1
|
Zhang C, Ji Y, Wang Q, Ruan L. MiR-629-5p May serve as a biomarker for pediatric acute respiratory distress syndrome and can regulate the inflammatory response. Pediatr Neonatol 2025; 66:254-260. [PMID: 39277501 DOI: 10.1016/j.pedneo.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/28/2024] [Accepted: 05/06/2024] [Indexed: 09/17/2024] Open
Abstract
OBJECTIVE Circulating microRNAs (miRNAs) are associated with pediatric acute respiratory distress syndromes (PARDS). This study analyzed the clinical significance and potential mechanism of microRNA (miR)-629-5p in PARDS. METHODS 82 children with PARDS and 82 controls were enrolled. Serum levels of miR-629-5p were measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and its diagnostic significance with respect to for PARDS in children was assessed by the receiver operating characteristic (ROC). Kaplan-Meier curve and multivariate Cox regression were utilized to examine the prognostic significance of miR-629-5p. An in vitro cell model was established using lipopolysaccharide (LPS)-induced alveolar epithelial cells A549. The cell proliferation, apoptosis, and inflammatory factors were assessed using cell counting kit-8 (CCK-8), flow cytometry, and enzyme-linked immunosorbent assay (ELISA). miR-629-5p target genes were identified in the database and validated using the dual-luciferase report assay. RESULTS Serum miR-629-5p levels were significantly higher in children with PARDS than in controls (P < 0.05). miR-629-5p exhibited 86.6% sensitivity and 91.5% specificity in distinguishing children with PARDS. miR-629-5p was an independent risk factor for mortality, and high levels of miR-629-5p have a poor prognosis. LPS promoted apoptosis and overproduction of inflammatory factors in A549 and upregulated miR-629-5p expression (P < 0.05); however, they were partially reversed by the weakened miR-629-5p (P < 0.05). Syndecan-4 (SDC4) is a target of miR-629-5p. The inhibition of SDC4 induced by LPS can be alleviated through the reduction of miR-629-5p. CONCLUSION miR-629-5p serves as a diagnostic biomarker for children with PARDS and it is associated with poor prognosis. Diminished miR-629-5p may alleviate PARDS by targeting SDC4 to suppress apoptosis and inflammation of alveolar epithelial cells.
Collapse
Affiliation(s)
- Cuicui Zhang
- Pediatric Intensive Care Unit, Xingtai People's Hospital, Xingtai, 054000, China
| | - Yanan Ji
- Pediatric Intensive Care Unit, Xingtai People's Hospital, Xingtai, 054000, China
| | - Qin Wang
- Pediatric Intensive Care Unit, Xingtai People's Hospital, Xingtai, 054000, China
| | - Lianying Ruan
- Pediatric Intensive Care Unit, Xingtai People's Hospital, Xingtai, 054000, China.
| |
Collapse
|
2
|
Byun JE, Lee JW, Choi EJ, Lee J, Yun SH, Park CH, Kim H, Kim MS, Yoon SR, Kim TD, Noh JY, Min SH, Seong HA, Ahn KS, Choi I, Jung H. Therapeutic Effects of TN13 Peptide on Acute Respiratory Distress Syndrome and Sepsis Models In Vivo. J Clin Med 2025; 14:1804. [PMID: 40142612 PMCID: PMC11942723 DOI: 10.3390/jcm14061804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Regulation of acute inflammatory responses is crucial for host mortality and morbidity induced by pathogens. The pathogenesis of acute respiratory distress syndrome (ARDS) and sepsis are associated with systemic inflammation. p38 MAPK is a crucial regulator of inflammatory responses and is a potential target for acute inflammatory diseases, including ARDS and sepsis. We investigated the therapeutic effects of the TAT-TN13 peptide (TN13) on severe inflammatory diseases, including ARDS and sepsis, in vivo. Methods: To establish the ARDS model, C57BL/6 mice were intranasally (i.n.) administered lipopolysaccharide (LPS; 5 mg/kg, 40 µL) to induce lung inflammation. As a positive control, dexamethasone (DEX; 0.2 mg/kg) was administered intraperitoneally (i.n.) 1 h post-LPS exposure. In the experimental groups, TN13 was administered intranasally (i.n.) at doses of 2.5 mg or 5 mg/kg at the same time point. In the LPS-induced sepsis model, mice received an intraperitoneal injection of LPS (20 mg/kg) to induce systemic inflammation. TN13 (25 mg/kg, i.p.) was administered 1 h after LPS treatment. Control mice received phosphate-buffered saline (PBS). Lung histopathology, inflammatory cell infiltration, cytokine levels, and survival rates were assessed to evaluate TN13 efficacy. Results: TN13 significantly reduced inflammatory cell recruitment and cytokine production in the lungs, thereby mitigating LPS-induced ARDS. In the sepsis model, TN13 treatment improved survival rates by suppressing inflammatory responses. Mechanistically, TN13 exerted its effects by inhibiting the p38 MAPK/NF-κB signaling pathway. Conclusions: These results collectively suggested that TN13 could be an effective treatment option for severe inflammatory diseases.
