1
|
Yuan X, Ji H, Zhang Y, Peng H, Cao NH, Ren JJ, Yao XR, Liang X, Kim NH, Xu YN, Li YH. Mangiferin promotes porcine oocyte maturation and delays the postovulatory aging process by up-regulating NRF2 levels. Theriogenology 2025; 239:117384. [PMID: 40086422 DOI: 10.1016/j.theriogenology.2025.117384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Mangiferin (MGN), a flavonoid known for its anti-inflammatory and antioxidant properties, was evaluated in this study for its effects on porcine oocyte maturation in vitro, as well as its potential to modulate the mechanisms associated with aging oocytes. The inclusion of 0.1 μM MGN in the IVM culture medium significantly enhanced blastocyst development following parthenogenetic activation, while also notably upregulating the expression of key embryonic development genes, including SOX2, PCNA, POU5F1, and DNMT3A. MGN treatment improved the oocytes' antioxidant capacity and mitochondrial functionality, concurrently reducing cathepsin B activity and lowering LC3B protein expression (1.06 ± 0.09 vs. 0.55 ± 0.12). To investigate the underlying mechanisms, NRF2 expression was assessed, revealing a marked increase in NRF2 fluorescence and a significant elevation in both NRF2 mRNA and protein levels (1.00 ± 0.05 vs. 1.25 ± 0.09) following MGN treatment compared to the control group. Additionally, MGN treatment enhanced the early developmental potential of aged oocytes, elevating GSH levels and mitochondrial membrane potential and reducing ROS accumulation. Furthermore, MGN treatment upregulated antioxidant genes (SOD1, SOD2). Collectively, these findings suggest that MGN improves porcine oocyte maturation in vitro and enhances subsequent developmental potential through the activation of NRF2 signaling. Moreover, MGN may also delay postovulatory oocyte aging by boosting antioxidant defense and mitochondrial function in aged oocytes.
Collapse
Affiliation(s)
- Xiuwen Yuan
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, Guangdong Province, China
| | - Hewei Ji
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, Guangdong Province, China
| | - Yuhao Zhang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, Guangdong Province, China
| | - Huilin Peng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, Guangdong Province, China
| | - Neng-Hao Cao
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, Guangdong Province, China
| | - Jia-Jun Ren
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, Guangdong Province, China
| | - Xue-Rui Yao
- Institute of Neurology, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Xingwei Liang
- College of Animal Science & Technology, Guangxi University, Nanning, 530004, Guangxi Province, China
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, Guangdong Province, China
| | - Yong-Nan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, Guangdong Province, China
| | - Ying-Hua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, Guangdong Province, China.
| |
Collapse
|
2
|
Wu A, Xu L, Zhang Y, Zhu Y, Wu Y, Wu J, Wen L, Yuan Z, Wang J. Tannic acid mitigates salmonella-induced lung injury via gut-lung axis in broilers. Poult Sci 2025; 104:104973. [PMID: 40058006 PMCID: PMC11930585 DOI: 10.1016/j.psj.2025.104973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Tannic acid (TA), a polyphenolic compound derived from plants, exhibits anti-inflammatory, antibacterial, antiviral, and antioxidant biological activities. Salmonella, a prevalent foodborne pathogen, poses a significant threat to poultry, resulting in considerable economic losses for the animal husbandry industry. In this study, we investigated the protective effects of TA against lung and intestinal injuries induced by a transient Salmonella infection in broilers. After a ten-day infection period, although Salmonella was not detected in the intestinal content of broilers, the infected broilers exhibited reduced body weight and compromised intestinal barrier function. Salmonella infection facilitated the growth of detrimental bacteria in the lungs and ileums, triggering an inflammatory response. TA inhibited the pathogen's colonization in the lungs and reduced serum levels of lipopolysaccharide (LPS) as well as lung levels of myeloperoxidase (MPO). Moreover, TA down-regulated the expression of pro-inflammatory cytokines and hindered the polarization of M1 macrophages in the lungs. In summary, TA mitigates Salmonella-induced lung inflammation and immune imbalance by its anti-inflammatory, antioxidant and antibacterial properties in broilers.
Collapse
Affiliation(s)
- Aoao Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Liu Xu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Yinzhu Zhang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Yuanyuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China; Changsha Luye Biotechnology Co., Ltd, Changsha 410100, PR China
| | - You Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China.
| | - Ji Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China; Changsha Luye Biotechnology Co., Ltd, Changsha 410100, PR China.
| |
Collapse
|
3
|
Zhang X, Huang DX, Xuan C, Li Y, Jiang Y, Wu X, Zhou W, Lei Y, Yang F, Ma H, Hou K, Han X, Li G. Aerobic exercise training attenuates ischemia-reperfusion injury in mice by decreasing the methylation level of METTL3-associated m6A RNA in cardiomyocytes. Life Sci 2025; 361:123294. [PMID: 39645164 DOI: 10.1016/j.lfs.2024.123294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/17/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND AND AIMS Ischemic heart disease (IHD) presents a significant global health challenge, with myocardial ischemia-reperfusion injury (MIRI) being a major pathophysiological contributor and lacking effective interventions. While aerobic exercise training (AET) enhances cardiovascular health, its protective mechanism in MIRI remains elusive. This study aims to elucidate the protective effect of AET in MIRI and its underlying mechanism. METHODS A mouse model of AET and MIRI was established to evaluate basic indices, cardiac ultrasound, and myocardial injury markers. Dot Blot, qRT-PCR, and Western blot were employed to assess m6A RNA methylation levels and related protein expression in myocardial tissue. In vitro, primary cardiomyocyte culture was utilized to mimic MIRI, evaluating cell viability, mitochondrial membrane potential, etc. Finally, myocardial tissues of MIRI mice were immunoprecipitated for m6A RNA methylation and sequenced to analyze related signaling pathways. KEY RESULTS AET significantly improved cardiac function and mitigated myocardial injury and fibrosis. Moreover, AET protected myocardium from MIRI by reducing m6A RNA methylation levels and modulating METTL3 expression. In vitro experiments demonstrated that the decrease in m6A RNA methylation levels and METTL3 expression conferred resistance to hypoxia/reoxygenation-induced injury. Furthermore, sequencing results indicated elevated myocardial tissue m6A RNA methylation levels during MIRI, activation of the Nrf2-related signaling pathway, and AET-mediated regulation of the Nrf2/HO-1 signaling pathway, thereby attenuating MIRI through modulation of METTL3-related m6A methylation. CONCLUSION AND SIGNIFICANCE AET attenuates MIRI by reducing the level of METTL3-related m6A RNA methylation in cardiomyocytes and activating the Nrf2/HO-1 antioxidant signaling pathway. This finding provides a novel insight and strategy for the prevention and treatment of IHD, holding significant clinical implications.
