced model, J2H-1702 alleviated pulmonary fibrosis and markedly improved the efficacy of nintedanib. Collectively, our data suggest that J2H-1702 holds promise as a clinical candidate for the treatment of pulmonary fibrosis associated with reactive oxygen species-induced DNA damage, endothelial-to-mesenchymal transition, and inflammatory responses.
Collapse
Affiliation(s)
- Su-Yeon Lee
- Advanced Biomedical Research Lab, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Ji-Hee Kim
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, 75 nowongu nowon gil, Seoul, 139-706, Korea
| | - Yeonhwa Song
- Advanced Biomedical Research Lab, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Sanghwa Kim
- Advanced Biomedical Research Lab, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Hyo Jin Kang
- R&D center, J2H Biotech Inc., Saneop-ro 156 beon-gil, Gwonseon-gu, Suwon-si, Gyeonggi-do, 16648, Republic of Korea
| | - Jason Kim
- R&D center, J2H Biotech Inc., Saneop-ro 156 beon-gil, Gwonseon-gu, Suwon-si, Gyeonggi-do, 16648, Republic of Korea
| | - Yoon-Jin Lee
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, 75 nowongu nowon gil, Seoul, 139-706, Korea
| | - Haeng Ran Seo
- Advanced Biomedical Research Lab, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
2
|
Rajalekshmi R, Agrawal DK. Therapeutic Efficacy of Medicinal Plants with Allopathic Medicine in Musculoskeletal Diseases. INTERNATIONAL JOURNAL OF PLANT, ANIMAL AND ENVIRONMENTAL SCIENCES 2024; 14:104-129. [PMID: 39866300 PMCID: PMC11765655 DOI: 10.26502/ijpaes.4490170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Musculoskeletal diseases encompass a diverse array of disorders affecting the muscles, bones, joints, and connective tissues, leading to significant impairments in mobility, function, and quality of life. Affecting over 1.3 billion individuals globally, musculoskeletal diseases represent a major source of disability and economic burden. Conventional treatment modalities, including pharmacological interventions and surgical procedures, are frequently limited by adverse side effects, prolonged recovery periods, and patient dissatisfaction, particularly when focused solely on symptom management. In response, complementary and alternative medicine, particularly the use of medicinal plants, has garnered increasing interest to enhance the management of musculoskeletal diseases. Medicinal plants possess a wide spectrum of pharmacologically active compounds with anti-inflammatory, analgesic, and antioxidant properties, making them promising adjuncts to conventional therapies. This review critically evaluates the potential synergy between medicinal plants and allopathic medicine for the management of musculoskeletal diseases, with an emphasis on integrated therapy that combines both modalities. Specifically, a critical discussion is presented on how medicinal plants with scientifically supported pharmacological properties can augment the therapeutic efficacy of conventional medications, reduce their doses, and mitigate adverse effects. Furthermore, the challenges associated with incorporating herbal medicine into established healthcare systems are discussed, including the need for rigorous clinical validation, standardization, and regulatory frameworks. Overall, the article underscores the potential of integrated therapeutic approaches to improve clinical outcomes, enhance patient well-being, and establish a more sustainable model for the treatment of musculoskeletal diseases.