Collapse
Affiliation(s)
- Jae-Eun Byun
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; (J.-E.B.)
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; (J.-W.L.)
- Department of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Eun Ji Choi
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; (J.-E.B.)
- Department of Functional Genomics, Korea University of Science and Technology (UST), Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Juhyun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; (J.-W.L.)
| | - Seok Han Yun
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; (J.-W.L.)
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Chan Ho Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; (J.-E.B.)
- Department of Functional Genomics, Korea University of Science and Technology (UST), Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Hanna Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; (J.-E.B.)
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Mi Sun Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; (J.-E.B.)
| | - Suk Ran Yoon
- Department of Functional Genomics, Korea University of Science and Technology (UST), Yuseong-gu, Daejeon 34113, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Tae-Don Kim
- Department of Functional Genomics, Korea University of Science and Technology (UST), Yuseong-gu, Daejeon 34113, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ji-Yoon Noh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; (J.-E.B.)
- Department of Functional Genomics, Korea University of Science and Technology (UST), Yuseong-gu, Daejeon 34113, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sang-Hyun Min
- Department of Innovative Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyun-A. Seong
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; (J.-W.L.)
| | - Inpyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
- Ingenium Therapeutics, 1662 Yuseong daero, Daejeon 34054, Republic of Korea
| | - Haiyoung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; (J.-E.B.)
- Department of Functional Genomics, Korea University of Science and Technology (UST), Yuseong-gu, Daejeon 34113, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Liu D, Hu X, Ding X, Li M, Ding L. Inflammatory Effects and Regulatory Mechanisms of Chitinase-3-like-1 in Multiple Human Body Systems: A Comprehensive Review. Int J Mol Sci 2024; 25:13437. [PMID: 39769202 PMCID: PMC11678640 DOI: 10.3390/ijms252413437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025] Open
Abstract
Chitinase-3-like-1 (Chi3l1), also known as YKL-40 or BRP-39, is a highly conserved mammalian chitinase with a chitin-binding ability but no chitinase enzymatic activity. Chi3l1 is secreted by various cell types and induced by several inflammatory cytokines. It can mediate a series of cell biological processes, such as proliferation, apoptosis, migration, differentiation, and polarization. Accumulating evidence has verified that Chi3l1 is involved in diverse inflammatory conditions; however, a systematic and comprehensive understanding of the roles and mechanisms of Chi3l1 in almost all human body system-related inflammatory diseases is still lacking. The human body consists of ten organ systems, which are combinations of multiple organs that perform one or more physiological functions. Abnormalities in these human systems can trigger a series of inflammatory environments, posing serious threats to the quality of life and lifespan of humans. Therefore, exploring novel and reliable biomarkers for these diseases is highly important, with Chi3l1 being one such parameter because of its physiological and pathophysiological roles in the development of multiple inflammatory diseases. Reportedly, Chi3l1 plays an important role in diagnosing and determining disease activity/severity/prognosis related to multiple human body system inflammation disorders. Additionally, many studies have revealed the influencing factors and regulatory mechanisms (e.g., the ERK and MAPK pathways) of Chi3l1 in these inflammatory conditions, identifying potential novel therapeutic targets for these diseases. In this review, we comprehensively summarize the potential roles and underlying mechanisms of Chi3l1 in inflammatory disorders of the respiratory, digestive, circulatory, nervous, urinary, endocrine, skeletal, muscular, and reproductive systems, which provides a more systematic understanding of Chi3l1 in multiple human body system-related inflammatory diseases. Moreover, this article summarizes potential therapeutic strategies for inflammatory diseases in these systems on the basis of the revealed roles and mechanisms mediated by Chi3l1.
