1
|
Park J, Song H, Moon S, Kim Y, Cho S, Han K, Park CY, Cho SW, Oh CM. Cardiometabolic benefits of fenofibrate in heart failure related to obesity and diabetes. Cardiovasc Diabetol 2024; 23:343. [PMID: 39285303 PMCID: PMC11406805 DOI: 10.1186/s12933-024-02417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Heart failure (HF) is a serious and common condition affecting millions of people worldwide, with obesity being a major cause of metabolic disorders such as diabetes and cardiovascular disease. This study aimed to investigate the effects of fenofibrate, a peroxisome proliferator-activated receptor alpha (PPARα) agonist, on the obese- and diabetes-related cardiomyopathy. METHODS AND RESULTS We used db/db mice and high fat diet-streptozotocin induced diabetic mice to investigate the underlying mechanisms of fenofibrate's beneficial effects on heart function. Fenofibrate reduced fibrosis, and lipid accumulation, and suppressed inflammatory and immunological responses in the heart via TNF signaling. In addition, we investigated the beneficial effects of fenofibrate on HF hospitalization. The Korean National Health Insurance database was used to identify 427,154 fenofibrate users and 427,154 non-users for comparison. During the 4.22-year follow-up, fenofibrate use significantly reduced the risk of HF hospitalization (hazard ratio, 0.907; 95% CI 0.824-0.998). CONCLUSIONS The findings suggest that fenofibrate may be a useful therapeutic agent for obesity- and diabetes-related cardiomyopathy.
Collapse
Affiliation(s)
- Jiwon Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Hangyul Song
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Shinje Moon
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Yumin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Sungsoo Cho
- Division of Cardiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - Cheol-Young Park
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Sung Woo Cho
- Division of Cardiology, Department of Internal Medicine, Inje Univeristy Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Gyeonggi-Do, Korea.
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea.
| |
Collapse
|
2
|
Woo SH, Lee SH, Moon SJ, Han J, Seo KS, Lee H, Lee CH, Hwang JH. Beta-lapachone ameliorates the progression of primary sclerosing cholangitis pathogenesis in rodent models. Life Sci 2024; 337:122342. [PMID: 38092141 DOI: 10.1016/j.lfs.2023.122342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
AIMS Primary sclerosing cholangitis (PSC) is a rare cholestatic liver disease characterized by chronic inflammation and severe fibrosis for which effective treatment options are currently lacking. In this study, we explored the potential of beta-lapachone (βL) as a drug candidate for PSC therapy. MATERIALS AND METHODS We employed an animal model fed a diet containing 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) to assess the preventive and therapeutic effects of βL. The beneficial effects of βL on PSC pathogenic characteristics, including blood biomarkers, inflammation, and fibrosis, were determined by assessing relevant parameters. Differential gene expression between each group was analyzed by RNA sequencing of liver tissues. Mdr2-/- mice were utilized to explore the involvement of Abcb4 in the βL-induced improvement of PSC pathogenesis. KEY FINDINGS βL effectively inhibited key features of PSC pathogenesis, as demonstrated by reduced blood biomarkers and improved pathogenic characteristics. Treatment with βL significantly mitigated DDC-induced apoptosis, cell proliferation, inflammation, and fibrosis. Analysis of differential gene expression confirmed a new insight that βL could stimulate the expression of genes related to NAD synthesis and Abcb4. Indeed, βL-induced NAD exhibited effective functioning, as evidenced by enhanced sirt1/3 and acetyl-lysine levels, leading to improved mitochondrial stability. The role of Abcb4 in response to βL was confirmed in Mdr2/Abcb4 KO mice, where the beneficial effects of βL were abolished. SIGNIFICANCE This study provided a new concept for PSC treatment, suggesting that pharmacological stimulation of the NAD synthetic pathway and Abcb4 via βL ameliorates PSC pathogenesis.