Collapse
Affiliation(s)
- Resmi Rajalekshmi
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
3
|
Kunz S, Meng Y, Schneider H, Brunnenkant L, Höhne M, Kühnle T, Reincke M, Theodoropoulou M, Bidlingmaier M. Fast and reliable quantification of aldosterone, cortisol and cortisone via LC-MS/MS to study 11β-hydroxysteroid dehydrogenase activities in primary cell cultures. J Steroid Biochem Mol Biol 2024; 244:106610. [PMID: 39214289 DOI: 10.1016/j.jsbmb.2024.106610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Cell culture experiments can support characterization of enzymatic activities in healthy and tumorous human tissues. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) enables simultaneous measurement of several steroids from a single sample, facilitating analysis of molecular pathways involved in steroid biosynthesis. We developed a reliable but fast method for quantification of cortisol, cortisone and aldosterone in cell culture supernatant. Validation, including investigation of matrix-matched calibration, was performed for two different cell types. Utility of the method was demonstrated in the study of 11β-hydroxysteroid dehydrogenase type 2 (HSD11B2) activity under conditions of glucocorticoid and mineralocorticoid excess in different cell types. Aldosterone, cortisol and cortisone were extracted by liquid-liquid extraction (LLE) with methyl tert-butyl ether from 1 mL of cell culture supernatant. Steroids were separated on a Kinetex biphenyl column (50 ×2.1 mm, 2.6 µm) with gradient elution of water and methanol containing 2 mM ammonium format and analysed in multiple reaction monitoring mode after positive electrospray ionization. Application of the method included cell culture experiments with two different primary cell types, human coronary artery smooth muscle cells (HCSMC) and human coronary artery endothelial cells (EC). Cells were treated with different concentrations of cortisol, aldosterone and mifepristone, a glucocorticoid receptor antagonist and quantitative PCR was performed. The method exhibits high precision (CV ≤ 6 %) and accuracy (deviation from nominal concentration ≤ 6 %) for concentrations above the limit of quantification (LoQ) which is 0.11, 0.56 and 0.69 nmol/L for aldosterone, cortisone and cortisol, respectively. Calibration curves did not differ when prepared in media or solvent. The method enabled us to confirm activity of HSD11B2 and concentration dependent conversion of cortisol to cortisone in HCSMC (median conversion ratio at 140 nM cortisol = 1.46 %). In contrast we did not observe any HSD11B2 activity in EC. Neither addition of high aldosterone, nor addition of 1 µM mifepristone had impact on glucocorticoid concentrations. Quantitative PCR revealed expression of HSD11B1 and HSD11B2 in HCSMC but not in EC. We present a fast and reliable method for quantification of cortisol, cortisone and aldosterone in cell culture supernatants. The method enabled us to study HSD11B2 activity in two different cell types and will support future experiments investigating mechanisms of target organ damage in conditions of glucocorticoid and mineralocorticoid excess.
Collapse
Affiliation(s)
- Sonja Kunz
- Department of Medicine IV, LMU University Hospital, LMU Munich, Ziemssenstraße 5, Munich 80336, Germany.
| | - Yao Meng
- Department of Medicine IV, LMU University Hospital, LMU Munich, Ziemssenstraße 5, Munich 80336, Germany; Department of geriatric medicine, Gan Su provincial hospital, Dong Gang West Road 204, Lan Zhou 731100, China.
| | - Holger Schneider
- Department of Medicine IV, LMU University Hospital, LMU Munich, Ziemssenstraße 5, Munich 80336, Germany.
| | - Laura Brunnenkant
- Department of Medicine IV, LMU University Hospital, LMU Munich, Ziemssenstraße 5, Munich 80336, Germany.
| | - Michaela Höhne
- Department of Medicine IV, LMU University Hospital, LMU Munich, Ziemssenstraße 5, Munich 80336, Germany.
| | - Tim Kühnle
- Department of Medicine IV, LMU University Hospital, LMU Munich, Ziemssenstraße 5, Munich 80336, Germany.
| | - Martin Reincke
- Department of Medicine IV, LMU University Hospital, LMU Munich, Ziemssenstraße 5, Munich 80336, Germany.
| | - Marily Theodoropoulou
- Department of Medicine IV, LMU University Hospital, LMU Munich, Ziemssenstraße 5, Munich 80336, Germany.
| | - Martin Bidlingmaier
- Department of Medicine IV, LMU University Hospital, LMU Munich, Ziemssenstraße 5, Munich 80336, Germany.
| |
Collapse
|
4
|
Luo L, Zhu D, Zhang Z, Zeng H, Huang M, Zhou S. 11β-Hydroxysteroid dehydrogenase type 1 amplifies inflammation in LPS-induced THP-1 cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:374-379. [PMID: 36865036 PMCID: PMC9922366 DOI: 10.22038/ijbms.2023.67927.14852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/22/2022] [Indexed: 03/04/2023]
Abstract
Objectives The role of glucocorticoids as anti-inflammatory and immune-stimulatory drugs has been widely reported. However, the role of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which catalyzes the conversion of inactive cortisone into active cortisol, in inflammation remains unclear. This study aimed to examine the mechanism of actions of 11β-HSD1 in lipopolysaccharide (LPS)-induced THP-1 cells. Materials and Methods The gene expression of 11β-HSD1 and pro-inflammatory cytokines was detected via RT-PCR. The protein expression of IL-1β in cell supernatants was detected via ELISA. Oxidative stress and mitochondrial membrane potential were assessed using a reactive oxygen species (ROS) kit and a mitochondrial membrane potential (MMP) kit, respectively. The expression of Nuclear Factor- Kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) was detected via western blotting. Results Elevated levels of 11β-HSD1 contributed to the expression of inflammatory cytokines, whereas BVT.2733, a selective 11β-HSD1 inhibitor, ameliorated inflammatory responses, ROS, and mitochondrial damage in LPS-stimulated THP-1 cells. Furthermore, cortisone and cortisol, which are the substrate and product of 11β-HSD1, respectively, showed biphasic responses and induced the expression of pro-inflammatory cytokines at a low concentration in both LPS-stimulated or untreated THP-1 cells. The enhanced inflammation was attenuated by co-treatment with BVT.2733 and the glucocorticoid receptor (GR) antagonist RU486, but not in those treated with the mineralocorticoid receptor (MR) antagonist spironolactone. Overall, the results indicate that 11β-HSD1 amplifies inflammatory responses by activating the NF-κB and MAPK signaling pathways. Conclusion Inhibition of 11β-HSD1 may serve as a potential therapeutic target against the excessive activation of inflammation.