Collapse
Affiliation(s)
- Dong Liu
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| | - Xin Hu
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Ecosecurity, Yunnan University, Kunming 650500, China;
| | - Xiao Ding
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Ming Li
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| | - Lei Ding
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| |
Collapse
|
4
|
Boonha K, Kuo WW, Tsai BCK, Hsieh DJY, Lin KH, Lu SY, Kuo CH, Yang LY, Huang CY. Enhanced IGF-IIRα Expression Exacerbates Lipopolysaccharide-Induced Cardiac Inflammation, Hypertrophy, and Apoptosis Through Calcineurin Activation. ENVIRONMENTAL TOXICOLOGY 2024; 39:5173-5186. [PMID: 39109785 DOI: 10.1002/tox.24385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/04/2024] [Accepted: 07/03/2024] [Indexed: 10/17/2024]
Abstract
Cardiovascular disease is one of the leading causes of death worldwide and has a high prevalence. Insulin-like growth factor-II receptor α (IGF-IIRα) acts as a stress-inducible negative regulator. This study focused on the substantial impact of heightened expression of IGF-IIRα in cardiac myoblasts and its association with the exacerbation of cardiac dysfunction. Using lipopolysaccharide (LPS)-induced H9c2 cardiac myoblasts as a model for sepsis, we aimed to elucidate the molecular interactions between IGF-IIRα and LPS in exacerbating cardiac injury. Our findings demonstrated a synergistic induction of cardiac inflammation and hypertrophy by LPS stimulation and IGF-IIRα overexpression, leading to decreased cell survival. Excessive calcineurin activity, triggered by this combined condition, was identified as a key factor exacerbating the negative effects on cell survival. Cellular changes such as cell enlargement, disrupted actin filaments, and upregulation of hypertrophy-related and inflammation-related proteins contributed to the overall hypertrophic and inflammatory responses. Overexpression of IGF-IIRα also exacerbated apoptosis induced by LPS in H9c2 cardiac myoblasts. Inhibiting calcineurin in LPS-treated H9c2 cardiac myoblasts with IGF-IIRα overexpression effectively reversed the detrimental effects, reducing cell damage and mitigating apoptosis-related cardiac mechanisms. Our study suggests that under sepsis-like conditions in the heart with IGF-IIRα overexpression, hyperactivation of calcineurin worsens cardiac damage. Suppressing IGF-IIRα and calcineurin expression could be a potential intervention to alleviate the impact of the illness and improve cardiac function.
