1
|
Shahrokhi H, Asili J, Tayarani-Najaran Z, Boozari M. Signaling pathways behind the biological effects of tanshinone IIA for the prevention of cancer and cardiovascular diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03857-x. [PMID: 39937254 DOI: 10.1007/s00210-025-03857-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025]
Abstract
Tanshinone IIA (Tan IIA) is a well-known fat-soluble diterpenoid found in Salvia miltiorrhiza, recognized for its various biological effects. The molecular signaling pathways of Tan IIA have been investigated in different diseases, including the anti-inflammatory, hepatoprotective, renoprotective, neuroprotective effects, and fibrosis prevention. This article provides a brief overview of the signaling pathways related to anti-cancer and cardioprotective effects of Tan IIA. It shows that Tan IIAs anti-cancer ability has good expectation through multiplicity mechanisms affecting various aspects' tumor biology. The major pathways involved in its anti-cancer effects include inhibition of PI3/Akt, MAPK, and p53/p21 signaling which leads to enhancement of immune responses and increased radiation sensitivity. Some essential pathways responsible for cardioprotective effects induced by Tan IIA are PI3/AKT activation, MAPK, and SIRT1 promoting protection against ischemia/reperfusion injury in myocardial cells as well as inhibiting pathological remodeling processes. Finally, the article underscores the complex and specific signaling pathways influenced by Tan IIA. The PI3/Akt and MAPK pathways play critical roles in the anti-cancer and cardioprotective effects of Tan IIA. Particularly, Tan IIA suppresses the proliferation of malignancies in cancerous cells but stimulates protective mechanisms in normal cardiovascular cells. These findings highlight the importance of investigating molecular signaling pathways in evaluating the therapeutic potential of natural products. Studying about signaling pathways is vital in understanding the therapeutic aspects of Tan IIA and its derivatives as anti-cancer and cardio-protective agents. Further research is necessary to understand these complex mechanisms.
Collapse
Affiliation(s)
- Homa Shahrokhi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Asili
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Motahareh Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Na X, Li L, Liu D, He J, Zhang L, Zhou Y. Natural products targeting ferroptosis pathways in cancer therapy (Review). Oncol Rep 2024; 52:123. [PMID: 39054952 PMCID: PMC11292301 DOI: 10.3892/or.2024.8782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Ferroptosis inducers (FIN) have a key role in cancer therapy and provide novel and innovative treatment strategies. Although many researchers have performed FIN screening of synthetic compounds, studies on the identification of FIN from natural products are limited, particularly in the field of drug development and combination therapy. In this review, this gap was addressed by comprehensively summarizing recent studies on ferroptosis. The causes of ferroptosis were categorized into driving and defensive factors, elucidating key pathways and targets. Next, through summarizing research on natural products that induce ferroptosis, the study elaborated in detail on the natural products that have FIN functions. Their discovery and development were also described and insight for clinical drug development was provided. In addition, the mechanisms of action were analyzed and potential combination therapies, resistance reversal and structural enhancements were presented. By highlighting the potential of natural products in inducing ferroptosis for cancer treatment, this review may serve as a reference for utilizing these compounds against cancer. It not only showed the significance of natural products but may also promote further investigation into their therapeutic effects, thus encouraging research in this field.
Collapse
Affiliation(s)
- Xin Na
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Lin Li
- Yunnan Cancer Hospital (Third Affiliated Hospital of Kunming Medical University), Kunming, Yunnan 650118, P.R. China
| | - Dongmei Liu
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiaqi He
- The First Clinical Medical College of Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Ling Zhang
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yiping Zhou
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
3
|
Zarezadeh SM, Sharafi AM, Erabi G, Tabashiri A, Teymouri N, Mehrabi H, Golzan SA, Faridzadeh A, Abdollahifar Z, Sami N, Arabpour J, Rahimi Z, Ansari A, Abbasi MR, Azizi N, Tamimi A, Poudineh M, Deravi N. Natural STAT3 Inhibitors for Cancer Treatment: A Comprehensive Literature Review. Recent Pat Anticancer Drug Discov 2024; 19:403-502. [PMID: 37534488 DOI: 10.2174/1574892818666230803100554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 08/04/2023]
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide, affecting millions of people physically and financially every year. Over time, many anticancer treatments have been proposed and studied, including synthetic compound consumption, surgical procedures, or grueling chemotherapy. Although these treatments have improved the daily life quality of patients and increased their survival rate and life expectancy, they have also shown significant drawbacks, including staggering costs, multiple side effects, and difficulty in compliance and adherence to treatment. Therefore, natural compounds have been considered a possible key to overcoming these problems in recent years, and thorough research has been done to assess their effectiveness. In these studies, scientists have discovered a meaningful interaction between several natural materials and signal transducer and activator of transcription 3 molecules. STAT3 is a transcriptional protein that is vital for cell growth and survival. Mechanistic studies have established that activated STAT3 can increase cancer cell proliferation and invasion while reducing anticancer immunity. Thus, inhibiting STAT3 signaling by natural compounds has become one of the favorite research topics and an attractive target for developing novel cancer treatments. In the present article, we intend to comprehensively review the latest knowledge about the effects of various organic compounds on inhibiting the STAT3 signaling pathway to cure different cancer diseases.
