1
|
Fernández-Pérez I, Jiménez-Balado J, Macias-Gómez A, Suárez-Pérez A, Vallverdú-Prats M, Pérez-Giraldo A, Viles-García M, Peris-Subiza J, Vidal-Notari S, Giralt-Steinhauer E, Guisado-Alonso D, Esteller M, Rodriguez-Campello A, Jiménez-Conde J, Ois A, Cuadrado-Godia E. Blood DNA Methylation Analysis Reveals a Distinctive Epigenetic Signature of Vasospasm in Aneurysmal Subarachnoid Hemorrhage. Transl Stroke Res 2025; 16:715-727. [PMID: 38649590 DOI: 10.1007/s12975-024-01252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 04/25/2024]
Abstract
Vasospasm is a potentially preventable cause of poor prognosis in patients with aneurysmal subarachnoid hemorrhage (aSAH). Epigenetics might provide insight on its molecular mechanisms. We aimed to analyze the association between differential DNA methylation (DNAm) and development of vasospasm. We conducted an epigenome-wide association study in 282 patients with aSAH admitted to our hospital. DNAm was assessed with the EPIC Illumina chip (> 850 K CpG sites) in whole-blood samples collected at hospital admission. We identified differentially methylated positions (DMPs) at the CpG level using Cox regression models adjusted for potential confounders, and then we used the DMP results to find differentially methylated regions (DMRs) and enriched biological pathways. A total of 145 patients (51%) experienced vasospasm. In the DMP analysis, we identified 31 CpGs associated with vasospasm at p-value < 10-5. One of them (cg26189827) was significant at the genome-wide level (p-value < 10-8), being hypermethylated in patients with vasospasm and annotated to SUGCT gene, mainly expressed in arteries. Region analysis revealed 13 DMRs, some of them annotated to interesting genes such as POU5F1, HLA-DPA1, RUFY1, and CYP1A1. Functional enrichment analysis showed the involvement of biological processes related to immunity, inflammatory response, oxidative stress, endothelial nitric oxide, and apoptosis. Our findings show, for the first time, a distinctive epigenetic signature of vasospasm in aSAH, establishing novel links with essential biological pathways, including inflammation, immune responses, and oxidative stress. Although further validation is required, our results provide a foundation for future research into the complex pathophysiology of vasospasm.
Collapse
Affiliation(s)
- Isabel Fernández-Pérez
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
| | - Joan Jiménez-Balado
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain.
| | - Adrià Macias-Gómez
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
| | - Antoni Suárez-Pérez
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
| | - Marta Vallverdú-Prats
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
| | | | - Marc Viles-García
- Neuroradiology Department, Hospital del Mar, Barcelona, Catalunya, Spain
| | | | | | - Eva Giralt-Steinhauer
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
- Pompeu Fabra University, Barcelona, Catalunya, Spain
| | - Daniel Guisado-Alonso
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Research Institute Against Leukemia Josep Carreras, Badalona, Catalunya, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalunya, Spain
| | - Ana Rodriguez-Campello
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
- Pompeu Fabra University, Barcelona, Catalunya, Spain
| | - Jordi Jiménez-Conde
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
- Pompeu Fabra University, Barcelona, Catalunya, Spain
| | - Angel Ois
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
- Pompeu Fabra University, Barcelona, Catalunya, Spain
| | - Elisa Cuadrado-Godia
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
- Pompeu Fabra University, Barcelona, Catalunya, Spain
| |
Collapse
|
2
|
Wu Q, Hu X, Guo Y, Zhao M, Wang M, Feng L, Wang D. Cerebrospinal fluid soluble growth stimulation expressed gene 2: A potential predictor of outcome for prognosis after aneurysmal subarachnoid hemorrhage. Heliyon 2024; 10:e31745. [PMID: 38845883 PMCID: PMC11153197 DOI: 10.1016/j.heliyon.2024.e31745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Background Serum concentration of soluble growth stimulation expressed gene 2 (sST2) appears to have prognostic value in patients with aneurysmal subarachnoid hemorrhage (aSAH) by now. This study aimed to investigate the relationship between cerebrospinal fluid (CSF) sST2 concentration and outcome in patients with aSAH. Methods A total of 65 aSAH patients who met the inclusion criteria in the Neurosurgery Department of Jining No.1 People's Hospital from March 2021 to August 2022 were selected as the research objects. 35 patients with the third month Modified-Rankin-Scale (mRS) score of 0-2 were divided into good prognosis group, and 30 patients with the third month mRS score of 3-5 were divided into poor prognosis group. CSF was collected by lumbar puncture for the first 5 days after aneurysm surgery. CSF sST2 concentration was determined using an enzyme-linked immunosorbent assay. Results In all patients, CSF sST2 concentrations initially increased, peaked on day 2, and then decreased. Compared with the good prognosis group, the sST2 concentration was significantly increased in the poor prognosis group at 1, 2, 3, 4 and 5 days after aSAH surgery. CSF sST2 concentration exhibited good diagnostic performance for predicting outcome (area under the receiver operating characteristic curve = 0.988). Additionally, CSF sST2 concentration has good performance for predicting cerebral edema, but only in the poor prognosis group (area under the curve = 0.93). Conclusions Elevated CSF sST2 concentration is associated with poor outcome in aSAH patients. CSF sST2 may have a role as a predictive biomarker in these patients.
