1
|
Lyu W, Qin H, Li Q, Lu D, Shi C, Zhao K, Zhang S, Yu R, Zhang H, Zhou X, Xia S, Zhang L, Wang X, Chi X, Liu Z. Novel mechanistic insights - A brand new Era for anti-HBV drugs. Eur J Med Chem 2024; 279:116854. [PMID: 39276582 DOI: 10.1016/j.ejmech.2024.116854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Hepatitis B Virus (HBV) remains a critical global health issue, with substantial morbidity and mortality. Current therapies, including interferons and nucleoside analogs, often fail to achieve complete cure or functional eradication. This review explores recent advances in anti-HBV agents, focusing on their innovative mechanisms of action. HBV entry inhibitors target the sodium taurocholate cotransporting polypeptide (NTCP) receptor, impeding viral entry, while nucleus translocation inhibitors disrupt key viral life cycle steps, preventing replication. Capsid assembly modulators inhibit covalently closed circular DNA (cccDNA) formation, aiming to eradicate the persistent viral reservoir. Transcription inhibitors targeting cccDNA and integrated DNA offer significant potential to suppress HBV replication. Immunomodulatory agents are highlighted for their ability to enhance host immune responses, facil-itating better control and possible eradication of HBV. These novel approaches represent significant advancements in HBV therapy, providing new strategies to overcome current treatment limitations. The development of cccDNA reducers is particularly critical, as they directly target the persistent viral reservoir, offering a promising pathway towards achieving a functional cure or complete viral eradication. Continued research in this area is essential to advance the effectiveness of anti-HBV therapies.
Collapse
Affiliation(s)
- Weiping Lyu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Haoming Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Qi Li
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Dehua Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Cheng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Kangchen Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Shengran Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Ruohan Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Huiying Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Xiaonan Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Sitian Xia
- Beijing National Day School, Beijing, 100089, PR China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Xiaoqian Wang
- Beijing Tide Pharmaceutical Co., Ltd, No.8 East Rongjing Street, Beijing Economic-Technological Development Area (BDA), Beijing, 100176, PR China.
| | - Xiaowei Chi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
2
|
Pillai U J, Cherian L, Taunk K, Iype E, Dutta M. Identification of antiviral phytochemicals from cranberry as potential inhibitors of SARS-CoV-2 main protease (M pro). Int J Biol Macromol 2024; 261:129655. [PMID: 38266830 DOI: 10.1016/j.ijbiomac.2024.129655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Cranberry phytochemicals are known to possess antiviral activities. In the current study, we explored the therapeutic potential of cranberry against SARS-CoV-2 by targeting its main protease (Mpro) enzyme. Firstly, phytochemicals of cranberry origin were identified from three independent databases. Subsequently, virtual screening, using molecular docking and molecular dynamics simulation approaches, led to the identification of three lead phytochemicals namely, cyanidin 3-O-galactoside, β-carotene and epicatechin. Furthermore, in vitro enzymatic assays revealed that cyanidin 3-O-galactoside had the highest inhibitory potential with IC50 of 9.98 μM compared to the other two phytochemicals. Cyanidin 3-O-galactoside belongs to the class of anthocyanins. Anthocyanins extracted from frozen cranberry also exhibited the highest inhibitory potential with IC50 of 23.58 μg/ml compared to the extracts of carotenoids and flavanols, the class for β-carotene and epicatechin, respectively. Finally, we confirm the presence of the phytochemicals in the cranberry extracts using targeted LC-MS/MS analysis. Our results, therefore, indicate that the identified cranberry-derived bioactive compounds as well as cranberry could be used for therapeutic interventions against SARS-CoV-2.