Collapse
Affiliation(s)
- Seyed Mahdi Zarezadeh
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Sharafi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Arefeh Tabashiri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Teymouri
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hoda Mehrabi
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Seyyed Amirhossein Golzan
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Abdollahifar
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Nafiseh Sami
- Student Research Committee, Tehran Medical Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Javad Arabpour
- Department of Microbiology, Faculty of New Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Zahra Rahimi
- School of Medicine, Zanjan University of Medical Sciences Zanjan, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Nima Azizi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Zhang P, Liu W, Wang Y. The mechanisms of tanshinone in the treatment of tumors. Front Pharmacol 2023; 14:1282203. [PMID: 37964867 PMCID: PMC10642231 DOI: 10.3389/fphar.2023.1282203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Tanshinone is a lipophilic compound that is present in traditional Chinese medicine and is derived from the roots of Salvia miltiorrhiza (Danshen). It has been proven to be highly effective in combating tumors in various parts of the body, including liver carcinoma, gastric cancer, ovarian cancer, cervix carcinoma, breast cancer, colon cancer, and prostate cancer. Tanshinone can efficiently prevent the reproduction of cancerous cells, induce cell death, and inhibit the spread of cancerous cells, which are mainly involved in the PI3K/Akt signaling pathway, NF-κB pathway, Bcl-2 family, Caspase cascades, MicroRNA, MAPK signaling pathway, p21, STAT3 pathway, miR30b-P53-PTPN11/SHP2 axis, β-catenin, and Skp2. However, the properties and mechanisms of tanshinone's anti-tumor effects remain unclear currently. Thus, this study aims to review the research progress on tumor prevention and mechanisms of tanshinone to gain new perspectives for further development and clinical application of tanshinone.
Collapse
Affiliation(s)
- Pengyu Zhang
- The Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wendi Liu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Wang
- Department of Histology and Embryology, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
5
|
Alam SSM, Samanta A, Uddin F, Ali S, Hoque M. Tanshinone IIA targeting cell signaling pathways: a plausible paradigm for cancer therapy. Pharmacol Rep 2023:10.1007/s43440-023-00507-y. [PMID: 37440106 DOI: 10.1007/s43440-023-00507-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/14/2023]
Abstract
Natural compounds originating from plants offer a wide range of pharmacological potential and have traditionally been used to treat a wide range of diseases including cancer. Tanshinone IIA (Tan IIA), a bioactive molecule found in the roots of the Traditional Chinese Medicine (TCM) herb Salvia miltiorrhiza, has been shown to have remarkable anticancer properties through several mechanisms, such as inhibition of tumor cell growth and proliferation, metastasis, invasion, and angiogenesis, as well as induction of apoptosis and autophagy. It has demonstrated excellent anticancer efficacy against cell lines from breast, cervical, colorectal, gastric, lung, and prostate cancer by modulating multiple signaling pathways including PI3K/Akt, JAK/STAT, IGF-1R, and Bcl-2-Caspase pathways. This review focuses on the role of Tan IIA in the treatment of various cancers, as well as the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Arijit Samanta
- Applied Biochemistry Laboratory, Department of Biological Sciences, Aliah University, Kolkata, 700160, India
| | - Faizan Uddin
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India
| | - Safdar Ali
- Clinical and Applied Genomics (CAG) Laboratory, Department of Biological Sciences, Aliah University, Kolkata, 700160, India
| | - Mehboob Hoque
- Applied Biochemistry Laboratory, Department of Biological Sciences, Aliah University, Kolkata, 700160, India.
| |
Collapse
|
6
|
Lu M, Lan X, Wu X, Fang X, Zhang Y, Luo H, Gao W, Wu D. Salvia miltiorrhiza in cancer: Potential role in regulating MicroRNAs and epigenetic enzymes. Front Pharmacol 2022; 13:1008222. [PMID: 36172186 PMCID: PMC9512245 DOI: 10.3389/fphar.2022.1008222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that play important roles in gene regulation by influencing the translation and longevity of various target mRNAs and the expression of various target genes as well as by modifying histones and DNA methylation of promoter sites. Consequently, when dysregulated, microRNAs are involved in the development and progression of a variety of diseases, including cancer, by affecting cell growth, proliferation, differentiation, migration, and apoptosis. Preparations from the dried root and rhizome of Salvia miltiorrhiza Bge (Lamiaceae), also known as red sage or danshen, are widely used for treating cardiovascular diseases. Accumulating data suggest that certain bioactive constituents of this plant, particularly tanshinones, have broad antitumor effects by interfering with microRNAs and epigenetic enzymes. This paper reviews the evidence for the antineoplastic activities of S. miltiorrhiza constituents by causing or promoting cell cycle arrest, apoptosis, autophagy, epithelial-mesenchymal transition, angiogenesis, and epigenetic changes to provide an outlook on their future roles in the treatment of cancer, both alone and in combination with other modalities.