Collapse
Affiliation(s)
- Lingli Luo
- Department of Geriatrics Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University. NO.300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Dongmei Zhu
- Department of Geriatrics Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University. NO.300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Zheng Zhang
- Department of Geriatrics Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University. NO.300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Hanjie Zeng
- Department of Geriatrics Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University. NO.300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Min Huang
- Department of Geriatrics Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University. NO.300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Suming Zhou
- Department of Geriatrics Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University. NO.300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China,Corresponding author: Suming Zhou. Department of Geriatrics Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University. NO.300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China. Tel/ Fax: +86-2568305053;
| |
Collapse
|
5
|
Equisetin is an anti-obesity candidate through targeting 11 β-HSD1. Acta Pharm Sin B 2022; 12:2358-2373. [PMID: 35646525 PMCID: PMC9136616 DOI: 10.1016/j.apsb.2022.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity is increasingly prevalent globally, searching for therapeutic agents acting on adipose tissue is of great importance. Equisetin (EQST), a meroterpenoid isolated from a marine sponge-derived fungus, has been reported to display antibacterial and antiviral activities. Here, we revealed that EQST displayed anti-obesity effects acting on adipose tissue through inhibiting adipogenesis in vitro and attenuating HFD-induced obesity in mice, doing so without affecting food intake, blood pressure or heart rate. We demonstrated that EQST inhibited the enzyme activity of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), a therapeutic target of obesity in adipose tissue. Anti-obesity properties of EQST were all offset by applying excessive 11β-HSD1's substrates and 11β-HSD1 inhibition through knockdown in vitro or 11β-HSD1 knockout in vivo. In the 11β-HSD1 bypass model constructed by adding excess 11β-HSD1 products, EQST's anti-obesity effects disappeared. Furthermore, EQST directly bond to 11β-HSD1 protein and presented remarkable better intensity on 11β-HSD1 inhibition and better efficacy on anti-obesity than known 11β-HSD1 inhibitor. Therefore, EQST can be developed into anti-obesity candidate compound, and this study may provide more clues for developing higher effective 11β-HSD1 inhibitors.
Collapse
|
6
|
Gallelli L, Cione E, Wang T, Zhang L. Glucocorticoid-Like Activity of Escin: A New Mechanism for an Old Drug. Drug Des Devel Ther 2021; 15:699-704. [PMID: 33658760 PMCID: PMC7917317 DOI: 10.2147/dddt.s297501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Saponins are a group of compounds used in clinical practice in the management of several diseases. Escin is a natural mixture of triterpene saponins which mainly consist of several isoforms, in which the α- and β-escin are predominant. β-escin is the major active compound that exerts a therapeutic effect by relieving tissue edema, promoting venous drainage, and reducing inflammation. In this review, we describe the features of its glucocorticoid-like activity that could explain its clinical effects. Using PubMed, Embase Cochrane library and reference lists for articles published until October 01, 2020, we documented that escin is likely able to exert its anti-inflammatory and anti-edematous effects through a glucocorticoid-like activity, but without the development of glucocorticoid-like adverse drug reactions.