Collapse
Affiliation(s)
- Seung Hee Woo
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Biology and Microbiology, Changwon National University, 20 Chanwondaehak-ro, Uichan-gu, Changwon-si, Gyeonsangnam-do 51140, Republic of Korea
| | - Sang-Hee Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Biology, Daejeon University, 62 Daehak-ro, Dong-gu, Daejeon 34520, Republic of Korea
| | - Sung-Je Moon
- R&D Center, Curome Biosciences, 156 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16506, Republic of Korea
| | - Jeongsu Han
- R&D Center, Curome Biosciences, 156 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16506, Republic of Korea
| | - Kang-Sik Seo
- R&D Center, Curome Biosciences, 156 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16506, Republic of Korea
| | - Heedoo Lee
- Department of Biology and Microbiology, Changwon National University, 20 Chanwondaehak-ro, Uichan-gu, Changwon-si, Gyeonsangnam-do 51140, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; KRIBB School of Bioscience, University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jung Hwan Hwang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; KRIBB School of Bioscience, University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
3
|
Pu Y, Cheng CK, Zhang H, Luo JY, Wang L, Tomlinson B, Huang Y. Molecular mechanisms and therapeutic perspectives of peroxisome proliferator-activated receptor α agonists in cardiovascular health and disease. Med Res Rev 2023; 43:2086-2114. [PMID: 37119045 DOI: 10.1002/med.21970] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 03/10/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
The prevalence of cardiovascular disease (CVD) has been rising due to sedentary lifestyles and unhealthy dietary patterns. Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor regulating multiple biological processes, such as lipid metabolism and inflammatory response critical to cardiovascular homeostasis. Healthy endothelial cells (ECs) lining the lumen of blood vessels maintains vascular homeostasis, where endothelial dysfunction associated with increased oxidative stress and inflammation triggers the pathogenesis of CVD. PPARα activation decreases endothelial inflammation and senescence, contributing to improved vascular function and reduced risk of atherosclerosis. Phenotypic switch and inflammation of vascular smooth muscle cells (VSMCs) exacerbate vascular dysfunction and atherogenesis, in which PPARα activation improves VSMC homeostasis. Different immune cells participate in the progression of vascular inflammation and atherosclerosis. PPARα in immune cells plays a critical role in immunological events, such as monocyte/macrophage adhesion and infiltration, macrophage polarization, dendritic cell (DC) embedment, T cell activation, and B cell differentiation. Cardiomyocyte dysfunction, a major risk factor for heart failure, can also be alleviated by PPARα activation through maintaining cardiac mitochondrial stability and inhibiting cardiac lipid accumulation, oxidative stress, inflammation, and fibrosis. This review discusses the current understanding and future perspectives on the role of PPARα in the regulation of the cardiovascular system as well as the clinical application of PPARα ligands.
Collapse
Affiliation(s)
- Yujie Pu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Chak Kwong Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Hongsong Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jiang-Yun Luo
- Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Brian Tomlinson
- Faculty of Medicine, Macau University of Science & Technology, Macau, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Azzam HN, El-Derany MO, Wahdan SA, Faheim RM, Helal GK, El-Demerdash E. The role of mitochondrial/metabolic axis in development of tamoxifen resistance in breast cancer. Hum Cell 2023; 36:1877-1886. [PMID: 37646973 PMCID: PMC10587280 DOI: 10.1007/s13577-023-00977-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
Only a few investigations, to our knowledge, have examined the bioenergetics of Tamoxifen (TMX) resistant individuals and reported altered mitochondrial activity and metabolic profile. The primary cause of TMX resistance is firmly suggested to be metabolic changes. Metabolic variations and hypoxia have also been linked in a bidirectional manner. Increased hypoxic levels correlate with early recurrence and proliferation and have a negative therapeutic impact on breast cancer (BC) patients. Hypoxia, carcinogenesis, and patient death are all correlated, resulting in more aggressive traits, a higher chance of metastasis, and TMX resistance. Consequently, we sought to investigate the possible role of the metabolic/hypoxial axis Long non-coding RNA (LncRNA) Taurine up-regulated 1 (TUG-1), Micro-RNA 186-5p (miR-186), Sirtuin-3 (SIRT3), Peroxisome Proliferator Activator Receptor alpha (PPAR-α), and Hypoxia-Inducible Factor-1 (HIF-1) in the development of TMX resistance in BC patients and to correlate this axis with tumor progression. Interestingly, this will be the first time to explore epigenetic regulation of this axis in BC.