Collapse
Affiliation(s)
- Meng Lu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xintian Lan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xi Wu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yegang Zhang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Wenyi Gao
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Wenyi Gao, ; Donglu Wu,
| | - Donglu Wu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Wenyi Gao, ; Donglu Wu,
| |
Collapse
|
7
|
Tanshinone IIA reduces AQP4 expression and astrocyte swelling after OGD/R by inhibiting the HMGB1/RAGE/NF-κB/IL-6 pro-inflammatory axis. Sci Rep 2022; 12:14110. [PMID: 35982135 PMCID: PMC9388613 DOI: 10.1038/s41598-022-17491-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/26/2022] [Indexed: 11/08/2022] Open
Abstract
This study aimed to investigate the role of tanshinone IIA (TSO IIA) in astrocytic swelling caused by ischemia–reperfusion-like injury in an in vitro model and the molecular mechanisms underlying this effect. Primary brain astrocytes were cultured under conditions of glucose and oxygen deprivation and reoxygenation (OGD/R). The study explored the effects of TSO IIA treatment on cell swelling and injury and the protein levels of aquaporin 4 (AQP4) in the plasma membrane. It then examined the involvement of the high-mobility group box protein 1 (HMGB1)/receptors for advanced-glycation end products (RAGE)/nuclear factor-kappa B (NF-κB)/interleukin-6 (IL-6) pro-inflammatory axis in TSO IIA-mediated protection. The treatment with TSO IIA alleviated OGD/R-induced astrocytic swelling and the overclustering of AQP4 protein in the plasma membrane. In addition, TSO IIA significantly reduced the overexpression of HMGB1 and the high levels of the NF-κB protein in the nucleus and of the IL-6 protein in the cytoplasm and extracellular media induced by OGD/R. The combination of TSO IIA and recombinant HMGB1 reversed these effects. The inhibition of the RAGE, the receptor of HMGB1, induced results similar to those of TSO IIA. In addition, exogenous IL-6 reversed TSO IIA-mediated effect on AQP4 overclustering and cell swelling. TSO IIA significantly reduced astrocyte swelling after OGD/R injury in vitro, via blocking the activation of the HMGB1/RAGE/NF-κB/IL-6 pro-inflammatory axis and thereby decreasing the expression of AQP4 in the plasma membrane.
Collapse
|
8
|
Acquaviva R, Malfa GA, Loizzo MR, Xiao J, Bianchi S, Tundis R. Advances on Natural Abietane, Labdane and Clerodane Diterpenes as Anti-Cancer Agents: Sources and Mechanisms of Action. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154791. [PMID: 35897965 PMCID: PMC9330018 DOI: 10.3390/molecules27154791] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 01/14/2023]
Abstract
Extensive research over the past decades has identified numerous phytochemicals that could represent an important source of anti-cancer compounds. There is an immediate need for less toxic and more effective preventive and therapeutic strategies for the treatment of cancer. Natural compounds are considered suitable candidates for the development of new anti-cancer drugs due to their pleiotropic actions on target events with multiple manners. This comprehensive review highlighted the most relevant findings achieved in the screening of phytochemicals for anticancer drug development, particularly focused on a promising class of phytochemicals such as diterpenes with abietane, clerodane, and labdane skeleton. The chemical structure of these compounds, their main natural sources, and mechanisms of action were critically discussed.
Collapse
Affiliation(s)
- Rosaria Acquaviva
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 95125 Catania, Italy; (R.A.); (S.B.)
- CERNUT, Research Centre on Nutraceuticals and Health Products, Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 95125 Catania, Italy
| | - Giuseppe A. Malfa
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 95125 Catania, Italy; (R.A.); (S.B.)
- CERNUT, Research Centre on Nutraceuticals and Health Products, Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 95125 Catania, Italy
- Correspondence:
| | - Monica R. Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.R.L.); (R.T.)
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense, Spain;
| | - Simone Bianchi
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 95125 Catania, Italy; (R.A.); (S.B.)
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.R.L.); (R.T.)
| |
Collapse
|
9
|
Role of Plant-Derived Active Constituents in Cancer Treatment and Their Mechanisms of Action. Cells 2022; 11:cells11081326. [PMID: 35456005 PMCID: PMC9031068 DOI: 10.3390/cells11081326] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
Abstract
Despite significant technological advancements in conventional therapies, cancer remains one of the main causes of death worldwide. Although substantial progress has been made in the control and treatment of cancer, several limitations still exist, and there is scope for further advancements. Several adverse effects are associated with modern chemotherapy that hinder cancer treatment and lead to other critical disorders. Since ancient times, plant-based medicines have been employed in clinical practice and have yielded good results with few side effects. The modern research system and advanced screening techniques for plants’ bioactive constituents have enabled phytochemical discovery for the prevention and treatment of challenging diseases such as cancer. Phytochemicals such as vincristine, vinblastine, paclitaxel, curcumin, colchicine, and lycopene have shown promising anticancer effects. Discovery of more plant-derived bioactive compounds should be encouraged via the exploitation of advanced and innovative research techniques, to prevent and treat advanced-stage cancers without causing significant adverse effects. This review highlights numerous plant-derived bioactive molecules that have shown potential as anticancer agents and their probable mechanisms of action and provides an overview of in vitro, in vivo and clinical trial studies on anticancer phytochemicals.
Collapse
|
10
|
Xu C, Liu Z, Xiao J. Ferroptosis: A Double-Edged Sword in Gastrointestinal Disease. Int J Mol Sci 2021; 22:ijms222212403. [PMID: 34830285 PMCID: PMC8620748 DOI: 10.3390/ijms222212403] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
Ferroptosis is a novel form of regulated cell death (RCD) that is typically accompanied by iron accumulation and lipid peroxidation. In contrast to apoptosis, autophagy, and necroptosis, ferroptosis has unique biological processes and pathophysiological characteristics. Since it was first proposed in 2012, ferroptosis has attracted attention worldwide. Ferroptosis is involved in the progression of multiple diseases and could be a novel therapeutic target in the future. Recently, tremendous progress has been made regarding ferroptosis and gastrointestinal diseases, including intestinal ischemia/reperfusion (I/R) injury, inflammatory bowel disease (IBD), gastric cancer (GC), and colorectal cancer (CRC). In this review, we summarize the recent progress on ferroptosis and its interaction with gastrointestinal diseases. Understanding the role of ferroptosis in gastrointestinal disease pathogenesis could provide novel therapeutic targets for clinical treatment.