Collapse
Affiliation(s)
- Luca Gallelli
- Department of Health Science, School of Medicine, Operative Unit of Clinical Pharmacology, Mater Domini University Hospital, Catanzaro, Italy
- Research Center FAS@UMG, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018–2022, University of Calabria, Rende, 87036, CS, Italy
| | - Tian Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai, People’s Republic of China
| | - Leiming Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai, People’s Republic of China
| |
Collapse
|
7
|
Zhang Z, Jiang Z, Zhang Y, Zhang Y, Yan Y, Bhushan S, Meinhardt A, Qin Z, Wang M. Corticosterone Enhances the AMPK-Mediated Immunosuppressive Phenotype of Testicular Macrophages During Uropathogenic Escherichia coli Induced Orchitis. Front Immunol 2020; 11:583276. [PMID: 33363533 PMCID: PMC7752858 DOI: 10.3389/fimmu.2020.583276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Testicular macrophages (TM) play a central role in maintaining testicular immune privilege and protecting spermatogenesis. Recent studies showed that their immunosuppressive properties are maintained by corticosterone in the testicular interstitial fluid, but the underlying molecular mechanisms are unknown. In this study, we treated mouse bone marrow-derived macrophages (BMDM) with corticosterone (50 ng/ml) and uncovered AMP-activated protein kinase (AMPK) activation as a critical event in M2 polarization at the phenotypic, metabolic, and cytokine production level. Primary TM exhibited remarkably similar metabolic and phenotypic features to corticosterone-treated BMDM, which were partially reversed by AMPK-inhibition. In a murine model of uropathogenic E. coli-elicited orchitis, intraperitoneal injection with corticosterone (0.1mg/day) increased the percentage of M2 TM in vivo, in a partially AMPK-dependent manner. This study integrates the influence of corticosterone on M2 macrophage metabolic pathways, phenotype, and function, and highlights a promising new avenue for the development of innovative therapeutics for orchitis patients.
Collapse
Affiliation(s)
- Zhengguo Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ziming Jiang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiming Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Yan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sudhanshu Bhushan
- Department of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School of Basic Medical Sciences, The Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Ming Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Savvidou O, Milonaki M, Goumenos S, Flevas D, Papagelopoulos P, Moutsatsou P. Glucocorticoid signaling and osteoarthritis. Mol Cell Endocrinol 2019; 480:153-166. [PMID: 30445185 DOI: 10.1016/j.mce.2018.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/03/2018] [Accepted: 11/11/2018] [Indexed: 01/15/2023]
Abstract
Glucocorticoids are steroid hormones synthesized and released by the adrenal cortex. Their main function is to maintain cell homeostasis through a variety of signaling pathways, responding to changes in an organism's environment or developmental status. Mimicking the actions of natural glucocorticoids, synthetic glucocorticoids have been recruited to treat many diseases that implicate glucocorticoid receptor signaling such as osteoarthritis. In osteoarthritis, synthetic glucocorticoids aim to alleviate inflammation and pain. The variation of patients' response and the possibility of complications associated with their long-term use have led to a need for a better understanding of glucocorticoid receptor signaling in osteoarthritis. In this review, we performed a literature search in the molecular pathways that link the osteoarthritic joint to the glucocorticoid receptor signaling. We hope that this information will advance research in the field and propose new molecular targets for the development of more optimized therapies for osteoarthritis.
Collapse
Affiliation(s)
- Olga Savvidou
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Mandy Milonaki
- Department of Clinical Biochemistry, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Stavros Goumenos
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Dimitrios Flevas
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Panayiotis Papagelopoulos
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Paraskevi Moutsatsou
- Department of Clinical Biochemistry, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| |
Collapse
|
9
|
Malek N, Starowicz K. Joint problems arising from lack of repair mechanisms: can cannabinoids help? Br J Pharmacol 2018; 176:1412-1420. [PMID: 29574720 DOI: 10.1111/bph.14204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/22/2018] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is the most common disease of joints, which are complex organs where cartilage, bone and synovium cooperate to allow a range of movements. During progression of the disease, the function of all three main components is jeopardized. Nevertheless, the involvement of each tissue in OA development is still not established and is the topic of the present review. The OA therapies available are symptomatic, largely targeting pain management rather than disease progression. The strong need to develop a treatment for cartilage degeneration, bone deformation and synovial inflammation has led to research on the involvement of the endocannabinoid system in the development of OA. The current review discusses the research on this topic to date and notes the advantages of exploiting endocannabinoid system modulation for cartilage, bone and synovium homeostasis, which could prevent the further progression of OA. LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Natalia Malek
- Department of Cell Pathophysiology, Faculty of Biotechnology, University of Wroclaw, 50-383, Wroclaw, Poland
| | - Katarzyna Starowicz
- Department of Neurochemistry, Institute of Pharmacology, Polish Academy of Sciences, 31-343, Krakow, Poland
| |
Collapse
|