Collapse
Affiliation(s)
- Jisha Pillai U
- Department of Biotechnology, Birla Institute of Technology and Science (BITS) Pilani-Dubai Campus, Academic City, Dubai, United Arab Emirates
| | - Lucy Cherian
- Department of Biotechnology, Birla Institute of Technology and Science (BITS) Pilani-Dubai Campus, Academic City, Dubai, United Arab Emirates
| | - Khushman Taunk
- Proteomics Laboratory, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, India
| | - Eldhose Iype
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Mainak Dutta
- Department of Biotechnology, Birla Institute of Technology and Science (BITS) Pilani-Dubai Campus, Academic City, Dubai, United Arab Emirates.
| |
Collapse
|
3
|
Huang L, Yu Q, Peng H, Zhen Z. Network pharmacology and molecular docking technology for exploring the effect and mechanism of Radix Bupleuri and Radix Paeoniae Alba herb-pair on anti-hepatitis: A review. Medicine (Baltimore) 2023; 102:e35443. [PMID: 38050220 PMCID: PMC10695497 DOI: 10.1097/md.0000000000035443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/08/2023] [Indexed: 12/06/2023] Open
Abstract
The Radix Bupleuri and Radix Paeoniae Alba herb-pair (RRH) are the most classic compatible drug pair for the treatment of hepatitis. However, the underlying mechanism remains unclear. Therefore, network pharmacology and molecular docking were conducted to investigate the prospective therapeutic constituents, targets, and pharmacological mechanisms of RRH in the treatment of hepatitis. The active components of RRH from the TCMSP database and disease-related targets from the OMIM, PharmGkb, GeneCards, TTD, and DrugBank databases were identified. The "drug-target-disease" network diagram and protein-protein interaction (PPI) network were constructed using Cytoscape (v3.8.0) and Online STRING 11.0. GO and KEGG pathway enrichment analyses were performed using R version 4.1.2, and molecular docking was performed to verify the results. We placed 176 overlapping cross genes into Online STRING 11.0 and obtained 14 core targets. A "Component-Target-GO-KEGG" network diagram was constructed, which was composed of 7 components, 14 targets, 10 biological processes, and 10 signal pathways. A total of 2413 GO biological processes and 174 KEGG pathways were explored for hepatitis treatment. Quercetin, kaempferol, isorhamnetin, and beta-sitosterol, which are the main bioactive components, were employed to bind the disease's hub targets, ensuring fulfillment of spatial and energy matching. The anti-hepatitis mechanism of RRH may be associated with several targets including RELA, AKT1, JUN, MAPK1, TP53, CCND1, MYC, NFKBIA, CDKN1A, and their respective signaling pathways. The main bioactive components in RRH, including quercetin, kaempferol, isorhamnetin, and beta-sitosterol, were used to bind the hub targets of the disease, which may provide insights into drug development for hepatitis.
Collapse
Affiliation(s)
- Long Huang
- Department of No. 1 Surgery, The first hospital affiliated to Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, China
| | - Qingsheng Yu
- Department of No. 1 Surgery, The first hospital affiliated to Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, China
| | - Hui Peng
- Department of No. 1 Surgery, The first hospital affiliated to Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, China
| | - Zhou Zhen
- Department of Surgery, The Second Hospital Affiliated to Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, China
| |
Collapse
|
4
|
Deng W, Chen F, Zhao Y, Zhou M, Guo M. Anti-hepatitis B virus activities of natural products and their antiviral mechanisms. Chin J Nat Med 2023; 21:803-811. [PMID: 38035936 DOI: 10.1016/s1875-5364(23)60505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Indexed: 12/02/2023]
Abstract
Chronic hepatitis B (CHB) infections caused by the hepatitis B virus (HBV) continue to pose a significant global public health challenge. Currently, the approved treatments for CHB are limited to interferon and nucleos(t)ide analogs, both of which have their limitations, and achieving a complete cure remains an elusive goal. Therefore, the identification of new therapeutic targets and the development of novel antiviral strategies are of utmost importance. Natural products (NPs) constitute a class of substances known for their diverse chemical structures, wide-ranging biological activities, and low toxicity profiles. They have shown promise as potential candidates for combating various diseases, with a substantial number demonstrating anti-HBV properties. This comprehensive review focuses on the current applications of NPs in the fight against HBV and provides a summary of their antiviral mechanisms, considering their impact on the viral life cycle and host hepatocytes. By offering insights into the world of anti-HBV NPs, this review aims to furnish valuable information to support the future development of antiviral drugs.