Collapse
|
11
|
Zhong C, Lin Z, Ke L, Shi P, Li S, Huang L, Lin X, Yao H. Recent Research Progress (2015-2021) and Perspectives on the Pharmacological Effects and Mechanisms of Tanshinone IIA. Front Pharmacol 2021; 12:778847. [PMID: 34819867 PMCID: PMC8606659 DOI: 10.3389/fphar.2021.778847] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Tanshinone IIA (Tan IIA) is an important characteristic component and active ingredient in Salvia miltiorrhiza, and its various aspects of research are constantly being updated to explore its potential application. In this paper, we review the recent progress on pharmacological activities and the therapeutic mechanisms of Tan IIA according to literature during the years 2015-2021. Tan IIA shows multiple pharmacological effects, including anticarcinogenic, cardiovascular, nervous, respiratory, urinary, digestive, and motor systems activities. Tan IIA modulates multi-targets referring to Nrf2, AMPK, GSK-3β, EGFR, CD36, HO-1, NOX4, Beclin-1, TLR4, TNF-α, STAT3, Caspase-3, and bcl-2 proteins and multi-pathways including NF-κB, SIRT1/PGC1α, MAPK, SREBP-2/Pcsk9, Wnt, PI3K/Akt/mTOR pathways, TGF-β/Smad and Hippo/YAP pathways, etc., which directly or indirectly influence disease course. Further, with the reported targets, the potential effects and possible mechanisms of Tan IIA against diseases were predicted by bioinformatic analysis. This paper provides new insights into the therapeutic effects and mechanisms of Tan IIA against diseases.
Collapse
Affiliation(s)
- Chenhui Zhong
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zuan Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liyuan Ke
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoguang Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liying Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, China
| |
Collapse
|
12
|
Chen ZM, Hu J, Xu YM, He W, Meng L, Huang T, Ying SC, Jiang Z, Xu AM. Cryptotanshinone inhibits cytotoxin-associated gene A-associated development of gastric cancer and mucosal erosions. World J Gastrointest Oncol 2021; 13:693-705. [PMID: 34322198 PMCID: PMC8299932 DOI: 10.4251/wjgo.v13.i7.693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/19/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Approximately 90% of new cases of noncardiac gastric cancer (GC) are related to Helicobacter pylori (H. pylori), and cytotoxin-associated gene A (CagA) is one of the main pathogenic factors. Recent studies have shown that the pharmacological effects of cryptotanshinone (CTS) can be used to treat a variety of tumors. However, the effects of CTS on H. pylori, especially CagA+ strain-induced gastric mucosal lesions, on the development of GC is unknown.
AIM To assess the role of CTS in CagA-induced proliferation and metastasis of GC cells, and determine if CagA+ H. pylori strains causes pathological changes in the gastric mucosa of mice.
METHODS The effects of CTS on the proliferation of GC cells were assessed using the Cell Counting Kit-8 (CCK-8) assay, and the abnormal growth, migration and invasion caused by CagA were detected by CCK-8 and transwell assays. After transfection with pSR-HA-CagA and treatment with CTS, proliferation and metastasis were evaluated by CCK-8 and transwell assays, respectively, and the expression of Src homology 2 (SH2) domain–containing phosphatase 2 (SHP2) and phosphorylated SHP2 (p-SHP2) was detected using western blotting in AGS cells. The enzyme-linked immunosorbent assay was used to determine the immunoglobulin G (IgG) level against CagA in patient serum. Mice were divided into four groups and administered H. pylori strains (CagA+ or CagA-) and CTS (or PBS) intragastrically, and establishment of the chronic infection model was verified using polymerase chain reaction and sequencing of isolated strains. Hematoxylin and eosin staining was used to assess mucosal erosion in the stomach and toxicity to the liver and kidney.
RESULTS CTS inhibited the growth of GC cells in dose- and time-dependent manners. Overexpression of CagA promoted the growth, migration, and invasion of GC cells. Importantly, we demonstrated that CTS significantly inhibited the CagA-induced abnormal proliferation, migration, and invasion of GC cells. Moreover, the expression of p-SHP2 protein in tumor tissue was related to the expression of IgG against CagA in the serum of GC patients. Additionally, CTS suppressed the protein expression levels of both SHP2 and p-SHP2 in GC cells. CTS suppressed CagA+ H. pylori strain-induced mucosal erosion in the stomach of mice but had no obvious effects on the CagA- H. pylori strain group.
CONCLUSION CTS inhibited CagA-induced proliferation and the epithelial-mesenchymal transition of GC cells in vitro, and CagA+ H. pylori strains caused mucosal erosions of the stomach in vivo by decreasing the protein expression of SHP2.