Collapse
Affiliation(s)
- Qingjian Wu
- Department of Emergency, Jining No. 1 People's Hospital, 272011, Jining, Shandong Province, China
| | - Xuemei Hu
- Clinical Medical College of Jining Medical University, 272067, Jining, Shandong Province, China
| | - Ye Guo
- Department of Neurosurgery, Jining No. 1 People's Hospital, 272011, Jining, Shandong Province, China
| | - Mingyang Zhao
- Clinical Medical College of Jining Medical University, 272067, Jining, Shandong Province, China
| | - Meixue Wang
- Clinical Medical College of Jining Medical University, 272067, Jining, Shandong Province, China
| | - Lei Feng
- Department of Neurosurgery, Jining No. 1 People's Hospital, 272011, Jining, Shandong Province, China
| | - Dongsen Wang
- Department of Emergency, Zouping People's Hospital, 256200, Zouping City, Shandong Province, China
| |
Collapse
|
3
|
Zhang A, Liu Y, Wang X, Xu H, Fang C, Yuan L, Wang K, Zheng J, Qi Y, Chen S, Zhang J, Shao A. Clinical Potential of Immunotherapies in Subarachnoid Hemorrhage Treatment: Mechanistic Dissection of Innate and Adaptive Immune Responses. Aging Dis 2023; 14:1533-1554. [PMID: 37196120 PMCID: PMC10529760 DOI: 10.14336/ad.2023.0126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/26/2023] [Indexed: 05/19/2023] Open
Abstract
Subarachnoid hemorrhage (SAH), classified as a medical emergency, is a devastating and severe subtype of stroke. SAH induces an immune response, which further triggers brain injury; however, the underlying mechanisms need to be further elucidated. The current research is predominantly focused on the production of specific subtypes of immune cells, especially innate immune cells, post-SAH onset. Increasing evidence suggests the critical role of immune responses in SAH pathophysiology; however, studies on the role and clinical significance of adaptive immunity post-SAH are limited. In this present study, we briefly review the mechanistic dissection of innate and adaptive immune responses post-SAH. Additionally, we summarized the experimental studies and clinical trials of immunotherapies for SAH treatment, which may form the basis for the development of improved therapeutic approaches for the clinical management of SAH in the future.
Collapse
Affiliation(s)
- Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - KaiKai Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Yangjian Qi
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
4
|
Zhao L, Li P, Xu Z, Ji X, Guan L, Wang X, Luo J, Cheng H, Ye L. Diagnosis of post-neurosurgical bacterial meningitis in patients with aneurysmal subarachnoid hemorrhage based on the immunity-related proteomics signature of the cerebrospinal fluid. Front Neurol 2023; 14:1166598. [PMID: 37409018 PMCID: PMC10319054 DOI: 10.3389/fneur.2023.1166598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction Post-neurosurgical bacterial meningitis (PNBM) is a serious complication for patients who receive neurosurgical treatment, but the diagnosis is difficult given the complicated microenvironment orchestrated by sterile brain injury and pathogenic infection. In this study, we explored potential diagnostic biomarkers and immunological features using a proteomics platform. Methods A total of 31 patients with aneurysmal subarachnoid hemorrhage (aSAH) who received neurosurgical treatment were recruited for this study. Among them, 15 were diagnosed with PNBM. The remaining 16 patients were categorized into the non-PNBM group. Proteomics analysis of the cerebrospinal fluid (CSF) was conducted on the Olink platform, which contained 92 immunity-related molecules. Results We found that the expressions of 27 CSF proteins were significantly different between the PNBM and non-PNBM groups. Of those 27 proteins, 15 proteins were upregulated and 12 were downregulated in the CSF of the PNBM group. The receiver operating characteristic curve analysis indicated that three proteins (pleiotrophin, CD27, and angiopoietin 1) had high diagnostic accuracy for PNBM. Furthermore, we also performed bioinformatics analysis to explore potential pathways and the subcellular localization of the proteins. Conclusion In summary, we found a cohort of immunity-related molecules that can serve as potential diagnostic biomarkers for PNBM in patients with aSAH. These molecules also provide an immunological profile of PNBM.