Collapse
Affiliation(s)
- Xinmin Zhang
- Department of Anesthesiology, First Hospital of Jilin University, Changchun 130021, China; The Public Laboratory Platform of First Hospital of Jilin University, Changchun 130021, China
| | - Dong-Xu Huang
- Department of Hand and Podiatric Surgery, Orthopedics Center, First Hospital of Jilin University, Changchun 130021, China; Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, First Hospital of Jilin University, Changchun 130021, China
| | - Chengluan Xuan
- Department of Anesthesiology, First Hospital of Jilin University, Changchun 130021, China
| | - Yanhui Li
- Department of Anesthesiology, First Hospital of Jilin University, Changchun 130021, China
| | - Yuting Jiang
- Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, 130021, China
| | - Xuehan Wu
- Department of Anesthesiology, First Hospital of Jilin University, Changchun 130021, China
| | - Wenqian Zhou
- Department of Cardiovascular Disease, First Hospital of Jilin University, Changchun 130021, China
| | - Yang Lei
- Department of Anesthesiology, First Hospital of Jilin University, Changchun 130021, China
| | - Fan Yang
- Department of Anesthesiology, First Hospital of Jilin University, Changchun 130021, China
| | - Haichun Ma
- Department of Anesthesiology, First Hospital of Jilin University, Changchun 130021, China
| | - Kun Hou
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Xue Han
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Guichen Li
- Department of Neurology, First Hospital of Jilin University, 1 Xinmin Avenue, 130021, Changchun, China.
| |
Collapse
|
4
|
Yang Q, Tang X, He Y, Yu X, Li Y, Wu Z. Cloning and characterization of the thioredoxin reductase 1 gene in Hyriopsis cumingii and its regulatory mechanism by Nrf2. FISH & SHELLFISH IMMUNOLOGY 2025; 156:110056. [PMID: 39608731 DOI: 10.1016/j.fsi.2024.110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024]
Abstract
The thioredoxin system, consisting of thioredoxin reductases and thioredoxin, plays a crucial role in defending against oxidative stress. Despite its importance, limited research has been conducted on this system in bivalves. In this study, we aimed to clone and characterize the thioredoxin reductase 1 gene from Hyriopsis cumingii (HcTrxR1) and to elucidate its interaction with the nuclear factor erythroid 2-related factor 2 (Nrf2) of H. cumingii (HcNrf2) using a combination of gene cloning, bioinformatics, RNA interference (RNAi), activator/inhibitor treatments, and dual-luciferase reporter assays. We successfully cloned the full-length cDNA of HcTrxR1, which consisted of a 1788 bp open reading frame encoding a 595-amino acid protein. Sequence analysis revealed high conservation of HcTrxR1 compared to homologs in other bivalve species. The expression of HcTrxR1 mRNA was detected across various tissues, with the highest levels observed in the gonads and hemolymph. RNAi and activator/inhibitor experiments demonstrated that HcNrf2 positively regulated the expression of HcTrxR1. Dual-luciferase reporter assays identified two antioxidant response elements in the promoter region of HcTrxR1, which were critical for HcNrf2 binding and transcriptional activation. Additionally, a polyclonal antibody against the HcTrxR1 protein was generated and confirmed for specificity. These findings underscore the regulatory role of Nrf2 in the thioredoxin system of bivalves, offering novel insights into the antioxidant mechanisms in H. cumingii. The study provides a molecular framework that may inform environmental monitoring and conservation efforts in aquatic ecosystems.
Collapse
Affiliation(s)
- Qinglin Yang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China
| | - Xiaoqi Tang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China
| | - Yuzhuo He
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China
| | - Xiaobo Yu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China
| | - Yanhong Li
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China
| | - Zhengli Wu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
5
|
Samimi F, Baazm M, Nadi Z, Dastghaib S, Rezaei M, Jalali-Mashayekhi F. Evaluation of Antioxidant Effects of Coenzyme Q10 against Hyperglycemia-Mediated Oxidative Stress by Focusing on Nrf2/Keap1/HO-1 Signaling Pathway in the Liver of Diabetic Rats. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:661-670. [PMID: 39449772 PMCID: PMC11497326 DOI: 10.30476/ijms.2023.100078.3222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/22/2023] [Accepted: 11/19/2023] [Indexed: 10/26/2024]
Abstract
Background Hyperglycemia-induced oxidative stress can damage the liver and lead to diabetes complications. Coenzyme Q10 (CoQ-10) reduces diabetes-related oxidative stress. However, its molecular mechanisms are still unclear. This study aimed to examine CoQ-10's antioxidant capabilities against hyperglycemia-induced oxidative stress in the livers of diabetic rats, specifically targeting the Nrf2/Keap1/ARE signaling pathway. Methods This study was conducted between 2020-2021 at Arak University of Medical Sciences. A total of 30 male adult Wistar rats (8 weeks old) weighing 220-250 g were randomly assigned to five groups (n=6 in each group): control healthy, sesame oil (CoQ-10 solvent), CoQ-10 (10 mg/Kg), diabetic, and diabetic+CoQ-10. Liver oxidative stress indicators, including malondialdehyde, catalase, glutathione peroxidase, and glutathione, were estimated using the spectrophotometry method. Nrf2, Keap1, HO-1, and NQO1 gene expressions were measured using real-time PCR tests in the liver tissue. All treatments were conducted for 6 weeks. Statistical analysis was performed using SPSS software. One-way ANOVA followed by LSD's or Tukey's post hoc tests were used to compare the results of different groups. P<0.05 was considered statistically significant. Results The findings showed that induction of diabetes significantly increased Keap1 expression (2.1±0.9 folds, P=0.01), and significantly inhibited the mRNA expression of Nrf2 (0.38±0.2 folds, P=0.009), HO-1 (0.27±0.1 folds, P=0.02), and NQO1 (0.26±0.1 folds P=0.01), compared with the healthy group. In the diabetic group, the activity of glutathione peroxidase, catalase enzymes, and glutathione levels was decreased with an increase in malondialdehyde level. CoQ-10 supplementation significantly up-regulated the expressions of Nrf2 (0.85±0.3, P=0.04), HO-1 (0.94±0.2, P=0.04), NQO1 (0.88±0.5, P=0.03) genes, and inhibited Keap1 expression (1.1±0.6, P=0.02). Furthermore, as compared to control diabetic rats, CoQ-10 ameliorated oxidative stress by decreasing malondialdehyde levels and increasing catalase, glutathione peroxidase activities, and glutathione levels in the liver tissues of the treated rats in the treatment group. Conclusion The findings of this study revealed that CoQ-10 could increase the antioxidant capacity of the liver tissue in diabetic rats by modulating the Nrf2/Keap1/HO-1/NQO1 signaling pathway.