Collapse
Affiliation(s)
- Zhang-Ming Chen
- Department of General Surgery, Fourth Affiliated Hospital of Anhui Medical University, Hefei 230001, Anhui Province, China
| | - Jie Hu
- Department of General Surgery, Fourth Affiliated Hospital of Anhui Medical University, Hefei 230001, Anhui Province, China
| | - Yuan-Min Xu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Wei He
- Department of Surgery, East District of First Affiliated Hospital of Anhui Medical University (Feidong People's Hospital), Hefei 230001, Anhui Province, China
| | - Lei Meng
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Ting Huang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Song-Cheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Zhe Jiang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - A-Man Xu
- Department of General Surgery, Fourth Affiliated Hospital of Anhui Medical University, Hefei 230001, Anhui Province, China
| |
Collapse
|
13
|
Chen ZM, Hu J, Xu YM, He W, Meng L, Huang T, Ying SC, Jiang Z, Xu AM. Cryptotanshinone inhibits cytotoxin-associated gene A-associated development of gastric cancer and mucosal erosions. World J Gastrointest Oncol 2021. [DOI: 10.4251/wjgo.v13.i7.518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
14
|
Zhou H, Yuan Y, Qian H. Expression of STAT3 and vasculogenic mimicry in gallbladder carcinoma promotes invasion and metastasis. Exp Ther Med 2021; 22:738. [PMID: 34055055 PMCID: PMC8138270 DOI: 10.3892/etm.2021.10170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Abstract
Surgical treatment of gallbladder carcinoma remains challenging, while targeted therapy has been demonstrated to have potential. In the present study, the effect of signal transducer and activator of transcription 3 (STAT3) expression and vasculogenic mimicry (VM) on the occurrence and development of gallbladder carcinoma was evaluated. A total of 72 patients with gallbladder carcinoma and 10 patients with chronic cholecystitis were examined. Immunohistochemical staining was performed to determine the positive expression rates of STAT3. Periodic acid Schiff CD34 double staining was performed to detect VM in the gallbladder carcinoma group. STAT3 expression and VM in gallbladder carcinoma tissues was compared among patients with different clinical characteristics. In postoperative patients with gallbladder cancer, the relationship of the postoperative recurrence time with STAT3 expression and VM was assessed. STAT3 expression in gallbladder carcinoma tissue was significantly higher than that in cholecystitis tissue (P<0.05). STAT3 expression levels and VM were positively correlated in gallbladder carcinoma tissue. STAT3 protein expression in gallbladder carcinoma tissues differed significantly among patients with different degrees of differentiation and clinical stages (P<0.05). Among the 51 patients who completed the 3-year follow-up, the mean time to relapse was 17.353 and 35.647 months in those with high and low STAT3 expression, respectively, with significant differences (P<0.05). The VM structure was detected in 47 cases (92.15%) and not detected in four cases (7.84%), which exhibited no immediate recurrence after surgery, and the difference in the mean postoperative recurrence time was significant (22.38 vs. 36.00 months, respectively; P<0.05). In gallbladder carcinoma tissues, a lower degree of differentiation, higher malignancy degree and higher clinical stage were associated with higher expression of STAT3 and VM. Thus, STAT3 may promote VM formation in the process of tumor occurrence, development and metastasis. Therefore, STAT3 as a regulatory target, may inhibit the proliferation and invasion of tumor cells and block the development of VM, thereby representing a suitable target for antitumor angiogenesis therapy.
Collapse
Affiliation(s)
- Hongbing Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of The Medical School of Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Yin Yuan
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of The Medical School of Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Haixin Qian
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
15
|
Fang ZY, Zhang M, Liu JN, Zhao X, Zhang YQ, Fang L. Tanshinone IIA: A Review of its Anticancer Effects. Front Pharmacol 2021; 11:611087. [PMID: 33597880 PMCID: PMC7883641 DOI: 10.3389/fphar.2020.611087] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Tanshinone IIA (Tan IIA) is a pharmacologically lipophilic active constituent isolated from the roots and rhizomes of the Chinese medicinal herb Salvia miltiorrhiza Bunge (Danshen). Tan IIA is currently used in China and other neighboring countries to treat patients with cardiovascular system, diabetes, apoplexy, arthritis, sepsis, and other diseases. Recently, it was reported that tan IIA could have a wide range of antitumor effects on several human tumor cell lines, but the research of the mechanism of tan IIA is relatively scattered in cancer. This review aimed to summarize the recent advances in the anticancer effects of tan IIA and to provide a novel perspective on clinical use of tan IIA.