Collapse
|
5
|
Cui Y, Zhao Y, Chen SY, Sheng BY, Wang LH, Meng WH, Chen HS. Association of Serum Biomarkers With Post-Thrombolytic Symptomatic Intracranial Hemorrhage in Stroke: A Comprehensive Protein Microarray Analysis From INTRECIS Study. Front Neurol 2022; 13:751912. [PMID: 35173671 PMCID: PMC8841872 DOI: 10.3389/fneur.2022.751912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/03/2022] [Indexed: 01/28/2023] Open
Abstract
Background Symptomatic intracranial hemorrhage (sICH) after intravenous thrombolysis is closely related to the poor outcome of stroke. Aims To determine the serum biomarkers associated with sICH based on the INTRECIS study. Methods Enrolled patients with sICH and without any ICH were matched by propensity score matching with the ratio of 1:1. Preset 49 biomarkers were measured by protein microarray analysis. Gene Ontology and Pathway Enrichment Analysis and protein-protein interaction network (PPI) were analyzed in the identified biomarkers. Results Of the consecutive 358 patients, eight patients occurred with sICH, which was assigned as an sICH group, while eight matched patients without any ICH were assigned as a Non-sICH group. A total of nine biomarkers were found significantly different between groups, among which the levels of interferon (IFN)-γ and interleukin (IL)-4 were higher, while the levels of C-reactive protein (CRP), glial cell line-derived neurotrophic factor (GDNF), insulin-like growth factor-binding protein (IGFBP)-6, lymphatic vessel endothelial hyaluronan receptor (LYVE)-1, matrix metalloprotein (MMP)-2, plasminogen activator inhibitor (PAI)-1, and platelet-derived growth factor (PDGF)-AA were lower in the sICH group compared with those in the Non-sICH group. Conclusions Our finding indicated that baseline serum CRP, GDNF, IFN-γ, IGFBP-6, IL-4, LYVE-1, MMP-2, PAI-1, and PDGF-AA levels were associated with post-thrombolytic sICH in stroke.
Collapse
Affiliation(s)
- Yu Cui
- Department of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, China
| | - Yong Zhao
- Department of Neurology, Haicheng Hospital of Traditional Chinese Medicine, Haicheng, China
| | - Shao-Yuan Chen
- Department of Neurology, Chinese People's Liberation Army 321 Hospital, Baicheng, China
| | - Bao-Ying Sheng
- Department of Neurology, Jiamusi University First Affiliated Hospital, Jiamusi, China
| | - Li-Hua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei-Hong Meng
- Department of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- *Correspondence: Wei-Hong Meng
| | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, China
- Hui-Sheng Chen
| |
Collapse
|
6
|
Frase S, Steimer M, Selzner L, Kaiser S, Foit NA, Niesen WD, Schallner N. Temporal Expression Pattern of Hemoxygenase-1 Expression and Its Association with Vasospasm and Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage. Neurocrit Care 2021; 36:279-291. [PMID: 34312792 PMCID: PMC8813853 DOI: 10.1007/s12028-021-01299-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 06/11/2021] [Indexed: 12/01/2022]
Abstract
Background Red blood cell-induced cerebral inflammation and toxicity has been shown to be attenuated by induction of the heme-catalyzing enzyme, hemoxygenase-1 (HO-1), in animal models of subarachnoid hemorrhage (SAH). Although inflammatory mechanisms leading to secondary neuronal injury in SAH are becoming increasingly well understood, markers of cerebral inflammation have so far not been implemented in clinical prediction models of SAH. Methods In this biomarker observational study, HO-1 messenger ribonucleic acid (mRNA) expression levels were determined in cerebrospinal fluid (CSF) and blood of 66 patients with aneurysmal SAH on days 1, 7, and 14 after the SAH event. HO-1 mRNA expression was determined via real time polymerase chain reaction (PCR), and relative expression changes were quantified in comparison with expression levels in nonhemorrhagic control CSF. Subarachnoid blood burden, as well as presence of vasospasm and delayed cerebral ischemia (DCI), were recorded. Short and long-term clinical outcomes were assessed using the Modified