Collapse
Affiliation(s)
- Wanyu Deng
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Fu Chen
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Yue Zhao
- State Key Laboratory of Natural Medicines, School of Life Science&Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Ming Zhou
- BGI-Shenzhen, Shenzhen 518000, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518110, China; Liver-biotechnology (Shenzhen) Co., Ltd., Shenzhen 518110, China.
| | - Min Guo
- State Key Laboratory of Natural Medicines, School of Life Science&Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
5
|
Ahmed S, Parvez MK, Al-Dosari MS, Abdelwahid MAS, Alhowiriny TA, Al-Rehaily AJ. Novel anti‑hepatitis B virus flavonoids sakuranetin and velutin from Rhus retinorrhoea. Mol Med Rep 2023; 28:176. [PMID: 37539729 DOI: 10.3892/mmr.2023.13063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/14/2023] [Indexed: 08/05/2023] Open
Abstract
Drug‑resistance in hepatitis B virus (HBV), especially due to prolonged treatment with nucleoside analogs, such as lamivudine (LAM), remains a clinical challenge. Alternatively, several plant products and isolated phytochemicals have been used as promising anti‑HBV therapeutics with no sign of resistance. Among all known Rhus species, R. coriaria, R. succedanea and R. tripartite have been widely studied for their anti‑HBV efficacy, however, the effects of R. retinorrhoea have not been previously investigated. The current study reported the isolation of two flavonoids, namely sakuranetin (SEK) and velutin (VEL), from the dichloromethane fraction of R. retinorrhoea aerial parts using chromatography and spectral analyses. The two flavonoids (6.25‑50 µg/ml) were pre‑tested for non‑hepatocytotoxicity using an MTT assay and their dose‑ and time‑dependent inhibitory activities against HBV [hepatitis B surface antigen (HBsAg) and hepatitis B 'e' antigen (HBeAg)] in cultured HepG2.2.15 cells were assessed by ELISA. SEK and VEL at the selected doses (12.5 µg/ml) significantly inhibited HBsAg by ~58.8 and ~56.4%, respectively, and HBeAg by ~55.5 and ~52.4%, respectively, on day 5. The reference drugs LAM and quercetin (anti‑HBV flavonoids), suppressed the production of HBsAg/HBeAg by ~86.4/~64 and ~84.5/~62%, respectively. Furthermore, molecular docking of the flavonoids with HBV polymerase and capsid proteins revealed the formation of stable complexes with good docking energies, thus supporting their structure‑based antiviral mechanism. In conclusion, the present study was the first to demonstrate the anti‑HBV therapeutic activities of SEK and VEL isolated from R. retinorrhoea.
Collapse
Affiliation(s)
- Sarfaraz Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad K Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed S Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mazin A S Abdelwahid
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980‑8678, Japan
| | - Tawfeq A Alhowiriny
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Adnan J Al-Rehaily
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Manna S, Das K, Santra S, Nosova EV, Zyryanov GV, Halder S. Structural and Synthetic Aspects of Small Ring Oxa- and Aza-Heterocyclic Ring Systems as Antiviral Activities. Viruses 2023; 15:1826. [PMID: 37766233 PMCID: PMC10536032 DOI: 10.3390/v15091826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Antiviral properties of different oxa- and aza-heterocycles are identified and properly correlated with their structural features and discussed in this review article. The primary objective is to explore the activity of such ring systems as antiviral agents, as well as their synthetic routes and biological significance. Eventually, the structure-activity relationship (SAR) of the heterocyclic compounds, along with their salient characteristics are exhibited to build a suitable platform for medicinal chemists and biotechnologists. The synergistic conclusions are extremely important for the introduction of a newer tool for the future drug discovery program.