Collapse
Affiliation(s)
- Khwanchit Boonha
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Center of Excellence for Antibody Research (CEAR), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- PhD Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Dennis Jine-Yuan Hsieh
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Shang-Yeh Lu
- College of Medicine, China Medical University, Taichung, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
- Institute of Sports Sciences, University of Taipei, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, Virginia, USA
- School of Physical Education and Sports Science, Soochow University, Suzhou, China
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Laboratory for Neural Repair, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
5
|
Shen X, He L, Cai W. Role of Lipopolysaccharides in the Inflammation and Pyroptosis of Alveolar Epithelial Cells in Acute Lung Injury and Acute Respiratory Distress Syndrome. J Inflamm Res 2024; 17:5855-5869. [PMID: 39228678 PMCID: PMC11370780 DOI: 10.2147/jir.s479051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) represent a spectrum of common critical respiratory conditions characterized by damage and death of alveolar epithelial cells (AECs). Pyroptosis is a form of programmed cell death with inflammatory characteristics, and activation of pyroptosis markers has been observed in AECs of patients with ALI/ARDS. Lipopolysaccharides (LPS) possess strong pro-inflammatory effects and are a crucial pathological factor leading to ALI in patients and animals. In LPS-induced ALI models, AECs undergo pyroptosis. However, physiologically and pathologically relevant concentrations of LPS lead to minor effects on AEC cell viability and minimal induction of cytokine release in vitro and do not induce classical pyroptosis. Nevertheless, LPS can enter the cytoplasm directly and induce non-classical pyroptosis in AECs when assisted by extracellular vesicles from bacteria, HMGB1, and pathogens. In this review, we have explored the effects of LPS on AECs concerning inflammation, cell viability, and pyroptosis, analyzing key factors that influence LPS actions. Notably, we highlight the intricate response of AECs to LPS within the framework of ALI and ARDS, emphasizing the variable induction of pyroptosis. Despite the minimal effects of LPS on AEC viability and cytokine release in vitro, LPS can induce non-classical pyroptosis under specific conditions, presenting potential pathways for therapeutic intervention. Collectively, understanding these mechanisms is crucial for the development of targeted treatments that mitigate the inflammatory responses in ALI/ARDS, thereby enhancing patient outcomes in these severe respiratory conditions.
Collapse
Affiliation(s)
- Xiao Shen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Linglin He
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Wanru Cai
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, People’s Republic of China
| |
Collapse
|
6
|
Shen X, Ruan Y, Zhao Y, Ye Q, Huang W, He L, He Q, Cai W. Ophiopogonin D alleviates acute lung injury by regulating inflammation via the STAT3/A20/ASK1 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155482. [PMID: 38824823 DOI: 10.1016/j.phymed.2024.155482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/11/2024] [Accepted: 02/23/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is characterized by acute pulmonary inflammatory infiltration. Alveolar epithelial cells (AECs) release numerous pro-inflammatory cytokines, which result in the pathological changes seen in ALI. Ophiopogonin D (OD), extracted from the roots of Ophiopogon japonicus (Thunb.) Ker Gawl. (Liliaceae), reduces inflammation; however, the efficacy of OD in ALI has not been reported and the underlying molecular mechanisms remain unclear. PURPOSE This study investigated the anti-inflammatory effects of OD, as well as the underlying mechanisms, in AECs and a mouse ALI model. METHODS Lipopolysaccharide (LPS) and tumor necrosis factor-α (TNF-α) were used to stimulate macrophages and A549 cells, and a mouse ALI model was established by intratracheal LPS administration. The anti-inflammatory effects and mechanisms of OD in the TNF-α-induced in vitro inflammation model was evaluated using real-time quantitative polymerase chain reaction qPCR), enzyme-linked immunosorbent assay (ELISA), western blotting, nuclear and cytoplasmic protein extraction, and immunofluorescence. The in vivo anti-inflammatory activity of OD was evaluated using hematoxylin and eosin staining, qPCR, ELISA, and western blotting. RESULTS The bronchoalveolar lavage fluid and lung tissue of LPS-induced ALI mice exhibited increased TNF-α expression. TNF-α induced a significantly greater pro-inflammatory effect in AECs than LPS. OD reduced inflammation and mitogen-activated protein kinase (MAPK) and transcription factor p65 phosphorylation in vivo and in vitro and promoted signal transducer and activator of transcription 3 (STAT3) phosphorylation and A20 expression, thereby inducing apoptosis signal-regulating kinase 1 (ASK1) proteasomal degradation. CONCLUSION OD exerts an anti-inflammatory effect by promoting STAT3-dependent A20 expression and ASK1 degradation. OD may therefore have therapeutic value in treating ALI and other TNF-α-related inflammatory diseases.