Collapse
Affiliation(s)
- Fatemeh Samimi
- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Department of Biochemistry and Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Research Center and Molecular Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Nadi
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehri Rezaei
- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Farideh Jalali-Mashayekhi
- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Research Center and Molecular Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
6
|
Iqbal MK, Ambreen A, Mujahid M, Zarlashat Y, Abid M, Yasin A, Ullah MN, Shahzad R, Harlina PW, Khan SU, Alissa M, Algopishi UB, Almubarak HA. Cardiomegaly: Navigating the uncharted territories of heart failure - A multimodal radiological journey through advanced imaging, pathophysiological landscapes, and innovative therapeutic frontiers. Curr Probl Cardiol 2024; 49:102748. [PMID: 39009253 DOI: 10.1016/j.cpcardiol.2024.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Cardiomegaly is among the disorders categorized by a structural enlargement of the heart by any of the situations including pregnancy, resulting in damage to heart muscles and causing trouble in normal heart functioning. Cardiomegaly can be defined in terms of dilatation with an enlarged heart and decreased left or biventricular contraction. The genetic origin of cardiomegaly is becoming more evident due to extensive genomic research opening up new avenues to ensure the use of precision medicine. Cardiomegaly is usually assessed by using an array of radiological modalities, including computed tomography (CT) scans, chest X-rays, and MRIs. These imaging techniques have provided an important opportunity for the physiology and anatomy of the heart. This review aims to highlight the complexity of cardiomegaly, highlighting the contribution of both ecological and genetic variables to its progression. Moreover, we further highlight the worth of precise clinical diagnosis, which comprises blood biomarkers and electrocardiograms (EKG ECG), demonstrating the significance of distinguishing between numerous basic causes. Finally, the analysis highlights the extensive variation of treatment lines, such as lifestyle modifications, prescription drugs, surgery, and implantable devices, although highlighting the critical need for individualized and personalized care.
Collapse
Affiliation(s)
- Muhammad Khalid Iqbal
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University Liaoning Provence China; Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Alia Ambreen
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Mujahid
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Yusra Zarlashat
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Abid
- Academy of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Ayesha Yasin
- Department of Pathology and Forensic Medicine, Dalian Medical University Liaoning Provence, China
| | | | - Raheel Shahzad
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), KST-Cibinong, JI Raya Bogor KM46, Cibinong 16911, Indonesia
| | - Putri Widyanti Harlina
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363 Bandung, Indonesia
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Women Medical and Dental College, Khyber Medical University, Peshawar, KPK, 22020, Pakistan.
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Hassan Ali Almubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
7
|
Zhang L, Hu C, Jin B, Bai B, Liao J, Jin L, Wang M, Zhu W, Wu X, Zheng L, Xu X, Jiang Y, Wang Y, He Y. Bicyclol Alleviates Streptozotocin-induced Diabetic Cardiomyopathy By Inhibiting Chronic Inflammation And Oxidative Stress. Cardiovasc Drugs Ther 2024; 38:555-568. [PMID: 36662448 DOI: 10.1007/s10557-023-07426-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
PURPOSE Diabetic cardiomyopathy (DCM) is a common and severe complication of diabetes. Inflammation and oxidative stress play important roles in DCM development. Bicyclol is a hepatoprotective drug in China that exerts anti-inflammatory effects by inhibiting the MAPK and NF-κB pathways to prevent obesity-induced cardiomyopathy. Our purpose was to explore the effect and mechanism of bicyclol on DCM. METHODS A type 1 diabetes mouse model was established using C57BL/6 mice by intraperitoneal injection of STZ. The therapeutic effect of bicyclol was evaluated in both heart tissues of diabetic mice and high concentration of glucose (HG)-stimulated H9c2 cells. RESULTS We showed that bicyclol significantly attenuated diabetes-induced cardiac hypertrophy and fibrosis, which is accompanied by the preservation of cardiac function in mice. In addition, bicyclol exhibited anti-inflammatory and anti-oxidative effects both in vitro and in vivo. Furthermore, bicyclol inhibited the hyperglycemia-induced activation of MAPKs and NF-κB pathways, while upregulating the Nrf-2/HO-1 pathway to exhibit protective effects. CONCLUSION Our data indicate that bicyclol could be a promising cardioprotective agent in the treatment of DCM.
Collapse
Affiliation(s)
- Lingxi Zhang
- Department of Pharmacy, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Zhejiang, 315700, Ningbo, China
- Chemical Biology Research Center, School of Pharmacological Sciences, Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
| | - Chenghong Hu
- Chemical Biology Research Center, School of Pharmacological Sciences, Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
| | - Bo Jin
- Chemical Biology Research Center, School of Pharmacological Sciences, Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
| | - Bin Bai
- Chemical Biology Research Center, School of Pharmacological Sciences, Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
| | - Jing Liao
- Chemical Biology Research Center, School of Pharmacological Sciences, Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
| | - Leiming Jin
- Chemical Biology Research Center, School of Pharmacological Sciences, Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
| | - Minxiu Wang
- Chemical Biology Research Center, School of Pharmacological Sciences, Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
| | - Weiwei Zhu
- Chemical Biology Research Center, School of Pharmacological Sciences, Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
| | - Xuedan Wu
- Department of Pharmacy, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Zhejiang, 315700, Ningbo, China
| | - Li Zheng
- Department of Pharmacy, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Zhejiang, 315700, Ningbo, China
| | - Xuelian Xu
- Department of Pharmacy, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Zhejiang, 315700, Ningbo, China
| | - Yongsheng Jiang
- Department of Pharmacy, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Zhejiang, 315700, Ningbo, China
| | - Yi Wang
- Department of Pharmacy, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Zhejiang, 315700, Ningbo, China.
- Chemical Biology Research Center, School of Pharmacological Sciences, Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China.
| | - Ying He
- Department of Pharmacy, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Zhejiang, 315700, Ningbo, China.
| |
Collapse
|
8
|
Vahidinia Z, Azami Tameh A, Barati S, Izadpanah M, Seyed Hosseini E. Nrf2 activation: a key mechanism in stem cell exosomes-mediated therapies. Cell Mol Biol Lett 2024; 29:30. [PMID: 38431569 PMCID: PMC10909300 DOI: 10.1186/s11658-024-00551-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Exosomes are nano-sized membrane extracellular vesicles which can be released from various types of cells. Exosomes originating from inflammatory or injured cells can have detrimental effects on recipient cells, while exosomes derived from stem cells not only facilitate the repair and regeneration of damaged tissues but also inhibit inflammation and provide protective effects against various diseases, suggesting they may serve as an alternative strategy of stem cells transplantation. Exosomes have a fundamental role in communication between cells, through the transfer of proteins, bioactive lipids and nucleic acids (like miRNAs and mRNAs) between cells. This transfer significantly impacts both the physiological and pathological functions of recipient cells. Nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor, is able to mitigate damage caused by oxidative stress and inflammation through various signaling pathways. The positive effects resulting from the activation of the Nrf2 signaling pathway in different disorders have been documented in various types of literature. Studies have confirmed that exosomes derived from stem cells could act as Nrf2 effective agonists. However, limited studies have explored the Nrf2 role in the therapeutic effects of stem cell-derived exosomes. This review provides a comprehensive overview of the existing knowledge concerning the role of Nrf2 signaling pathways in the impact exerted by stem cell exosomes in some common diseases.