Rankin Scale at discharge and 1 year after the SAH event. Results CSF HO-1 expression levels showed a significant increase over the 14-day observation period (p < 0.001, F = 22.53) and correlated with intracranial hematoma burden (ρ = 0.349, p = 0.025). In multivariate analyses, CSF HO-1 expression levels did not reach significance as independent predictors of outcome. Vasospasm on computed tomographic angiography was associated with lower CSF HO-1 expression levels on day 7 after SAH (n = 53, p = 0.010), whereas patients with DCI showed higher CSF HO-1 expression levels on day 14 after SAH (n = 21, p = 0.009). Conclusions HO-1 expression in CSF in patients with SAH follows a distinct temporal induction pattern and is dependent on intracranial hematoma burden. CSF HO-1 expression was unable to predict functional outcome. Associations of early low HO-1 expression with vasospasm and late elevated HO-1 expression with DCI may point to detrimental effects of late HO-1 induction, warranting the need for further investigation in a larger study population.
Collapse
Affiliation(s)
- Sibylle Frase
- Department of Neurology and Neuroscience, Medical Center - University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Matti Steimer
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Freiburg, Germany
| | - Lisa Selzner
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Freiburg, Germany
| | - Sandra Kaiser
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Freiburg, Germany
| | - Niels Alexander Foit
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Wolf-Dirk Niesen
- Department of Neurology and Neuroscience, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Schallner
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Interleukin 6 and Aneurysmal Subarachnoid Hemorrhage. A Narrative Review. Int J Mol Sci 2021; 22:ijms22084133. [PMID: 33923626 PMCID: PMC8073154 DOI: 10.3390/ijms22084133] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Interleukin 6 (IL-6) is a prominent proinflammatory cytokine. Neuroinflammation in general, and IL-6 signaling in particular, appear to play a major role in the pathobiology and pathophysiology of aneurysm formation and aneurysmal subarachnoid hemorrhage (SAH). Most importantly, elevated IL-6 CSF (rather than serum) levels appear to correlate with delayed cerebral ischemia (DCI, “vasospasm”) and secondary (“vasospastic”) infarctions. IL-6 CSF levels may also reflect other forms of injury to the brain following SAH, i.e., early brain damage and septic complications of SAH and aneurysm treatment. This would explain why many researchers have found an association between IL-6 levels and patient outcomes. These findings clearly suggest CSF IL-6 as a candidate biomarker in SAH patients. However, at this point, discrepant findings in variable study settings, as well as timing and other issues, e.g., defining proper clinical endpoints (i.e., secondary clinical deterioration vs. angiographic vasospasm vs. secondary vasospastic infarct) do not allow for its routine use. It is also tempting to speculate about potential therapeutic measures targeting elevated IL-6 CSF levels and neuroinflammation in SAH patients. Corticosteroids and anti-platelet drugs are indeed used in many SAH cases (not necessarily with the intention to interfere with detrimental inflammatory signaling), however, no convincing benefit has been demonstrated yet. The lack of a robust clinical perspective against the background of a relatively large body of data linking IL-6 and neuroinflammation with the pathophysiology of SAH is somewhat disappointing. One underlying reason might be that most relevant studies only report correlative data. The specific molecular pathways behind elevated IL-6 levels in SAH patients and their various interactions still remain to be delineated. We are optimistic that future research in this field will result in a better understanding of the role of neuroinflammation in the pathophysiology of SAH, which in turn, will translate into the identification of suitable biomarkers and even potential therapeutic targets.