Collapse
Affiliation(s)
- Sibasish Manna
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Koushik Das
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Sougata Santra
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia; (S.S.); (E.V.N.); (G.V.Z.)
| | - Emily V. Nosova
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia; (S.S.); (E.V.N.); (G.V.Z.)
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Grigory V. Zyryanov
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia; (S.S.); (E.V.N.); (G.V.Z.)
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Sandipan Halder
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| |
Collapse
|
7
|
Parvez MK, Alhowiriny TA, Al-Dosari MS, Amina M, Rehman MT, Al-Yousef HM, Alanzi AR, Alajmi MF. Inhibition of hepatitis B virus activities by Rhazya stricta‑derived acacetin and acetyl‑β‑carboline. Exp Ther Med 2023; 26:327. [PMID: 37346405 PMCID: PMC10280320 DOI: 10.3892/etm.2023.12026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/24/2023] [Indexed: 06/23/2023] Open
Abstract
Hepatitis B virus (HBV) causes acute and chronic liver diseases, leading to cirrhosis and hepatocellular carcinoma. Although direct-acting nucleoside analogs, such as lamivudine (LAM), adefovir and famciclovir, are available, emergence of drug-resistance due to mutations in HBV polymerase (POL) restricts their further use. Alternatively, numerous plant products and compounds isolated from plants have been reported to confer anti-HBV efficacies without any sign of resistance in vitro or in vivo. As, flavonoids and alkaloids are the most widely reported antivirals, the anti-HBV activities of the flavonoid acacetin (ACT) and the alkaloid acetyl-β-carboline (ABC) from the aerial parts of Rhazya stricta were assessed in the present study. Both compounds were isolated from the ethyl acetate fraction of the total methanol extract using column and thin-layer chromatography, and their structures were determined by nuclear magnetic resonance spectroscopy (NMR). Both compounds (at 6.25-50 µg/ml) showed a lack of hepatocytotoxicity in cultured HepG2.2.15 cells. Anti-HBV ELISA [hepatitis B surface antigen (HBsAg) and hepatitis B pre-core-antigen (HBeAg)] on HepG.2.2.15 cells following treatment with selected concentrations (12.5, 25 and 50 µg/ml) of both compounds showed dose- and time-dependent anti-HBV activities. Compared with those in the untreated control at day 5, ACT and ABC (25 µg/ml, each) maximally inhibited HBsAg synthesis by 43.4 and 48.7%, respectively, whilst also maximally inhibiting HBeAg synthesis by 41.2 and 44.2%, respectively, in HepG2.2.15 cells. Comparatively, quercetin and LAM (standards; POL inhibitors) suppressed HBsAg (63.9 and 60.2%, respectively) and HBeAg synthesis (87.1 and 84.3%, respectively) by larger magnitudes. Molecular docking of ACT and ABC structures performed in AutoDock revealed their hydrogen bonding with the drug-sensitive [wild-type (wt)-POL] 'Tyr-Met-Asp-Asp' motif, in addition to the drug-resistant [mutant (mut)-POL] 'Tyr-Ile-Asp-Asp' motif residues of the polymerase binding-pocket, along with other electrostatic interactions. In the wt-POL complex, both compounds showed good interactions with Asp205. In the mut-POL complex, ACT and ABC interacted with Tyr203-Asp205 and Tyr203-Ile204, respectively. In conclusion, to the best of our knowledge, the present study demonstrates anti-HBV efficacies of ACT and ABC in vitro for the first time, endorsed by in silico data. However, further molecular and pharmacological studies are required to validate their pre-clinical therapeutic potential.