Collapse
Affiliation(s)
- Zhong-Ying Fang
- School of Biological Sciences and Technology, University of Jinan, Jinan, China.,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miao Zhang
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Jia-Ning Liu
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Xue Zhao
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Yong-Qing Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Fang
- School of Biological Sciences and Technology, University of Jinan, Jinan, China.,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
16
|
Song Q, Yang L, Han Z, Wu X, Li R, Zhou L, Liu N, Sui H, Cai J, Wang Y, Ji Q, Li Q. Tanshinone IIA Inhibits Epithelial-to-Mesenchymal Transition Through Hindering β-Arrestin1 Mediated β-Catenin Signaling Pathway in Colorectal Cancer. Front Pharmacol 2020; 11:586616. [PMID: 33192529 PMCID: PMC7658606 DOI: 10.3389/fphar.2020.586616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022] Open
Abstract
Tanshinone IIA (Tan IIA) is a major active ingredient extracted from Salvia miltiorrhiza, which has been proved to be able to inhibit metastasis of various cancers including colorectal cancer (CRC). However, the mechanisms of anti-metastatic effect of Tan IIA on CRC are not well explored. A number of studies indicate that epithelial-to-mesenchymal transition (EMT) plays an important role in CRC metastasis, and our previous studies demonstrate that β-arrestin1could regulate EMT in CRC partly through β-catenin signaling pathway. In this work, we investigate whether Tan IIA could regulate EMT in CRC through β-arrestin1-mediated β-catenin signaling pathway both in vivo and in vitro. Our results showed that Tan IIA inhibited lung metastases of CRC cells in vivo and extended the survival time of mice with CRC. In vitro, Tan IIA increased the expression of E-cadherin, decreased the expression of Snail, N-cadherin and Vimentin, thus suppressed EMT and the migratory ability of CRC cells. Further study found that the mechanism of action of Tan IIA in regulating EMT and metastasis is associated with the suppression of β-arrestin1 expression, resulting in the increase of GSK-3β expression, reduction of β-catenin nuclear localization, thereby decreased the activity of β-catenin signaling pathway. Our data revealed a new mechanism of Tan IIA on the suppression of EMT and metastasis in CRC via β-arrestin1-mediated β-catenin signaling pathway and provided support for using Tan IIA as anti-metastatic agents in CRC.
Collapse
Affiliation(s)
- Qing Song
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Medical Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Liu Yang
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Oncology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhifen Han
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinnan Wu
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruixiao Li
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihong Zhou
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ningning Liu
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Sui
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - Yan Wang
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Ji
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Li
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Naz I, Merarchi M, Ramchandani S, Khan MR, Malik MN, Sarwar S, Narula AS, Ahn KS. An overview of the anti-cancer actions of Tanshinones, derived from Salvia miltiorrhiza (Danshen). EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:153-170. [PMID: 36046197 PMCID: PMC9400791 DOI: 10.37349/etat.2020.00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/17/2020] [Indexed: 11/19/2022] Open
Abstract
Tanshinone is a herbal medicinal compound described in Chinese medicine, extracted from the roots of Salvia miltiorrhiza (Danshen). This family of compounds, including Tanshinone IIA and Tanshinone I, have shown remarkable potential as anti-cancer molecules, especially against breast, cervical, colorectal, gastric, lung, and prostate cancer cell lines, as well as leukaemia, melanoma, and hepatocellular carcinoma among others. Recent data has indicated that Tanshinones can modulate multiple molecular pathways such as PI3K/Akt, MAPK and JAK/STAT3, and exert their pharmacological effects against different malignancies. In addition, preclinical and clinical data, together with the safety profile of Tanshinones, encourage further applications of these compounds in cancer therapeutics. In this review article, the effect of Tanshinones on different cancers, challenges in their pharmacological development, and opportunities to harness their clinical potential have been documented.
Collapse
Affiliation(s)
- Irum Naz
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Myriam Merarchi
- Faculty of Pharmacy, University of Paris Descartes, 75006 Paris, France
| | - Shanaya Ramchandani
- Department of Pharmacology-Biomedicine, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Muhammad Nouman Malik
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sumaira Sarwar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| |
Collapse
|
18
|
STAT3 Pathway in Gastric Cancer: Signaling, Therapeutic Targeting and Future Prospects. BIOLOGY 2020; 9:biology9060126. [PMID: 32545648 PMCID: PMC7345582 DOI: 10.3390/biology9060126] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Molecular signaling pathways play a significant role in the regulation of biological mechanisms, and their abnormal expression can provide the conditions for cancer development. The signal transducer and activator of transcription 3 (STAT3) is a key member of the STAT proteins and its oncogene role in cancer has been shown. STAT3 is able to promote the proliferation and invasion of cancer cells and induces chemoresistance. Different downstream targets of STAT3 have been identified in cancer and it has also been shown that microRNA (miR), long non-coding RNA (lncRNA) and other molecular pathways are able to function as upstream mediators of STAT3 in cancer. In the present review, we focus on the role and regulation of STAT3 in gastric cancer (GC). miRs and lncRNAs are considered as potential upstream mediators of STAT3 and they are able to affect STAT3 expression in exerting their oncogene or onco-suppressor role in GC cells. Anti-tumor compounds suppress the STAT3 signaling pathway to restrict the proliferation and malignant behavior of GC cells. Other molecular pathways, such as sirtuin, stathmin and so on, can act as upstream mediators of STAT3 in GC. Notably, the components of the tumor microenvironment that are capable of targeting STAT3 in GC, such as fibroblasts and macrophages, are discussed in this review. Finally, we demonstrate that STAT3 can target oncogene factors to enhance the proliferation and metastasis of GC cells.