Collapse
Affiliation(s)
- Zeinab Vahidinia
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - Melika Izadpanah
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elahe Seyed Hosseini
- Gametogenesis Research Center, Institute for Basic Sciences, Kashan University of Medical Science, Kashan, Iran
| |
Collapse
|
9
|
Wang G, Ma TY, Huang K, Zhong JH, Lu SJ, Li JJ. Role of pyroptosis in diabetic cardiomyopathy: an updated review. Front Endocrinol (Lausanne) 2024; 14:1322907. [PMID: 38250736 PMCID: PMC10796545 DOI: 10.3389/fendo.2023.1322907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
Diabetic cardiomyopathy (DCM), one of the common complications of diabetes, presents as a specific cardiomyopathy with anomalies in the structure and function of the heart. With the increasing prevalence of diabetes, DCM has a high morbidity and mortality worldwide. Recent studies have found that pyroptosis, as a programmed cell death accompanied by an inflammatory response, exacerbates the growth and genesis of DCM. These studies provide a theoretical basis for exploring the potential treatment of DCM. Therefore, this review aims to summarise the possible mechanisms by which pyroptosis promotes the development of DCM as well as the relevant studies targeting pyroptosis for the possible treatment of DCM, focusing on the molecular mechanisms of NLRP3 inflammasome-mediated pyroptosis, different cellular pyroptosis pathways associated with DCM, the effects of pyroptosis occurring in different cells on DCM, and the relevant drugs targeting NLRP3 inflammasome/pyroptosis for the treatment of DCM. This review might provide a fresh perspective and foundation for the development of therapeutic agents for DCM.
Collapse
Affiliation(s)
- Gan Wang
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China
| | - Tian-Yi Ma
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China
| | - Kang Huang
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China
| | - Jiang-Hua Zhong
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China
| | - Shi-Juan Lu
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China
| | - Jian-Jun Li
- State Key Laboratory of Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Wang Y, Liu Y, Huang T, Chen Y, Song W, Chen F, Jiang Y, Zhang C, Yang X. Nrf2: A Main Responsive Element of the Toxicity Effect Caused by Trichothecene (T-2) Mycotoxin. TOXICS 2023; 11:393. [PMID: 37112621 PMCID: PMC10146852 DOI: 10.3390/toxics11040393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
T-2 toxin, the most toxic type A trichothecene mycotoxin, is produced by Fusarium, and is widely found in contaminated feed and stored grains. T-2 toxin is physicochemically stable and is challenging to eradicate from contaminated feed and cereal, resulting in food contamination that is inescapable and poses a major hazard to both human and animal health, according to the World Health Organization. Oxidative stress is the upstream cause of all pathogenic variables, and is the primary mechanism through which T-2 toxin causes poisoning. Nuclear factor E2-related factor 2 (Nrf2) also plays a crucial part in oxidative stress, iron metabolism and mitochondrial homeostasis. The major ideas and emerging trends in future study are comprehensively discussed in this review, along with research progress and the molecular mechanism of Nrf2's involvement in the toxicity impact brought on by T-2 toxin. This paper could provide a theoretical foundation for elucidating how Nrf2 reduces oxidative damage caused by T-2 toxin, and a theoretical reference for exploring target drugs to alleviate T-2 toxin toxicity with Nrf2 molecules.
Collapse
Affiliation(s)
- Youshuang Wang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New District, Zhengzhou 450002, China
| | - Yu Liu
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New District, Zhengzhou 450002, China
| | - Tingyu Huang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New District, Zhengzhou 450002, China
| | - Yunhe Chen
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New District, Zhengzhou 450002, China
| | - Wenxi Song
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New District, Zhengzhou 450002, China
| | - Fengjuan Chen
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New District, Zhengzhou 450002, China
| | - Yibao Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New District, Zhengzhou 450002, China
| | - Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New District, Zhengzhou 450002, China
| |
Collapse
|
11
|
Dhaouafi J, Abidi A, Nedjar N, Romdhani M, Tounsi H, Sebai H, Balti R. Protective Effect of Tunisian Red Seaweed ( Corallina officinalis) Against Bleomycin-Induced Pulmonary Fibrosis and Oxidative Stress in Rats. Dose Response 2023; 21:15593258231179906. [PMID: 37275392 PMCID: PMC10236256 DOI: 10.1177/15593258231179906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a chronic and progressive respiratory disease whose diagnosis and physiopathogenesis are still poorly understood and for which, until recently, there were no effective treatments. Over the past few decades, many studies have demonstrated that marine macroalgae such as red seaweeds are potential alternative sources of useful bioactive compounds possessing various physiological and biological activities. The present study was aimed to investigate the effect of Corallina officinalis aqueous extract (COAE) against bleomycin (BLM)-induced lung fibrosis in rat. Thus, Wistar rats were divided into 4 groups of 10 each: control, BLM (2 mg/kg), BLM/COAE-150 mg/kg and BLM/COAE-300 mg/kg once a day for 21 days. Obtained results showed that COAE is rich in phenolic compounds and exhibited relatively high antioxidant activity. COAE might significantly reduce the damage caused by BLM by rewarding the decline in weight and pulmonary index in rats given only BLM. Moreover, lungs, liver and kidneys lipid peroxidation, and sulfhydryl group levels were reversed significantly in a dose-dependent manner in the COAE-treated groups. BLM decreased superoxide dismutase (SOD) and catalase (CAT) activities, while COAE administration increased the antioxidant enzyme activities. Histopathologically, COAE attenuates the severity of the inflammatory lungs state caused by instillation of BLM in rats. These findings suggest that COAE can be a potential therapeutic candidate against BLM-induced lung fibrosis.