Collapse
Affiliation(s)
- Hany N Azzam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Reham M Faheim
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Gouda K Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
- Preclinical & Translational Research Center, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
5
|
Wang X, Huang Y, Zhang K, Chen F, Nie T, Zhao Y, He F, Ni J. Changes of energy metabolism in failing heart and its regulation by SIRT3. Heart Fail Rev 2023:10.1007/s10741-023-10295-5. [PMID: 36708431 DOI: 10.1007/s10741-023-10295-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 01/29/2023]
Abstract
Heart failure (HF) is the leading cause of hospitalization in elderly patients and a disease with extremely high morbidity and mortality rate worldwide. Although there are some existing treatment methods for heart failure, due to its complex pathogenesis and often accompanied by various comorbidities, there is still a lack of specific drugs to treat HF. The mortality rate of patients with HF is still high, highlighting an urgent need to elucidate the pathophysiological mechanisms of HF and seek new therapeutic approaches. The heart is an organ with a very high metabolic intensity, mainly using fatty acids, glucose, ketone bodies, and branched-chain amino acids as energy substrates to supply energy for the heart. Loss of metabolic flexibility and metabolic remodeling occurs with HF. Sirtuin3 (SIRT3) is a member of the NAD+-dependent Sirtuin family located in mitochondria, and can participate in mitochondrial physiological functions through the deacetylation of metabolic and respiratory enzymes in mitochondria. As the center of energy metabolism, mitochondria are involved in many physiological processes. Maintaining stable metabolic and physiological functions of the heart depends on normal mitochondrial function. The damage or loss of SIRT3 can lead to various cardiovascular diseases. Therefore, we summarize the recent progress of SIRT3 in cardiac mitochondrial protection and metabolic remodeling.
Collapse
Affiliation(s)
- Xiao Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yuting Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, China
| | - Kai Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Feng Chen
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Tong Nie
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yun Zhao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Feng He
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang, 438000, China.
| | - Jingyu Ni
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
6
|
Azzam HN, El-Derany MO, Wahdan SA, Faheim RM, Helal GK, El-Demerdash E. Metabolic/hypoxial axis predicts tamoxifen resistance in breast cancer. Sci Rep 2022; 12:16118. [PMID: 36167713 PMCID: PMC9515205 DOI: 10.1038/s41598-022-19977-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
We sought in our cross-sectional study to investigate the role of metabolic/hypoxial axis in the development of tamoxifen (TMX) resistance in BC patients. Quantification of plasma LncRNA Taurine upregulated-1 (TUG-1), miRNA 186-5p (miR-186), serum Sirtuin-3 (SIRT3), Peroxisome Proliferator Activator Receptor alpha (PPAR-1 α) and Hypoxia Inducible Factor-1 (HIF-1α) was done in a cohort of patients divided into TMX-sensitive and TMX-resistant candidates. Multiple logistic regression and Receiver Operating Characteristic curve were developed for significant predictors. Plasma TUG-1 and miR-186 were significantly elevated in TMX resistant patients. Serum proteins SIRT3, PPAR-1 α and HIF-1α were deficient in TMX resistant patients compared to TMX sensitive patients, respectively. miR-186 was associated with respiratory symptoms, while, HIF-1α was associated with metastases in TMX resistant patients. Strong correlations were found between all parameters. A predictive model was constructed with TUG-1 and HIF-1α to estimate TMX resistance in BC patients with 88.3% sensitivity and 91.6% specificity. Hypoxia and metabolic dysregulations play important role in the development of TMX resistance in BC patients. Correlation between hypoxia, carcinogenesis and patient’s mortality have led to more aggressive phenotypes, increased risk of metastasis and resistance to TMX.