Collapse
Affiliation(s)
- Xiao Shen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yiqiu Ruan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yuhui Zhao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiang Ye
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wenhan Huang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Linglin He
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qianwen He
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wanru Cai
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China.
| |
Collapse
|
7
|
Tan H, Liang D, Lu N, Zhang J, Zhang S, Tan G. Mangiferin attenuates lipopolysaccharide-induced neuronal injuries in primary cultured hippocampal neurons. Aging (Albany NY) 2024; 16:8645-8656. [PMID: 38752883 PMCID: PMC11164489 DOI: 10.18632/aging.205830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/10/2024] [Indexed: 06/06/2024]
Abstract
Mangiferin, a naturally occurring potent glucosylxanthone, is mainly isolated from the Mangifera indica plant and shows potential pharmacological properties, including anti-bacterial, anti-inflammation, and antioxidant in sepsis-induced lung and kidney injury. However, there was a puzzle as to whether mangiferin had a protective effect on sepsis-associated encephalopathy. To answer this question, we established an in vitro cell model of sepsis-associated encephalopathy and investigated the neuroprotective effects of mangiferin in primary cultured hippocampal neurons challenged with lipopolysaccharide (LPS). Neurons treated with 20 μmol/L or 40 μmol/L mangiferin for 48 h can significantly reverse cell injuries induced by LPS treatment, including improved cell viability, decreased inflammatory cytokines secretion, relief of microtubule-associated light chain 3 expression levels and several autophagosomes, as well as attenuated cell apoptosis. Furthermore, mangiferin eliminated pathogenic proteins and elevated neuroprotective factors at both the mRNA and protein levels, showing strong neuroprotective effects of mangiferin, including anti-inflammatory, anti-autophagy, and anti-apoptotic effects on neurons in vitro.
Collapse
Affiliation(s)
- Hongling Tan
- Department of Emergency Intensive Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Dan Liang
- Department of Emergency Intensive Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Na Lu
- Department of Emergency Intensive Care Medicine, The First Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Junli Zhang
- Department of Emergency Intensive Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Shiyan Zhang
- Department of Medical, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Guojun Tan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
8
|
Tang T, Gao J, Pan X, Tang Q, Long H, Liu Z. YKL-40 Knockdown Decreases Oxidative Stress Damage in Ovarian Granulosa Cells. Genet Test Mol Biomarkers 2024; 28:199-206. [PMID: 38634621 DOI: 10.1089/gtmb.2023.0361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Background: Oxidative stress has been implicated in the pathogenesis of polycystic ovarian syndrome (PCOS). To develop novel antioxidant drugs, it is necessary to explore the key regulatory molecules involved in oxidative stress in PCOS. Plasma YKL-40 levels are elevated in patients with PCOS; however, its role remains unclear. Methods: The follicular fluids of 20 women with PCOS and 12 control subjects with normal ovarian function were collected, and YKL-40 in follicular fluids was measured by enzyme-linked immunosorbent assay. A letrozole-induced PCOS rat model was established and the expression level of YKL-40 in the ovaries was detected by immunohistochemistry. KGN cells were treated with H2O2 to generate an ovarian granulosa cell (OGC) model of oxidative stress. The siRNA was transfected into the cells for knockdown. The effect of YKL-40 knockdown on H2O2-treated KGN cells was evaluated by measuring proliferation, apoptosis, activities of T-SOD, GSH-Px, and CAT, levels of MDA, IL-1β, IL-6, IL-8, and TNF-α, and the PI3K/AKT/NF-κB signaling pathway. Results: YKL-40 levels were elevated in the follicular fluids of women with PCOS compared with control subjects with normal ovarian function. The expression level of YKL-40 in the ovaries of rats with PCOS is obviously higher than that in the ovaries of the control group rats. H2O2 treatment enhanced YKL-40 mRNA expression and protein secretion. YKL-40 knockdown enhanced cell proliferation and antioxidant capacity while decreasing apoptosis and inflammatory factor levels in KGN cells following H2O2 treatment. The knockdown activated the PI3K/AKT signaling pathway and suppressed NF-κB nuclear translocation from the cytoplasm. Conclusion: YKL-40 levels were elevated in the follicular fluids of women with PCOS and the ovaries of rats with PCOS. YKL-40 expression can be induced by oxidative stress, and YKL-40 knockdown can decrease oxidative stress damage in OGCs.