Collapse
Affiliation(s)
- Jihen Dhaouafi
- Laboratory of Functional Physiology
and Bio-Resources Valorization, Higher Institute of Biotechnology of Beja, University of Jendouba, Jendouba, Tunisia
- UMR Transfrontalière BioEcoAgro
N1158, Université Lille, INRAE, Université Liège, UPJV, YNCREA, Université
Artois, Université Littoral Côte
D’Opale, ICV-Institut Charles Viollette, Lille, France
| | - Anouar Abidi
- Laboratory of Functional Physiology
and Bio-Resources Valorization, Higher Institute of Biotechnology of Beja, University of Jendouba, Jendouba, Tunisia
| | - Naima Nedjar
- UMR Transfrontalière BioEcoAgro
N1158, Université Lille, INRAE, Université Liège, UPJV, YNCREA, Université
Artois, Université Littoral Côte
D’Opale, ICV-Institut Charles Viollette, Lille, France
| | - Montassar Romdhani
- Laboratory of Functional Physiology
and Bio-Resources Valorization, Higher Institute of Biotechnology of Beja, University of Jendouba, Jendouba, Tunisia
- UMR Transfrontalière BioEcoAgro
N1158, Université Lille, INRAE, Université Liège, UPJV, YNCREA, Université
Artois, Université Littoral Côte
D’Opale, ICV-Institut Charles Viollette, Lille, France
| | - Haifa Tounsi
- Laboratory of Human and
Experimental Pathological Anatomy, Pasteur Institute of
Tunis, Tunis, Tunisia
| | - Hichem Sebai
- Laboratory of Functional Physiology
and Bio-Resources Valorization, Higher Institute of Biotechnology of Beja, University of Jendouba, Jendouba, Tunisia
| | - Rafik Balti
- Laboratory of Functional Physiology
and Bio-Resources Valorization, Higher Institute of Biotechnology of Beja, University of Jendouba, Jendouba, Tunisia
- Université Paris-Saclay,
CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et
de Bioéconomie (CEBB), Pomacle, France
| |
Collapse
|
12
|
Azouz AA, Abdel-Rahman DM, Messiha BAS. Balancing renal Ang-II/Ang-(1-7) by xanthenone; an ACE2 activator; contributes to the attenuation of Ang-II/p38 MAPK/NF-κB p65 and Bax/caspase-3 pathways in amphotericin B-induced nephrotoxicity in rats. Toxicol Mech Methods 2023:1-11. [PMID: 36747322 DOI: 10.1080/15376516.2023.2177218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite the great importance of amphotericin B for the management of life-threatening systemic fungal infections, its nephrotoxic effect restricts its repeated administration. This study was designed to examine the prospective modulatory effects of xanthenone, an ACE2 activator, against amphotericin B nephrotoxicity. Male Wistar rats were allocated into four groups; control (1st), Xanthenone (2nd), Amphotericin B (3rd), and Xanthenone + Amphotericin B (4th). The second and fourth groups received xanthenone (2 mg/kg; s.c.) daily for 14 consecutive days. Amphotericin B (18.5 mg/kg; i.p.) was administered to the third and fourth groups daily starting from day 8. After 2 weeks, samples were withdrawn for analysis. The histopathological findings, molecular and biochemical markers showed that amphotericin B caused marked renal injury. Pretreatment with xanthenone ameliorated amphotericin B-induced deterioration in kidney function biomarkers (creatinine, urea, cystatin C, KIM-1) and guarded against the disturbance of serum electrolytes (Na+, K+, Mg2+) due to amphotericin B-induced tubular dysfunction. Besides, the ACE2 activator xanthenone-balanced renal Ang-II/Ang-(1-7), and so the inflammatory signaling p38 MAPK/NF-κB p65 and its downstream inflammatory cytokines (TNF-α, IL-6) were attenuated. Meanwhile, the anti-oxidant signaling Nrf2/HO-1 and glutathione content were preserved, but the lipid peroxidation marker MDA was declined. These regulatory effects of xanthenone eventually enhanced Bcl-2 (anti-apoptotic), but reduced Bax (pro-apoptotic) and cleaved caspase-3 (apoptotic executioner) protein expressions. Collectively, the regulatory effects of xanthenone on renal Ang-II/Ang-(1-7) could at least partially contribute to the mitigation of amphotericin B nephrotoxicity by attenuating inflammatory signaling, oxidative stress, and apoptosis, thus improving the tolerability to amphotericin B.
Collapse
Affiliation(s)
- Amany A Azouz
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Doaa M Abdel-Rahman
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | | |
Collapse
|
13
|
Laurindo LF, de Maio MC, Minniti G, de Góes Corrêa N, Barbalho SM, Quesada K, Guiguer EL, Sloan KP, Detregiachi CRP, Araújo AC, de Alvares Goulart R. Effects of Medicinal Plants and Phytochemicals in Nrf2 Pathways during Inflammatory Bowel Diseases and Related Colorectal Cancer: A Comprehensive Review. Metabolites 2023; 13:243. [PMID: 36837862 PMCID: PMC9966918 DOI: 10.3390/metabo13020243] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are related to nuclear factor erythroid 2-related factor 2 (Nrf2) dysregulation. In vitro and in vivo studies using phytocompounds as modulators of the Nrf2 signaling in IBD have already been published. However, no existing review emphasizes the whole scenario for the potential of plants and phytocompounds as regulators of Nrf2 in IBD models and colitis-associated colorectal carcinogenesis. For these reasons, this study aimed to build a review that could fill this void. The PubMed, EMBASE, COCHRANE, and Google Scholar databases were searched. The literature review showed that medicinal plants and phytochemicals regulated the Nrf2 on IBD and IBD-associated colorectal cancer by amplifying the expression of the Nrf2-mediated phase II detoxifying enzymes and diminishing NF-κB-related inflammation. These effects improve the bowel environment, mucosal barrier, colon, and crypt disruption, reduce ulceration and microbial translocation, and consequently, reduce the disease activity index (DAI). Moreover, the modulation of Nrf2 can regulate various genes involved in cellular redox, protein degradation, DNA repair, xenobiotic metabolism, and apoptosis, contributing to the prevention of colorectal cancer.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Avenida Monte Carmelo, 800, Marília 17519-030, São Paulo, Brazil
| | - Mariana Canevari de Maio
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Avenida Monte Carmelo, 800, Marília 17519-030, São Paulo, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Natália de Góes Corrêa
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, São Paulo, Brazil
| | - Karina Quesada
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, São Paulo, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, São Paulo, Brazil
| | | | - Claudia R. P. Detregiachi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| |
Collapse
|
14
|
Welcome MO, Dogo D, Nikos E Mastorakis. Cellular mechanisms and molecular pathways linking bitter taste receptor signalling to cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction in heart diseases. Inflammopharmacology 2023; 31:89-117. [PMID: 36471190 PMCID: PMC9734786 DOI: 10.1007/s10787-022-01086-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
Heart diseases and related complications constitute a leading cause of death and socioeconomic threat worldwide. Despite intense efforts and research on the pathogenetic mechanisms of these diseases, the underlying cellular and molecular mechanisms are yet to be completely understood. Several lines of evidence indicate a critical role of inflammatory and oxidative stress responses in the development and progression of heart diseases. Nevertheless, the molecular machinery that drives cardiac inflammation and oxidative stress is not completely known. Recent data suggest an important role of cardiac bitter taste receptors (TAS2Rs) in the pathogenetic mechanism of heart diseases. Independent groups of researchers have demonstrated a central role of TAS2Rs in mediating inflammatory, oxidative stress responses, autophagy, impulse generation/propagation and contractile activities in the heart, suggesting that dysfunctional TAS2R signalling may predispose to cardiac inflammatory and oxidative stress disorders, characterised by contractile dysfunction and arrhythmia. Moreover, cardiac TAS2Rs act as gateway surveillance units that monitor and detect toxigenic or pathogenic molecules, including microbial components, and initiate responses that ultimately culminate in protection of the host against the aggression. Unfortunately, however, the molecular mechanisms that link TAS2R sensing of the cardiac milieu to inflammatory and oxidative stress responses are not clearly known. Therefore, we sought to review the possible role of TAS2R signalling in the pathophysiology of cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction in heart diseases. Potential therapeutic significance of targeting TAS2R or its downstream signalling molecules in cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction is also discussed.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Plot 681 Cadastral Zone, C-00 Research and Institution Area, Jabi Airport Road Bypass, FCT, Abuja, Nigeria.