Collapse
Affiliation(s)
- Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Tawfeq A. Alhowiriny
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammed S. Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Musarat Amina
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Hanan M. Al-Yousef
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Abdullah R. Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Tian C, Huang H, Zheng Y, He X, Yan L, Shi L, Yang T, Chen X, Yang J, Lu Z, Cao H, Zhao W, Qin Z, Yu J, Tang Q, Tong X, Liu J, Yu L. Identification of an effective fraction from Ampelopsis Radix with anti-dengue virus activities in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116339. [PMID: 36870463 DOI: 10.1016/j.jep.2023.116339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/25/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dengue virus (DENV) infection is a global public health issue without effective therapeutic interventions. Chinese medicine with heat-clearing and detoxifying properties has been frequently used in the treatment of viral infection. Ampelopsis Radix (AR) is a traditional Chinese medicine for clearing heat and detoxification that has been widely used in the prevention and treatment of infectious diseases. However, no studies on the effects of AR against viral infection have been reported, thus far. AIM OF THE STUDY To explore the anti-DENV activities of the fraction (AR-1) obtained from AR both in vitro and in vivo. MATERIALS AND METHODS The chemical composition of AR-1 was identified by liquid chromatography-tandem MS (LC‒MS/MS). The antiviral activities of AR-1 were studied in baby hamster kidney fibroblast BHK-21 cells, ICR suckling mice and induction of interferon α/β (IFN-α/β) and IFN-γ R-/- (AG129) mice. RESULTS Based on LC‒MS/MS analysis, 60 compounds (including flavonoids, phenols, anthraquinones, alkaloids and other types) were tentatively characterized from AR-1. AR-1 inhibited the cytopathic effect, the production of progeny virus and the synthesis of viral RNA and proteins by blocking DENV-2 binding to BHK-21 cells. Moreover, AR-1 significantly attenuated weight loss, decreased clinical scores and prolonged the survival of DENV-infected ICR suckling mice. Critically, the viral load in blood, brain and kidney tissues and the pathological changes in brain were remarkably alleviated after AR-1 treatment. Further study on AG129 mice showed that AR-1 obviously improved the clinical manifestations and survival rate, reduced viremia, attenuated gastric distension and relieved the pathological lesions caused by DENV. CONCLUSIONS In summary, this is the first report that AR-1 exhibits anti-DENV effects both in vitro and in vivo, which suggests that AR-1 may be developed as a therapeutic candidate against DENV infection.
Collapse
Affiliation(s)
- Chunyang Tian
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Hefei Huang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Yuanru Zheng
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Xuemei He
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Lijun Yan
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Lingzhu Shi
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Tangjia Yang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Xi Chen
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Jiabin Yang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Zibin Lu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Huihui Cao
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Zhiran Qin
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Jianhai Yu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Qingfa Tang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, PR China
| | - Xiankun Tong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Junshan Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, PR China; Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, PR China.
| | - Linzhong Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
9
|
Alanzi AR, Parvez MK, Al-Dosari MS. Structure-based virtual identification of natural inhibitors of SARS-CoV-2 and its Delta and Omicron variant proteins. Future Virol 2023; 18:421-438. [PMID: 38051986 PMCID: PMC10241455 DOI: 10.2217/fvl-2022-0184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/23/2023] [Indexed: 11/02/2023]
Abstract
AIM Structure-based identification of natural compounds against SARS-CoV-2, Delta and Omicron target proteins. MATERIALS & METHODS Several known antiviral natural compounds were subjected to molecular docking and MD simulation against SARS-CoV-2 Mpro, Helicase and Spike, including Delta and Omicron Spikes. RESULTS Of the docked ligands, 20 selected for each complex exhibited overall good binding affinities (-7.79 to -5.06 kcal/mol) with acceptable physiochemistry following Lipinski's rule. Finally, two best ligands from each complex upon simulation showed structural stability and compactness. CONCLUSION Quercetin-3-acetyl-glucoside, Rutin, Kaempferol, Catechin, Orientin, Obetrioside and Neridienone A were identified as potential inhibitors of SARS-CoV-2 Mpro, Helicase and Spike, while Orientin and Obetrioside also showed good binding affinities with Omicron Spike. Catechin and Neridienone A formed stable complexes with Delta Spike.