Collapse
Affiliation(s)
- Hany N Azzam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Reham M Faheim
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Gouda K Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
7
|
Liu H, Mo H, Yang C, Mei X, Song X, Lu W, Xiao H, Yan J, Wang X, Yan J, Luo T, Lin Y, Wen D, Chen G, Chen A, Ling Y. A novel function of ATF3 in suppression of ferroptosis in mouse heart suffered ischemia/reperfusion. Free Radic Biol Med 2022; 189:122-135. [PMID: 35843476 DOI: 10.1016/j.freeradbiomed.2022.07.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/26/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Ferroptosis, a newly identified type of programmed cell death type, has been proven to contribute to the progression of myocardial ischemia/reperfusion (I/R) injury. However, little is known about ferroptosis regulation in I/R injury. OBJECTIVES We identified activating transcription factor 3 (ATF3) as a vital regulator of I/R induced ferroptosis and investigated the effects and potential mechanism of ATF3 in cardiac ferroptosis. METHODS In this study, the dynamic RNA-sequencing (RNA-seq) analysis were performed on mouse hearts exposed to different I/R schedules to identify that ATF3 represents an important modulatory molecule in myocardial I/R injury. Then knockout, rescue and overexpression methods were used in mice and neonatal mouse cells (NMCs) to illustrate the effect of ATF3 on myocardial I/R injury. Loss/gain of function techniques were used both in vivo and in vitro to explore the effects of ATF3 on ferroptosis in I/R injury. Furthermore, chromatin immunoprecipitation sequence (ChIP-seq) analysis was performed in the AC16 human cardiomyocyte cell line to investigate potential genes regulated by ATF3. RESULTS ATF3 expression reached highest level at early stage of reperfusion, knockout of ATF3 significantly aggravated I/R injury, which could be rescued by ATF3 re-expression. Knockout and the re-expression of ATF3 changed the transcription levels of multiple ferroptosis genes. In addition, results showed that overexpression of ATF3 inhibits cardiomyocyte ferroptosis triggered by erastin and RSL3. Lastly, ChIP-seq and dual luciferase activity analysis revealed ATF3 could bind to the transcription start site of Fanconi anaemia complementation group D2 (FANCD2) and increased the FANCD2 promoter activity. Furthermore, we first demonstrated that overexpression of FANCD2 exerts significant anti-ferroptosis and cardioprotective effect on AC16 cell H/R injury. CONCLUSION ATF3 inhibits cardiomyocyte ferroptotic death in I/R injury, which might be related with regulating FANCD2. Our study provides new insight into the molecular target for the therapy of myocardial I/R injury.
Collapse
Affiliation(s)
- Haiqiong Liu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Huaqiang Mo
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Chaobo Yang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Xiheng Mei
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Xudong Song
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Weizhe Lu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Hua Xiao
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Jianyun Yan
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Xianbao Wang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Jing Yan
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Tao Luo
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Yuhao Lin
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Daojun Wen
- Department of Cardiology, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi, China
| | - Guiming Chen
- Shenzhen Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangdong, China.
| | - Aihua Chen
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China.
| | - Yuanna Ling
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China; Department of Nuclear Medicine, Zhujiang Hospital, Southern Medical University, Guangdong, China.
| |
Collapse
|
8
|
Venable AH, Lee LE, Feola K, Santoyo J, Broomfield T, Huen SC. Fasting-induced renal HMGCS2 expression does not contribute to circulating ketones. Am J Physiol Renal Physiol 2022; 322:F460-F467. [PMID: 35224990 PMCID: PMC9076412 DOI: 10.1152/ajprenal.00447.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial hydroxymethylglutaryl-CoA synthase 2 (HMGCS2) is the rate-limiting enzyme in ketogenesis. The liver expresses high levels of HMGCS2 constitutively as the main ketogenic organ. It has been suggested that the kidney could be ketogenic as HMGCS2 is expressed in the kidney during fasting and diabetic conditions. However, definitive proof of the capacity for the kidney to produce ketones is lacking. We demonstrate that during fasting, HMGCS2 expression is induced in the proximal tubule of the kidney and is peroxisome proliferator-activated receptor-alpha dependent. Mice with kidney-specific Hmgcs2 deletion show a minor, likely physiologically insignificant, decrease in circulating ketones during fasting. Conversely, liver-specific Hmgcs2 knockout mice exhibit a complete loss of fasting ketosis. Together, these findings indicate renal HMGCS2 does not significantly contribute to global ketone production, and during fasting, the increase in circulating ketones is solely dependent on hepatic HMGCS2. Proximal tubule HMGCS2 serves functions other than systemic ketone provision.