Collapse
|
8
|
Roa JA, Sarkar D, Zanaty M, Ishii D, Lu Y, Karandikar NJ, Hasan DM, Ortega SB, Samaniego EA. Preliminary results in the analysis of the immune response after aneurysmal subarachnoid hemorrhage. Sci Rep 2020; 10:11809. [PMID: 32678268 PMCID: PMC7367262 DOI: 10.1038/s41598-020-68861-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/26/2020] [Indexed: 01/15/2023] Open
Abstract
Cerebral vasospasm (VSP) is a common phenomenon after aneurysmal subarachnoid hemorrhage (aSAH) and contributes to neurocognitive decline. The natural history of the pro-inflammatory immune response after aSAH has not been prospectively studied in human cerebrospinal fluid (CSF). In this pilot study, we aimed to identify specific immune mediators of VSP after aSAH. Peripheral blood (PB) and CSF samples from patients with aSAH were prospectively collected at different time-points after hemorrhage: days 0–1 (acute); days 2–4 (pre-VSP); days 5–9 (VSP) and days 10 + (post-VSP peak). Presence and severity of VSP was assessed with computed tomography angiography/perfusion imaging and clinical examination. Cytokine and immune mediators’ levels were quantified using ELISA. Innate and adaptive immune cells were characterized by flow cytometry, and cell counts at different time-points were compared with ANOVA. Confocal immunostaining was used to determine the presence of specific immune cell populations detected in flow cytometry. Thirteen patients/aneurysms were included. Five (38.5%) patients developed VSP after a mean of 6.8 days from hemorrhage. Flow cytometry demonstrated decreased numbers of CD45+ cells during the acute phase in PB of aSAH patients compared with healthy controls. In CSF of VSP patients, NK cells (CD3-CD161 +) were increased during the acute phase and progressively declined, whereas CD8+CD161+ lymphocytes significantly increased at days 5–9. Microglia cells (CD45dimCD11b +) increased over time after SAH. This increase was particularly significant in patients with VSP. Levels of VEGF and MMP-9 were consistently higher in VSP patients, with the highest difference occurring at the acute phase. Confocal immunostaining demonstrated the presence of CD8+CD161+ lymphocytes in the arterial wall of two unruptured intracranial aneurysms. In this preliminary study, human CSF showed active presence of innate and adaptive immune cells after aSAH. CD8+CD161+ lymphocytes may have an important role in the inflammatory response after aneurysmal rupture and were identified in the aneurysmal wall of unruptured brain aneurysms. Microglia activation occurs 6 + days after aSAH.
Collapse
Affiliation(s)
- Jorge A Roa
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA.,Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Deepon Sarkar
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Mario Zanaty
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Daizo Ishii
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Yongjun Lu
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Nitin J Karandikar
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - David M Hasan
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Sterling B Ortega
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Edgar A Samaniego
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA. .,Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA. .,Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA.
| |
Collapse
|
9
|
Chou SHY, Macdonald RL, Keller E. Biospecimens and Molecular and Cellular Biomarkers in Aneurysmal Subarachnoid Hemorrhage Studies: Common Data Elements and Standard Reporting Recommendations. Neurocrit Care 2019; 30:46-59. [PMID: 31144274 PMCID: PMC7888262 DOI: 10.1007/s12028-019-00725-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Development of clinical biomarkers to guide therapy is an important unmet need in aneurysmal subarachnoid hemorrhage (SAH). A wide spectrum of plausible biomarkers has been reported for SAH, but none have been validated due to significant variabilities in study design, methodology, laboratory techniques, and outcome endpoints. METHODS A systematic review of SAH biomarkers was performed per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The panel's recommendations focused on harmonization of (1) target cellular and molecular biomarkers for future investigation in SAH, (2) standardization of best-practice procedures in biospecimen and biomarker studies, and (3) experimental method reporting requirements to facilitate meta-analyses and future validation of putative biomarkers. RESULTS No cellular or molecular biomarker has been validated for inclusion as "core" recommendation. Fifty-four studies met inclusion criteria and generated 33 supplemental and emerging biomarker targets. Core recommendations include best-practice protocols for biospecimen collection and handling as well as standardized reporting guidelines to capture the heterogeneity and variabilities in experimental methodologies and biomarker analyses platforms. CONCLUSION Significant variabilities in study design, methodology, laboratory techniques, and outcome endpoints exist in SAH biomarker studies and present significant barriers toward validation and translation of putative biomarkers to clinical use. Adaptation of common data elements, recommended biospecimen protocols, and reporting guidelines will reduce heterogeneity and facilitate future meta-analyses and development of validated clinical biomarkers in SAH.