| | - Dilli Dogo
- Department of Surgery, Faculty of Clinical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| | - Nikos E Mastorakis
- Technical University of Sofia, Klement Ohridksi 8, Sofia, 1000, Bulgaria
| |
Collapse
|
15
|
Yang L, Yang C, Chu C, Wan M, Xu D, Pan D, Xia H, Wang SK, Shu G, Chen S, Sun G. Beneficial effects of monounsaturated fatty acid-rich blended oils with an appropriate polyunsaturated/saturated fatty acid ratio and a low n-6/n-3 fatty acid ratio on the health of rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7172-7185. [PMID: 35727941 DOI: 10.1002/jsfa.12083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The effects of dietary fat on health are influenced by its fatty acid profile. We aimed to determine the effects of monounsaturated fatty acid (MUFA)-rich blended oils (BO) containing a balance of polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs) and with a low n-6/n-3 PUFA ratio on the health of rats fed normal or high-fat diets. The BO was obtained by mixing red palm oil, rice bran oil (RO), tea seed oil and flaxseed oil in appropriate proportions. RESULTS BO consumption reduced the serum low-density lipoprotein cholesterol (LDL-C), non-esterified fatty acid (NEFA), insulin (INS), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1 (IL-1), high-sensitivity C-reactive protein (hs-CRP), malondialdehyde (MDA), lipid peroxide (LPO) and oxidized LDL (ox-LDL) concentrations and the homeostasis model assessment of insulin resistance (HOMA-IR); it increased the high-density lipoprotein cholesterol (HDL-C), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) concentrations, and the bone mineral density (BMD) versus control oil-containing normal and high-fat diets. BO also reduced the triglyceride (TG), hs-CRP, MDA, ox-LDL and reactive oxygen species (ROS) concentrations; and increased the serum HDL-C and SOD, and BMD versus RO-containing high-fat diets. Finally, BO reduced the glucose (GLU) and INS, and HOMA-IR; it increased HDL-C, SOD, femoral weight and BMD versus RO-containing normal diets. CONCLUSION BOs with an appropriate fatty acid profile have beneficial effects on the glucolipid metabolism, inflammation, oxidative stress and bone quality of rats when included in both normal and high-fat diets. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Chao Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Chu Chu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Min Wan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Dengfeng Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Shao Kang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Guofang Shu
- Department of Clinical Laboratory Medicine, Zhongda Hospital of Southeast University, Nanjing, China
| | - Shiqing Chen
- Palm Oil Research and Technical Service Institute of Malaysian Palm Oil Board, Shanghai, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
16
|
Sui GY, Wang F, Lee J, Roh YS. Mitochondrial Control in Inflammatory Gastrointestinal Diseases. Int J Mol Sci 2022; 23:14890. [PMID: 36499214 PMCID: PMC9736936 DOI: 10.3390/ijms232314890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Mitochondria play a central role in the pathophysiology of inflammatory bowel disease (IBD) and colorectal cancer (CRC). The maintenance of mitochondrial function is necessary for a stable immune system. Mitochondrial dysfunction in the gastrointestinal system leads to the excessive activation of multiple inflammatory signaling pathways, leading to IBD and increased severity of CRC. In this review, we focus on the mitochondria and inflammatory signaling pathways and its related gastrointestinal diseases.
Collapse
Affiliation(s)
- Guo-Yan Sui
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Feng Wang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jin Lee
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yoon Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| |
Collapse
|
17
|
Al-Yassiri AK, Hadi NR, Altemimi M, Qassam H, Hameed AMA. NEPHROPROTECTIVE EFFECT OF OLMESARTAN ON RENAL ISCHEMIA REPERFUSION INJURY IN MALE RATS: THE ROLE OF NRF2/HO-1 SIGNALING PATHWAY. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:2791-2803. [PMID: 36591770 DOI: 10.36740/wlek202211213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The aim: To investigate the Nephroprotective potential of Olmesartan in RIRI via modulation of the Nrf2/OH-1 signaling pathway. PATIENTS AND METHODS Materials and methods: Thirty male rats were equally divided into four groups. The sham group was exposed to surgical conditions without induction of RIRI. The control group was exposed to ischemia by clamping the renal pedicles for 30 min, followed by 2h of blood restoration. The vehicle-treated group was received dimethyl sulfoxide (DMSO) by intraperitoneal injection (IP) 30 min before clamping. RESULTS Results: Olmesartan-treated group was pretreated with Olmesartan a dose of 10 mg/kg IP; 30 min prior to induction of ischemia. Following 30 min of ischemia, the clamps were released and allowed to the reperfusion for 2 h. Blood samples were collected to examine the levels of serum urea and creatinine. Kidney tissue was used to measure the levels of cytokines (TNFα, IL6, MCP, BAX, BCL2 and isoprostane F2. Immunohistochemistry was used to assess the levels of Nrf2 and HO-1. Histological analyses were used to detect the tubular damage in the kidney. CONCLUSION Conclusions: The results showed that Olmesartan alleviates renal tissue damage through activating the antioxidant effect mediated by Nrf2 signaling.
Collapse
Affiliation(s)
- Alaa K Al-Yassiri
- DEPARTMENT OF PHARMACOLOGY & THERAPEUTICS, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, NAJAF, IRAQ
| | - Najah R Hadi
- DEPARTMENT OF PHARMACOLOGY & THERAPEUTICS, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, NAJAF, IRAQ
| | - Murooj Altemimi
- DEPARTMENT OF PHARMACOLOGY & THERAPEUTICS, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, NAJAF, IRAQ
| | - Heider Qassam
- DEPARTMENT OF PHARMACOLOGY & THERAPEUTICS, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, NAJAF, IRAQ
| | - Ahmed M Abdul Hameed
- DEPARTMENT OF PHARMACOLOGY & THERAPEUTICS, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, NAJAF, IRAQ
| |
Collapse
|
18
|
Siqueira JS, Vieira TA, Nakandakare-Maia ET, Palacio TLN, Sarzi F, Garcia JL, de Paula BH, Bazan SGZ, Baron G, Tucci L, Janda E, Altomare A, Gado F, Ferron AJT, Aldini G, Francisqueti-Ferron FV, Correa CR. Bergamot leaf extract treats cardiorenal metabolic syndrome and associated pathophysiological factors in rats fed with a high sugar fat diet. Mol Cell Endocrinol 2022; 556:111721. [PMID: 35917880 DOI: 10.1016/j.mce.2022.111721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 11/27/2022]
Abstract
Bergamot citrus (Citrus bergamia Risso et Poiteau), have been used as a strategy to prevent or treat comorbidities associated with metabolic syndrome parameters, such as cardiorenal metabolic syndrome (CRMS). The aim was to test the effect of bergamot leaf extract on CRMS and associated pathophysiological factors in rats fed with a high sugar-fat diet. Animals were divided into two experimental groups with control diet (Control, n = 30) and high sugar-fat diet (HSF, n = 30) for 20 weeks. Once CRMS was detected, animals were redivided to begin the treatment with Bergamot Leaf Extract (BLE) by gavage (50 mg/kg) for 10 weeks: control diet + placebo (Control, n = 09), control diet + BLE (Control + BLE, n = 09), HSF diet + placebo (HSF, n = 09), HSF + BLE (n = 09). Evaluation included nutritional, metabolic and hormonal analysis; and renal and cardiac parameters. HSF groups presented obesity, dyslipidemia, hypertension, hyperglycemia, hyperinsulinemia, insulin resistance. BLE showed protection against effects on hypertriglyceridemia, insulin resistance, renal damage, and structural and functional alterations of the heart. Conclusion: Bergamot leaf extract shows potential as a therapeutic to treat CRMS in animals fed with a high sugar-fat diet.