Collapse
Affiliation(s)
- Andrea H Venable
- Department of Internal Medicine (Nephrology) and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Lauren Elizabeth Lee
- Department of Internal Medicine (Nephrology) and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Kyle Feola
- Department of Internal Medicine (Nephrology) and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - John Santoyo
- Department of Internal Medicine (Nephrology) and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Tatyana Broomfield
- Department of Internal Medicine (Nephrology) and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sarah C Huen
- Department of Internal Medicine (Nephrology) and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
9
|
Peng ML, Fu Y, Wu CW, Zhang Y, Ren H, Zhou SS. Signaling Pathways Related to Oxidative Stress in Diabetic Cardiomyopathy. Front Endocrinol (Lausanne) 2022; 13:907757. [PMID: 35784531 PMCID: PMC9240190 DOI: 10.3389/fendo.2022.907757] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 12/19/2022] Open
Abstract
Diabetes is a chronic metabolic disease that is increasing in prevalence and causes many complications. Diabetic cardiomyopathy (DCM) is a complication of diabetes that is associated with high mortality, but it is not well defined. Nevertheless, it is generally accepted that DCM refers to a clinical disease that occurs in patients with diabetes and involves ventricular dysfunction, in the absence of other cardiovascular diseases, such as coronary atherosclerotic heart disease, hypertension, or valvular heart disease. However, it is currently uncertain whether the pathogenesis of DCM is directly attributable to metabolic dysfunction or secondary to diabetic microangiopathy. Oxidative stress (OS) is considered to be a key component of its pathogenesis. The production of reactive oxygen species (ROS) in cardiomyocytes is a vicious circle, resulting in further production of ROS, mitochondrial DNA damage, lipid peroxidation, and the post-translational modification of proteins, as well as inflammation, cardiac hypertrophy and fibrosis, ultimately leading to cell death and cardiac dysfunction. ROS have been shown to affect various signaling pathways involved in the development of DCM. For instance, OS causes metabolic disorders by affecting the regulation of PPARα, AMPK/mTOR, and SIRT3/FOXO3a. Furthermore, OS participates in inflammation mediated by the NF-κB pathway, NLRP3 inflammasome, and the TLR4 pathway. OS also promotes TGF-β-, Rho-ROCK-, and Notch-mediated cardiac remodeling, and is involved in the regulation of calcium homeostasis, which impairs ATP production and causes ROS overproduction. In this review, we summarize the signaling pathways that link OS to DCM, with the intention of identifying appropriate targets and new antioxidant therapies for DCM.
Collapse
Affiliation(s)
- Meng-ling Peng
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Yu Fu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Chu-wen Wu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Ying Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Hang Ren
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Shan-shan Zhou
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Shan-shan Zhou,
| |
Collapse
|
10
|
Nuclear Receptors in Myocardial and Cerebral Ischemia-Mechanisms of Action and Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms222212326. [PMID: 34830207 PMCID: PMC8617737 DOI: 10.3390/ijms222212326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nearly 18 million people died from cardiovascular diseases in 2019, of these 85% were due to heart attack and stroke. The available therapies although efficacious, have narrow therapeutic window and long list of contraindications. Therefore, there is still an urgent need to find novel molecular targets that could protect the brain and heart against ischemia without evoking major side effects. Nuclear receptors are one of the promising targets for anti-ischemic drugs. Modulation of estrogen receptors (ERs) and peroxisome proliferator-activated receptors (PPARs) by their ligands is known to exert neuro-, and cardioprotective effects through anti-apoptotic, anti-inflammatory or anti-oxidant action. Recently, it has been shown that the expression of aryl hydrocarbon receptor (AhR) is strongly increased after brain or heart ischemia and evokes an activation of apoptosis or inflammation in injury site. We hypothesize that activation of ERs and PPARs and inhibition of AhR signaling pathways could be a promising strategy to protect the heart and the brain against ischemia. In this Review, we will discuss currently available knowledge on the mechanisms of action of ERs, PPARs and AhR in experimental models of stroke and myocardial infarction and future perspectives to use them as novel targets in cardiovascular diseases.