Collapse
|
19
|
Du H, Wang Y, Zeng Y, Huang X, Liu D, Ye L, Li Y, Chen X, Liu T, Li H, Wu J, Yu Q, Wu Y, Jie L. Tanshinone IIA Suppresses Proliferation and Inflammatory Cytokine Production of Synovial Fibroblasts from Rheumatoid Arthritis Patients Induced by TNF-α and Attenuates the Inflammatory Response in AIA Mice. Front Pharmacol 2020; 11:568. [PMID: 32499694 PMCID: PMC7243269 DOI: 10.3389/fphar.2020.00568] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/14/2020] [Indexed: 12/20/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic and progressive autoimmune disease in which activated RA fibroblast-1ike synoviocytes (RA-FLSs) are one of the main factors responsible for inducing morbidity. Previous reports have shown that RA-FLSs have proliferative features similar to cancer cells, in addition to causing cartilage erosion that eventually causes joint damage. Thus, new therapeutic strategies and drugs that can effectively contain the abnormal hyperplasia of RA-FLSs and restrain RA development are necessary for the treatment of RA. Tanshinone IIA (Tan IIA), one of the main phytochemicals isolated from Salvia miltiorrhiza Bunge, is capable of promoting RA-FLS apoptosis and inhibiting arthritis in an AIA mouse model. In addition, RA patients treated at our clinic with Tan IIA showed significant improvements in their clinical symptoms. However, the details of the molecular mechanism by which Tan IIA effects RA are unknown. To clarify this mechanism, we evaluated the antiproliferative and inhibitory effects of proinflammatory factor production caused by Tan IIA to RA-FLSs. We demonstrated that Tan IIA can restrict the proliferation, migration, and invasion of RA-FLSs in a time- and dose-dependent manner. Moreover, Tan IIA effectively suppressed the increase in mRNA expression of some matrix metalloproteinases and proinflammatory factors induced by TNF-α in RA-FLSs, resulting in inflammatory reactivity inhibition and blocking the destruction of the knee joint. Through the integration of network pharmacology analyses with the experimental data obtained, it is revealed that the effects of Tan IIA on RA can be attributed to its influence on different signaling pathways, including MAPK, AKT/mTOR, HIF-1, and NF-kB. Taken together, these data suggest that the compound Tan IIA has great therapeutic potential for RA treatment.
Collapse
Affiliation(s)
- Hongyan Du
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yuechun Wang
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yongchang Zeng
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiaoming Huang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Dingfei Liu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lvlan Ye
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yang Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiaochen Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Tiancai Liu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Hongwei Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jing Wu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qinghong Yu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yingsong Wu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Ligang Jie
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Fu L, Han B, Zhou Y, Ren J, Cao W, Patel G, Kai G, Zhang J. The Anticancer Properties of Tanshinones and the Pharmacological Effects of Their Active Ingredients. Front Pharmacol 2020; 11:193. [PMID: 32265690 PMCID: PMC7098175 DOI: 10.3389/fphar.2020.00193] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/11/2020] [Indexed: 12/31/2022] Open
Abstract
Cancer is a common malignant disease worldwide with an increasing mortality in recent years. Salvia miltiorrhiza, a well-known traditional Chinese medicine, has been used for the treatment of cardiovascular and cerebrovascular diseases for thousands of years. The liposoluble tanshinones in S. miltiorrhiza are important bioactive components and mainly include tanshinone IIA, dihydrodanshinone, tanshinone I, and cryptotanshinone. Previous studies showed that these four tanshinones exhibited distinct inhibitory effects on tumor cells through different molecular mechanisms in vitro and in vivo. The mechanisms mainly include the inhibition of tumor cell growth, metastasis, invasion, and angiogenesis, apoptosis induction, cell autophagy, and antitumor immunity, and so on. In this review, we describe the latest progress on the antitumor functions and mechanisms of these four tanshinones to provide a deeper understanding of the efficacy. In addition, the important role of tumor immunology is also reviewed.
Collapse
Affiliation(s)
- Li Fu
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China
| | - Bing Han
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Zhou
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China
| | - Jie Ren
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China
| | - Wenzhi Cao
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China
| | - Gopal Patel
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guoyin Kai
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China.,Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Zhang
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China
| |
Collapse
|
21
|
Wang M, Zeng X, Li S, Sun Z, Yu J, Chen C, Shen X, Pan W, Luo H. A Novel Tanshinone Analog Exerts Anti-Cancer Effects in Prostate Cancer by Inducing Cell Apoptosis, Arresting Cell Cycle at G2 Phase and Blocking Metastatic Ability. Int J Mol Sci 2019; 20:4459. [PMID: 31510010 PMCID: PMC6770861 DOI: 10.3390/ijms20184459] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer (PCa), an epithelial malignant tumor, is the second common cause of cancer death among males in western countries. Thus, the development of new strategies is urgently needed. Tanshinones isolated from Salvia miltiorrhiza and its synthetic analogs show various biological activities including anticancer effects. Among them, the tanshinone analog 2-((Glycine methyl ester)methyl)-naphtho (TC7) is the most effective, with better selectivity and lower toxicity. Therefore, in this work, the effect of TC7 against PCa was investigated through assessing the molecular mechanisms regulating the growth, metastasis, and invasion of PCa cells. Human PCa cells, PC3 and LNCAP, were used to evaluate TC7 mechanisms of action in vitro, while male BALB/c nude mice were used for in vivo experiments by subjecting each mouse to a subcutaneous injection of PC3 cells into the right flank to evaluate TC7 effects on tumor volume. Our in vitro results showed that TC7 inhibited cell proliferation by arresting the cell cycle at G2/M through the regulation of cyclin b1, p53, GADD45A, PLK1, and CDC2/cyclin b1. In addition, TC7 induced cell apoptosis by regulating apoptosis-associated genes such as p53, ERK1, BAX, p38, BCL-2, caspase-8, cleaved-caspase-8, PARP1, and the phosphorylation level of ERK1 and p38. Furthermore, it decreased DNA synthesis and inhibited the migration and invasion ability by regulating VEGF-1 and MMP-9 protein expression. Our in vivo evidence supports the conclusion that TC7 could be considered as a potential promising chemotherapeutic candidate in the treatment of PCa.