Collapse
Affiliation(s)
- Tingting Tang
- Reproductive Medicine Center, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Jinyu Gao
- Reproductive Medicine Center, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Xiangyang Pan
- Reproductive Medicine Center, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Qianqian Tang
- Reproductive Medicine Center, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Huijuan Long
- Reproductive Medicine Center, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Zhaohua Liu
- Reproductive Medicine Center, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| |
Collapse
|
9
|
Hao G, Sun J, Zhong T, Xue Q, Zou Y. Association of serum YKL-40 change with prognosis in acute ischemic stroke patients complicated with diabetes mellitus. Biomark Med 2023; 17:253-263. [PMID: 37256280 DOI: 10.2217/bmm-2023-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023] Open
Abstract
Objective: This study intended to explore the serum YKL-40 change and its prognostic implication in acute ischemic stroke (AIS) patients with diabetes mellitus (DM). Methods: YKL-40 was detected from serum by ELISA in 121 AIS patients with DM at baseline, day (D)1, D3, D7 and D30 after disease onset. Results: YKL-40 increased from baseline to D3, then decreased until D30 (p < 0.001). Notably, 20.7% of patients had stroke recurrence, and 6.6% of patients died during follow-up. YKL-40 at D1 (p = 0.043), D7 (p = 0.007) and D30 (p = 0.001) predicted higher stroke recurrence risk; additionally, YKL-40 at D3 (p = 0.010), D7 (p = 0.007) and D30 (p = 0.002) estimated higher mortality risk. Conclusion: Serum YKL-40 has a prognostic effect on the management of AIS patients with DM.
Collapse
Affiliation(s)
- Guang Hao
- Internal Medicine-Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Jian Sun
- Internal Medicine-Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Tingting Zhong
- Internal Medicine-Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Qian Xue
- Internal Medicine-Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Yu'an Zou
- Internal Medicine-Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| |
Collapse
|
10
|
Tongthong T, Kaewduangduen W, Phuengmaung P, Chancharoenthana W, Leelahavanichkul A. Lacticaseibacillus rhamnosus dfa1 Attenuate Cecal Ligation-Induced Systemic Inflammation through the Interference in Gut Dysbiosis, Leaky Gut, and Enterocytic Cell Energy. Int J Mol Sci 2023; 24:ijms24043756. [PMID: 36835163 PMCID: PMC9960508 DOI: 10.3390/ijms24043756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Despite an uncommon condition, the clinical management of phlegmon appendicitis (retention of the intra-abdominal appendiceal abscess) is still controversial, and probiotics might be partly helpful. Then, the retained ligated cecal appendage (without gut obstruction) with or without oral Lacticaseibacillus rhamnosus dfa1 (started at 4 days prior to the surgery) was used as a representative model. At 5 days post-surgery, the cecal-ligated mice demonstrated weight loss, soft stool, gut barrier defect (leaky gut using FITC-dextran assay), fecal dysbiosis (increased Proteobacteria with reduced bacterial diversity), bacteremia, elevated serum cytokines, and spleen apoptosis without kidney and liver damage. Interestingly, the probiotics attenuated disease severity as indicated by stool consistency index, FITC-dextran assay, serum cytokines, spleen apoptosis, fecal microbiota analysis (reduced Proteobacteria), and mortality. Additionally, impacts of anti-inflammatory substances from culture media of the probiotics were demonstrated by attenuation of starvation injury in the Caco-2 enterocyte cell line as indicated by transepithelial electrical resistance (TEER), inflammatory markers (supernatant IL-8 with gene expression of TLR4 and NF-κB), cell energy status (extracellular flux analysis), and the reactive oxygen species (malondialdehyde). In conclusion, gut dysbiosis and leaky-gut-induced systemic inflammation might be helpful clinical parameters for patients with phlegmon appendicitis. Additionally, the leaky gut might be attenuated by some beneficial molecules from probiotics.
Collapse
Affiliation(s)
- Tongthong Tongthong
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Warerat Kaewduangduen
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wiwat Chancharoenthana
- Tropical Immunology and Translational Research Unit, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 73170, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-2-256-4251
| |
Collapse
|