Collapse
|
11
|
Byrne NJ, Rajasekaran NS, Abel ED, Bugger H. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radic Biol Med 2021; 169:317-342. [PMID: 33910093 PMCID: PMC8285002 DOI: 10.1016/j.freeradbiomed.2021.03.046] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Even in the absence of coronary artery disease and hypertension, diabetes mellitus (DM) may increase the risk for heart failure development. This risk evolves from functional and structural alterations induced by diabetes in the heart, a cardiac entity termed diabetic cardiomyopathy (DbCM). Oxidative stress, defined as the imbalance of reactive oxygen species (ROS) has been increasingly proposed to contribute to the development of DbCM. There are several sources of ROS production including the mitochondria, NAD(P)H oxidase, xanthine oxidase, and uncoupled nitric oxide synthase. Overproduction of ROS in DbCM is thought to be counterbalanced by elevated antioxidant defense enzymes such as catalase and superoxide dismutase. Excess ROS in the cardiomyocyte results in further ROS production, mitochondrial DNA damage, lipid peroxidation, post-translational modifications of proteins and ultimately cell death and cardiac dysfunction. Furthermore, ROS modulates transcription factors responsible for expression of antioxidant enzymes. Lastly, evidence exists that several pharmacological agents may convey cardiovascular benefit by antioxidant mechanisms. As such, increasing our understanding of the pathways that lead to increased ROS production and impaired antioxidant defense may enable the development of therapeutic strategies against the progression of DbCM. Herein, we review the current knowledge about causes and consequences of ROS in DbCM, as well as the therapeutic potential and strategies of targeting oxidative stress in the diabetic heart.
Collapse
Affiliation(s)
- Nikole J Byrne
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology, Birmingham, AL, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Heiko Bugger
- Division of Cardiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
12
|
Palomer X, Aguilar-Recarte D, García R, Nistal JF, Vázquez-Carrera M. Sirtuins: To Be or Not To Be in Diabetic Cardiomyopathy. Trends Mol Med 2021; 27:554-571. [PMID: 33839024 DOI: 10.1016/j.molmed.2021.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022]
Abstract
Diabetic cardiomyopathy is the leading cause of death among people with diabetes. Despite its severity and poor prognosis, there are currently no approved specific drugs to prevent or even treat diabetic cardiomyopathy. There is a need to understand the pathogenic mechanisms underlying the development of diabetic cardiomyopathy to design new therapeutic strategies. These mechanisms are complex and intricate and include metabolic dysregulation, inflammation, oxidative stress, fibrosis, and apoptosis. Sirtuins, a group of deacetylase enzymes, play an important role in all these processes and are, therefore, potential molecular targets for treating this disease. In this review, we discuss the role of sirtuins in the heart, focusing on their contribution to the pathogenesis of diabetic cardiomyopathy and how their modulation could be therapeutically useful.
Collapse
Affiliation(s)
- Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB); and Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain; Pediatric Research Institute - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - David Aguilar-Recarte
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB); and Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain; Pediatric Research Institute - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Raquel García
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain; Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - J Francisco Nistal
- Servicio de Cirugía Cardiovascular, Hospital Universitario Marqués de Valdecilla, Santander, Spain; Departamento de Ciencias Médicas y Quirúrgicas, Facultad de Medicina, Universidad de Cantabria, Santander, Spain; Instituto de Investigación Marqués de Valdecilla (IDIVAL); Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Santander, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB); and Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain; Pediatric Research Institute - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.
| |
Collapse
|