Collapse
Affiliation(s)
- Mengling Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- College of pharmacy, Guizhou Medical University, Guiyang 550025, China
| | - Xueyi Zeng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Shengyou Li
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
- College of pharmacy, Guizhou University, Guiyang 550025, China
| | - Zekun Sun
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
- College of pharmacy, Guizhou University, Guiyang 550025, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Chao Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Xiangchun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- College of pharmacy, Guizhou Medical University, Guiyang 550025, China
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China.
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China.
| |
Collapse
|
22
|
Liao XZ, Gao Y, Huang S, Chen ZZ, Sun LL, Liu JH, Chen HR, Yu L, Zhang JX, Lin LZ. Tanshinone IIA combined with cisplatin synergistically inhibits non-small-cell lung cancer in vitro and in vivo via down-regulating the phosphatidylinositol 3-kinase/Akt signalling pathway. Phytother Res 2019; 33:2298-2309. [PMID: 31268205 PMCID: PMC6772065 DOI: 10.1002/ptr.6392] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022]
Abstract
Cisplatin represents one of the first‐line drugs used for non‐small‐cell lung cancer treatment. However, considerable side effects and the emergence of drug resistance are becoming critical limitations to its application. Combinatorial strategies may be able to extend the use of cisplatin. Both Tanshinone IIA and cisplatin inhibit non‐small‐cell lung cancer cell growth in a time‐ and dose‐dependent manner. When Tanshinone IIA was combined with cisplatin at a ratio of 20:1, they were observed to exert a synergistic inhibitory effect on non‐small‐cell lung cancer cells. The combination treatment was shown to impair cell migration and invasion, arrest the cell cycle in the S phases, and induce apoptosis in A549 and PC9 cells in a synergistic manner. KEGG pathway analysis and molecular docking indicated that Tanshinone IIA might mainly influence the phosphatidylinositol 3‐kinase‐Akt signalling pathway. In all treated groups, the expression levels of Bax and cleaved Caspase‐3 were up‐regulated, whereas the expression levels of Bcl‐2, Caspase‐3, p‐Akt, and p‐PI3K proteins were down‐regulated. Among these, the combination of Tan IIA and cisplatin exhibited the most significant difference. Tanshinone IIA may function as a novel option for combination therapy for non‐small‐cell lung cancer treatment.
Collapse
Affiliation(s)
- Xiao-Zhong Liao
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Gao
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sheng Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhuang-Zhong Chen
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling-Ling Sun
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia-Hui Liu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Han-Rui Chen
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling Yu
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia-Xing Zhang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li-Zhu Lin
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
23
|
Zhang Y, Geng Y, He J, Wu D, Zhang T, Xue L, Zhang L, He A. Tanshinone IIA induces apoptosis and autophagy in acute monocytic leukemia via downregulation of PI3K/Akt pathway. Am J Transl Res 2019; 11:2995-3006. [PMID: 31217869 PMCID: PMC6556636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Acute myeloid leukemia (AML) is characterized by unrestrained proliferation of myeloid cells. In has been shown that tanshinone IIA (Tan IIA), exhibited anti-tumor activities on different types of cancers. However, the underlying mechanisms by which Tan IIA regulates apoptosis and autophagy in AML remain unclear. Thus, this study aimed to investigate the effects of Tan IIA on AML in vitro and in vivo. CCK-8 assay, EdU staining, flow cytometry, MDC staining, immunofluorescence, transwell migration and invasion assay were used to detect cell proliferation, apoptosis, autophagy, migration and invasion, respectively. In addition, western blotting was used to examine the protein levels of Bax, Bcl-2, active caspase-3, Beclin-1, Atg-5, p-mTOR and p-Akt in cells. Moreover, animal studies were performed to evaluate anti-tumor effect of Tan IIA on AML in vivo. The results revealed that Tan IIA significantly suppressed the growth of U937 cells in vitro and in vivo. Meanwhile, Tan IIA induced apoptosis in U937 cells via up-regulating the levels of active caspase-3 and Bax, and down-regulating Bcl-2 in vitro and in vivo. In addition, Tan IIA inhibited the capacity of migration and invasion in U937 cells. Moreover, Tan IIA induced autophagy in U937 cells via upregulation of the expression of LC3 II, Atg5 and Beclin 1, which was further confirmed by MDC staining and immunofluorescence assays. For the first time, we have shown that autophagy inhibitor 3MA significantly enhanced Tan IIA-induced apoptosis in U937 cells. Furthermore, Tan IIA induced apoptosis and autophagy via downregulation of PI3K/Akt pathway in vitro and in vivo. Therefore, the accumulating evidences suggested that Tan IIA could be a potential agent for improving the symptoms of AML in the future.
Collapse
Affiliation(s)
- Yanping Zhang
- Department of Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, P. R. China
| | - Yan Geng
- Department of Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, P. R. China
| | - Juntao He
- Department of Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, P. R. China
| | - Dong Wu
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, P. R. China
| | - Tong Zhang
- Department of Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, P. R. China
| | - Li Xue
- Department of Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, P. R. China
| | - Lei Zhang
- Department of Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, P. R. China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, P. R. China
| |
Collapse
|