Collapse
Affiliation(s)
| | | | | | | | - Felipe Sarzi
- Sao Paulo State University (Unesp), Medical School, Botucatu, 18618687, Brazil
| | | | | | | | - Giovanna Baron
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | | | - Elzbieta Janda
- Department of Health Sciences, University "Magna Graecia"of Catanzaro, 88100, Catanzaro, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | - Francesca Gado
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | - Artur Junio Togneri Ferron
- Sao Paulo State University (Unesp), Medical School, Botucatu, 18618687, Brazil; Integrated Colleges of Bauru (FIB), 17056-100, Brazil
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | | | | |
Collapse
|
19
|
Knockdown of miR-372-3p Inhibits the Development of Diabetic Cardiomyopathy by Accelerating Angiogenesis via Activating the PI3K/AKT/mTOR/HIF-1α Signaling Pathway and Suppressing Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4342755. [PMID: 36160704 PMCID: PMC9507772 DOI: 10.1155/2022/4342755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Background DCM is the most common and malignant complication of diabetes. It is characterized by myocardial dilatation, hypertrophy, fibrosis, ventricular remodeling, and contractile dysfunction. Although many studies have demonstrated the function of miRNAs in the progression of DCM, but the specific role of miR-372-3p in DCM remains unknown. Methods C57/BL6J mice were used to construct mouse models of DCM by intraperitoneal injection of STZ (50 mg/kg/d) for 5 consecutive days. Then the mice were randomly divided into model group (intramyocardial injection of empty lentivirus) and miR-372-3p KD group (intramyocardial injection of miR-372-3p KD lentivirus at 109/mouse). Besides, the control group (injection of 0.9% normal saline) was also set up. LY294002, a PI3K inhibitor, was employed in the current study. Western blotting, immunofluorescence staining, quantitative ultrasound method, Masson's trichrome staining, and bioinformatics analysis were performed. Results It was found that miR-372-3p KD significantly improved left ventricular dysfunction and cardiac hypertrophy in DCM mice. Furthermore, it also improved myocardial interstitial fibrosis and remodeling in DCM mice. Immunofluorescence staining and RT-qPCR revealed that miR-372-3p KD might accelerate cardiac remodeling by increasing angiogenesis in DCM mice. Western blotting results revealed that miR-372-3p was an upstream target of the PI3K/AKT-mTOR and HIF-1α signals, as well as NOX2, NOX4, which were responsible for angiogenesis in DCM mice. Besides, the in vitro experiment showed that LY294002 markedly diminished the increased expression levels of p-PI3K, AKT, p-mTOR, p-P70S6K, HIF-1α, NOX2, and NOX4 in the model group and the miR-372-3p KD group, suggesting that PI3K signaling pathway and oxidative stress are involved in miR-372-3p KD-induced angiogenesis in HG-stimulated C166 cells. Conclusions MiR-372-3p KD inhibits the development of DCM via activating the PI3K/AKT/mTOR/HIF-1α signaling pathway or suppressing oxidative stress. This offers an applicable biomarker for DCM treatment.
Collapse
|
20
|
Nataraj B, Maharajan K, Malafaia G, Hemalatha D, Ahmed MAI, Ramesh M. Gene expression profiling in liver of zebrafish exposed to ethylhexyl methoxycinnamate and its photoproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154046. [PMID: 35217044 DOI: 10.1016/j.scitotenv.2022.154046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
In recent decades, the ecotoxicological potential of organic ultraviolet filters (OU-VFs) has received growing attention. However, the toxicity of its photoproducts or transformation products on freshwater vertebrates has been little explored. Therefore, the aim of the present study is to evaluate the possible adverse effects of ethylhexyl methoxycinnamate (EHMC) and its photoproducts [2-ethylhexanol (2-EH) and 4-methoxybenzaldehyde (4-MBA)] on the expression of stress-responsive and antioxidant genes. For this, zebrafish (Danio rerio) adults were exposed to pollutants at an environmentally relevant concentration (3 μg/L) and evaluated after 7, 14, and 21 days of exposure. The results of the principal component analysis (PCA) and two-way repeated measures (RM) ANOVA revealed that EHMC, 2-EH, and 4-MBA exposure caused significant downregulation of the genes hsp70, nrf2, cyp1a, ahr, sod1, sod2, cat, gstp1, gpx1a, gss, and gsr (on all trial days) in the liver of the animals. On the other hand, taken together, our data did not show significant differences between the effects induced by EHMC and its photoproducts. The genes evaluated in the present study play a major role in regulating the defensive antioxidant response against EHMC and its photoproducts. Additionally, our study provides an insight into the mechanisms of those OU-VFs in freshwater fish.
Collapse
Affiliation(s)
- Bojan Nataraj
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India
| | - Kannan Maharajan
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, Shandong Province, PR China
| | - Guilherme Malafaia
- Post-Graduation Program in Environmental Sciences, Federal University of Goiás, Goiânia, GO, Brazil; Post-Graduation Program in Ecology, Conservation and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Devan Hemalatha
- Department of Zoology, PSG College of Arts & Science, Coimbatore, Tamil Nadu - 641014, India
| | | | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
21
|
Li J, Wang Y, Deng Y, Wang X, Wu W, Nepovimova E, Wu Q, Kuca K. Toxic mechanisms of the trichothecenes T-2 toxin and deoxynivalenol on protein synthesis. Food Chem Toxicol 2022; 164:113044. [PMID: 35452771 DOI: 10.1016/j.fct.2022.113044] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 11/19/2022]
Abstract
The toxic mechanisms of trichothecenes, including T-2 toxin and deoxynivalenol (DON), are closely related with their effects on protein synthesis. Increasing lines of evidence show that T-2 toxin can reduce the levels of tight junction proteins, and nuclear factor erythroid 2-related factor 2 (Nrf2) by disrupting cellular barriers and the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and Nrf2/heme oxygenase (HO)-1 pathways. Moreover, it can inhibit aggrecan synthesis, thus causing Kashin-Beck disease. Regarding type B trichothecene, DON inhibits activation marker and β-catenin synthesis by acting on immune cells and the wingless/integrated (Wnt) pathway; it also inhibits cell proliferation and immune surveillance. In addition, DON has been shown to destroy tight junctions, glucose transport, and tumor endothelial marker 8, thus disturbing intestinal function and changing cell migration. This review summarizes the inhibitory effects of the trichothecenes T-2 toxin and DON on different protein synthesis, while discussing their underlying mechanisms. Focus is given to the effects of these toxins on tight junctions, aggrecan, activation markers, and hormones including testosterone under the influence of steroidogenic enzymes. This review can extend the current understanding of the effects of trichothecenes on protein synthesis and help to further understand their toxic mechanisms.