Collapse
Affiliation(s)
- Abdullah R Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad K Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed S Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
10
|
Calabrò A, Ligotti ME, Accardi G, Di Majo D, Caruso C, Candore G, Aiello A. The Nutraceutical Properties of Rhus coriaria Linn: Potential Application on Human Health and Aging Biomedicine. Int J Mol Sci 2023; 24:ijms24076206. [PMID: 37047178 PMCID: PMC10094520 DOI: 10.3390/ijms24076206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Rhus coriaria Linn is a little plant growing in the Mediterranean basin, including Sicily, where it is known as Sicilian Sumac. Since antiquity, it has been used as a medicinal herb, considering its pharmacological properties and its recognized anti-inflammatory, antioxidant, and antimicrobial effects. Multiple studies have highlighted that the beneficial properties of Sumac extracts depend on the abundance of phytochemicals such as polyphenols, fatty acids, minerals, and fibers. Despite its wide use as a spice, the literature on Sumac effects on humans’ health and aging is still scarce. Considering its great nutraceutical potential, Sumac could be used to treat age-related diseases such as those in which the inflammatory process plays a crucial role in manifestation and progression. Thus, Sumac could be an interesting new insight in the biomedical field, especially in aging biomedicine.
Collapse
Affiliation(s)
- Anna Calabrò
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy
- Correspondence:
| | - Danila Di Majo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy
| |
Collapse
|
11
|
Parvez MK, Al-Dosari MS, Basudan OA, Herqash RN. The anti‑hepatitis B virus activity of sea buckthorn is attributed to quercetin, kaempferol and isorhamnetin. Biomed Rep 2022; 17:89. [PMID: 36185785 PMCID: PMC9500493 DOI: 10.3892/br.2022.1573] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022] Open
Abstract
The present study assessed the in vitro anti-hepatitis B virus (HBV) effects of cold-adapted sea buckthorn (Hippophae rhamnoides). Sea buckthorn leaf ethanol extracts subjected to chloroform (SB-Chl), ethyl acetate (SB-Eac), n-butanol (SB-But) and aqueous (SB-Aqu) fractionation were first examined (MTT assay) for their toxic effects on HepG2 cells. While SB-Chl (IC50, 32.58 µg/ml) exhibited high cytotoxicity, SB-Eac, SB-But SB-Aqu were non-toxic at up to 150 µg/ml. High performance liquid chromatography analysis led to the identification of the anti-HBV active flavonols, quercetin (93.09 µg/g), kaempferol (44.19 µg/g) and isorhamnetin (138.75 µg/g) in the extract. The analysis of the anti-HBV effects of SB-Eac, SB-But and SB-Aqu (50 µg/ml, each) on HepG2.2.15 cells revealed the marked inhibition of HBsAg and HBeAg expression levels. At the concentration of 10 µg/ml, quercetin and kaempferol exerted potent inhibitory effects on HBsAg (60.5 and 62.3%, respectively) and HBeAg synthesis (64.4 and 60.2%, respectively), as compared to isorhamnetin (30.5 and 28.4%, respectively). The HBV-polymerase inhibitor drug, lamivudine (2 µM), inhibited HBsAg and HBeAg expression by 87.4 and 83.5%, respectively. The data were in good agreement with a previous in vitro and in silico molecular docking analysis performed by the authors where quercetin, kaempferol and lamivudine had formed stable complexes with HBV-polymerase binding-pocket amino acids. On the whole, to the best of our knowledge, the present study provides the first report of the anti-HBV therapeutic potential of sea buckthorn, attributed to quercetin, kaempferol and isorhamnetin.
Collapse
Affiliation(s)
- Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed S. Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Omar A. Basudan
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rashed N. Herqash
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|