Collapse
Affiliation(s)
- Sherry H-Y Chou
- Departments of Critical Care Medicine, Neurology, and Neurosurgery, University of Pittsburgh School of Medicine, 3550 Terrace Street Suite 646, Pittsburgh, PA, 15261, USA.
| | - R Loch Macdonald
- Division of Neurosurgery, Department of Surgery, St. Michael's Hospital, University of Toronto, Toronto, Canada
- Labatt Family Centre of Excellence in Brain Injury and Trauma Research, Keenan Research Centre for Biomedical Research, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Canada
- Departments of Physiology and Surgery, University of Toronto, Toronto, Canada
| | - Emanuela Keller
- Neurocritical Care Unit, Department of Neurosurgery, UniversitätsSpital Zürich, Zurich, Switzerland
| |
Collapse
|
10
|
Saand AR, Yu F, Chen J, Chou SHY. Systemic inflammation in hemorrhagic strokes - A novel neurological sign and therapeutic target? J Cereb Blood Flow Metab 2019; 39:959-988. [PMID: 30961425 PMCID: PMC6547186 DOI: 10.1177/0271678x19841443] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Growing evidences suggest that stroke is a systemic disease affecting many organ systems beyond the brain. Stroke-related systemic inflammatory response and immune dysregulations may play an important role in brain injury, recovery, and stroke outcome. The two main phenomena in stroke-related peripheral immune dysregulations are systemic inflammation and post-stroke immunosuppression. There is emerging evidence suggesting that the spleen contracts following ischemic stroke, activates peripheral immune response and this may further potentiate brain injury. Whether similar brain-immune crosstalk occurs in hemorrhagic strokes such as intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH) is not established. In this review, we systematically examined animal and human evidence to date on peripheral immune responses associated with hemorrhagic strokes. Specifically, we reviewed the impact of clinical systemic inflammatory response syndrome (SIRS), inflammation- and immune-associated biomarkers, the brain-spleen interaction, and cellular mediators of peripheral immune responses to ICH and SAH including regulatory T cells (Tregs). While there is growing data suggesting that peripheral immune dysregulation following hemorrhagic strokes may be important in brain injury pathogenesis and outcome, details of this brain-immune system cross-talk remain insufficiently understood. This is an important unmet scientific need that may lead to novel therapeutic strategies in this highly morbid condition.
Collapse
Affiliation(s)
- Aisha R Saand
- 1 Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fang Yu
- 2 Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- 2 Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sherry H-Y Chou
- 1 Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,2 Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,3 Department of Neurosurgery, School of Medicine, University of Pittsburgh, PA, USA
| |
Collapse
|
11
|
Predictive factors associated with ventriculoperitoneal shunting after posterior fossa tumor surgery in children. Childs Nerv Syst 2019; 35:779-788. [PMID: 30929070 DOI: 10.1007/s00381-019-04136-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/20/2019] [Indexed: 01/03/2023]
Abstract
PURPOSE The aim of the study was to evaluate established risk factors and define new inflammation-associated factors associated with postoperative ventriculoperitoneal shunt placement. METHODS The electronic medical records of children who underwent surgery for a tumor in the posterior fossa between January 2009 and January 2018 were retrospectively analyzed. Factors evaluated include age, clinical symptoms, tumor type, extent of surgical tumor resection, treatment with EVD and/or ETV, radiological findings, postoperative serum CRP, and leucocyte levels. Tumor tissue was stained immunohistochemically with antibodies against CD3, and leucocyte counts were performed. Patients with pre- or postoperative signs of infection or confirmation of a concurrent infection were excluded from some analyses. RESULTS Seventy patients ages 0.4-20.8 years (median, 8.2) were included. Forty-five of 70 (65.3%) presented postoperative radiological signs of hydrocephalus. Fifteen of 70 (21.4%) patients required shunt placement postoperatively. Shunt placement was significantly associated with age < 3 years at diagnosis (p = 0.013), perioperative EVD placement (p < 0.001), signs of hydrocephalus in postoperative imaging (p = 0.047), a frontooccipital horn ratio (FOHR) > 0.46 within the first 72 h postoperatively (p < 0.001), and the presence of intraventricular blood postoperatively (p = 0.007). Six patients who underwent shunting had serum CRP levels > 40 mg/l (p = 0.030) within the first 48 h postoperatively. Tumor type or extent of resection did not correlate with shunt placement. CONCLUSIONS Several established and new factors associated with shunt placement after posterior fossa tumor surgery could be identified. Additional studies are needed to explore the aseptic inflammation pathways involved with increased CRP levels and shunt placement.
Collapse
|