Collapse
Affiliation(s)
- Jiefeng Li
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Yating Wang
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Ying Deng
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, Hubei, 430070, China
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
22
|
Exosomes from Bone Marrow Mesenchymal Stem Cells with Overexpressed Nrf2 Inhibit Cardiac Fibrosis in Rats with Atrial Fibrillation. Cardiovasc Ther 2022; 2022:2687807. [PMID: 35360547 PMCID: PMC8941574 DOI: 10.1155/2022/2687807] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 12/18/2022] Open
Abstract
Background Even though nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling has been associated with the pathogenesis of multiple heart conditions, data on roles of Nrf2 within atrial fibrillation (AF) still remain scant. The present investigation had the aim of analyzing Nrf2-overexpressing role/s upon bone mesenchymal stem cell- (BMSC-) derived exosomes in rats with AF. Methods Exosomes were collected from control or Nrf2 lentivirus-transduced BMSCs and then injected into rats with AF through the tail vein. AF duration was observed using electrocardiography. Immunohistochemical staining was then employed for assessing Nrf2, HO-1, α-SMA, collagen I, or TGF-β1 expression profiles within atrial myocardium tissues. Conversely, Masson staining was utilized to evaluate atrial fibrosis whereas apoptosis within myocardia was evaluated through TUNEL assays. In addition, TNF-α, IL-1β, IL-4, or IL-10 serum expression was assessed through ELISA. Results Results of the current study showed significant downregulation of Nrf2/HO-1 within AF rat myocardia. It was found that injection of the control or Lv-Nrf2 exosomes significantly alleviated and lowered AF timespans together with reducing cardiomyocyte apoptosis. Moreover, injection of Lv-Nrf2 exosomes essentially lowered AF-driven atrial fibrosis and also inhibited inflammatory responses in the rats with AF. Conclusion Delivery of BMSC-derived exosomes using overexpressed Nrf2 inhibited AF-induced arrhythmias, myocardial fibrosis, apoptosis, and inflammation via Nrf2/HO-1 pathway triggering.
Collapse
|
23
|
Goette A, Lendeckel U. Atrial Cardiomyopathy: Pathophysiology and Clinical Consequences. Cells 2021; 10:cells10102605. [PMID: 34685585 PMCID: PMC8533786 DOI: 10.3390/cells10102605] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 12/18/2022] Open
Abstract
Around the world there are 33.5 million patients suffering from atrial fibrillation (AF) with an annual increase of 5 million cases. Most AF patients have an established form of an atrial cardiomyopathy. The concept of atrial cardiomyopathy was introduced in 2016. Thus, therapy of underlying diseases and atrial tissue changes appear as a cornerstone of AF therapy. Furthermore, therapy or prevention of atrial endocardial changes has the potential to reduce atrial thrombogenesis and thereby cerebral stroke. The present manuscript will summarize the underlying pathophysiology and remodeling processes observed in the development of an atrial cardiomyopathy, thrombogenesis, and atrial fibrillation. In particular, the impact of oxidative stress, inflammation, diabetes, and obesity will be addressed.
Collapse
Affiliation(s)
- Andreas Goette
- Department of Cardiology and Intensive Care Medicine, St. Vincenz Hospital, 33098 Paderborn, Germany
- MAESTRIA Consortium/AFNET, 48149 Münster, Germany
- Correspondence:
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
| |
Collapse
|
24
|
Nobiletin Attenuates Pathological Cardiac Remodeling after Myocardial Infarction via Activating PPAR γ and PGC1 α. PPAR Res 2021; 2021:9947656. [PMID: 34422028 PMCID: PMC8373512 DOI: 10.1155/2021/9947656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/02/2021] [Accepted: 07/24/2021] [Indexed: 12/15/2022] Open
Abstract
Materials and Methods C57BL/6 mice were treated with coronary artery ligation to generate an MI model, followed by treatment for 3 weeks with NOB (50 mg/kg/d) or vehicle (50 mg/kg/d), with or without the peroxisome proliferator-activated receptor gamma (PPARγ) inhibitor T0070907 (1 mg/kg/d). Cardiac function (echocardiography, survival rate, Evans blue, and triphenyl tetrazolium chloride staining), fibrosis (Masson's trichrome staining, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot (WB)), hypertrophy (haematoxylin-eosin staining, wheat germ agglutinin staining, and qRT-PCR), and apoptosis (WB and terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) staining) were evaluated. Hypoxia-induced apoptosis (TUNEL, WB) and phenylephrine- (PE-) induced pathological hypertrophy (immunofluorescence staining, qRT-PCR) models were established in primary neonatal rat ventricular myocytes (NRVMs). The effects of NOB with or without T0070907 were examined for the expression of PPARγ and PPARγ coactivator 1α (PGC1α) by WB in mice and NRVMs. The potential downstream effectors of PPARγ were further analyzed by WB in mice. Results Following MI in mice, NOB intervention enhanced cardiac function across three predominant dimensions of pathological cardiac remodeling, which reflected in decreasing cardiac fibrosis, apoptosis, and hypertrophy decompensation. NOB intervention also alleviated apoptosis and hypertrophy in NRVMs. NOB intervention upregulated PPARγ and PGC1α in vivo and in vitro. Furthermore, the PPARγ inhibitor abolished the protective effects of NOB against pathological cardiac remodeling during the progression from MI to CHF. The potential downstream effectors of PPARγ were nuclear factor erythroid 2-related factor 2 (Nrf-2) and heme oxygenase 1 (HO-1). Conclusions Our findings suggested that NOB alleviates pathological cardiac remodeling after MI via PPARγ and PGC1α upregulation.
Collapse
|
25
|
Xing J, Jie W. Methyltransferase SET domain family and its relationship with cardiovascular development and diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 51:251-260. [PMID: 35462466 DOI: 10.3724/zdxbyxb-2021-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abnormal epigenetic modification is closely related to the occurrence and development of cardiovascular diseases. The SET domain (SETD) family is an important epigenetic modifying enzyme containing SETD. They mainly affect gene expression by methylating H3K4, H3K9, H3K36 and H4K20. Additionally, the SETD family catalyzes the methylation of non-histone proteins, thereby affects the signal transduction of signal transduction and activator of transcription (STAT) 1, Wnt/β-catenin, hypoxia-inducible factor (HIF)-1α and Hippo/YAP pathways. The SETD family has the following regulatory effects on cardiovascular development and diseases: regulating coronary artery formation and cardiac development; protecting cardiac tissue from ischemia reperfusion injury; regulating inflammation, oxidative stress and apoptosis in cardiovascular complications of diabetes; participating in the formation of pulmonary hypertension; regulating thrombosis, cardiac hypertrophy and arrhythmia. This article summarizes the basic structures, expression regulation mechanisms and the role of existing SETD family members in cardiovascular development and diseases, in order to provide a basis for understanding the molecular mechanism of cardiovascular disease and exploring the therapeutic targets.
Collapse
Affiliation(s)
- Jingci Xing
- 1. Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang 524023, Guangdong Province, China
| | - Wei Jie
- 1. Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang 524023, Guangdong Province, China.,Medical University, Key Laboratory of Emergency and Trauma, Ministry of Education, Hainan Provincial Key Laboratory of Tropical Cardiovascular Diseases Research, Haikou 571199, China
| |
Collapse
|