1
|
Yasumura Y, Teshima T, Nagashima T, Michishita M, Shigechika H, Taira Y, Suzuki R, Matsumoto H. Canine adipose-derived mesenchymal stromal cells inhibit the growth of canine hematologic malignancy cell lines. Regen Ther 2025; 28:301-313. [PMID: 39867136 PMCID: PMC11757230 DOI: 10.1016/j.reth.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction Intestinal lymphoma may be latent in some dogs with chronic inflammatory enteropathy. Mesenchymal stromal cells (MSCs) have potential therapeutic applications for refractory chronic inflammatory enteropathy, but their impact on the development of potential intestinal lymphomas has not yet been evaluated. Therefore, this study was performed to investigate the effect of canine adipose-derived MSCs (cADSCs) on the growth of canine lymphoma cell lines to assess the safety of MSC-based therapy in terms of pro- and anti-tumorigenic effects. Methods CADSCs were co-cultured with canine lymphoma/leukemia cell lines of various lineages, with or without cell-to-cell contact, to evaluate their effects on proliferation, apoptosis, and cell cycle progression in vitro. Additionally, a bioluminescent canine lymphoma cell line, established through firefly luciferase transduction, was co-injected with varying doses of cADSCs into immunocompromised mice. The growth of canine lymphoma cells was monitored over time in vivo using bioluminescence imaging. Results CADSCs inhibited the proliferation of all canine lymphoma/leukemia cell lines in a dose-dependent manner in vitro, under conditions allowing cell-to-cell contact. This inhibition occurred via the induction of apoptosis, G0/G1 phase cell cycle arrest, or both mechanisms. However, these effects were lost when the cells were physically separated using Transwell inserts. In xenotransplantation mouse models, cADSCs dose-dependently inhibited canine lymphoma cell growth and lung metastasis, as indicated by reduced bioluminescence signals. Conclusions This study has demonstrated for the first time that cADSCs inhibit the growth of different lineages of canine lymphoma/leukemia cells both in vitro and in vivo. These findings suggest that MSC-based cell therapy could potentially be applied to canine chronic inflammatory enteropathy without increasing the risk of promoting the growth of latent intestinal lymphomas.
Collapse
Affiliation(s)
- Yuyo Yasumura
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Takahiro Teshima
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
- Research Center for Animal Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Tomokazu Nagashima
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Masaki Michishita
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Hiroki Shigechika
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Yoshiaki Taira
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Ryohei Suzuki
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Hirotaka Matsumoto
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| |
Collapse
|
2
|
Wang C, Song R, Yuan J, Hou G, Chu AL, Huang Y, Xiao C, Chai T, Sun C, Liu Z. Exosome-Shuttled METTL14 From AML-Derived Mesenchymal Stem Cells Promotes the Proliferation and Radioresistance in AML Cells by Stabilizing ROCK1 Expression via an m6A-IGF2BP3-Dependent Mechanism. Drug Dev Res 2025; 86:e70025. [PMID: 39690960 DOI: 10.1002/ddr.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/17/2024] [Accepted: 11/17/2024] [Indexed: 12/19/2024]
Abstract
Acute myelogenous leukemia (AML)-derived mesenchymal stem cells (MSCs) (AML-MSCs) have been identified to play a significant role in AML progression. The functions of MSCs mainly depend on their paracrine action. Here, we investigated whether AML-MSCs functioned in AML cells by transferring METTL14 (Methyltransferase 14) into AML cells via exosomes. Functional analyses were conducted using MTT assay, 5-ethynyl-2-deoxyuridine assay and flow cytometry. qRT-PCR and western blot analyses detected levels of mRNAs and proteins. Exosomes (exo) were isolated from AML-MSCs by ultracentrifugation. The m6A modification profile was determined by methylated RNA immunoprecipitation (MeRIP) assay. The interaction between Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) and Rho Kinase 1 (ROCK1) was validated using RIP assay. AML-MSCs incubation promoted the proliferation and radioresistance in AML cells. Moreover, AML-MSCs incubation led to increases in m6A levels and METTL14 levels in AML cells. METTL14 was transferred into AML cells by packaging into exosomes of AML-MSCs. The knockdown of METTL14 in AML-MSCs exosomes could reduce the proliferation and radioresistance in AML cells. Mechanistically, METTL14 induced ROCK1 m6A modification and stabilized its expression by an m6A-IGF2BP3-dependent mechanism. Rescue assay showed that ROCK1 overexpression reversed the inhibitory effects of METTL14 silencing in AML-MSCs exosomes on AML cell proliferation and radioresistance. Exosome-shuttled METTL14 from AML-MSCs promoted proliferation and conferred radioresistance in AML cells by stabilizing ROCK1 expression via an m6A-IGF2BP3-dependent mechanism.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Radiation Oncology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Rui Song
- Department of Radiation Oncology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Jinjin Yuan
- Department of Radiation Oncology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Ge Hou
- Department of Radiation Oncology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - A Lan Chu
- Department of Radiation Oncology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Yangyang Huang
- Department of Radiation Oncology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Chenhu Xiao
- Department of Radiation Oncology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Ting Chai
- Department of Radiation Oncology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Chen Sun
- Department of Radiation Oncology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Zongwen Liu
- Department of Radiation Oncology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| |
Collapse
|
3
|
Jalilivand S, Nabigol M, Bakhtiyaridovvombaygi M, Gharehbaghian A. Bone marrow mesenchymal stem cell exosomes suppress JAK/STAT signaling pathway in acute myeloid leukemia in vitro. Blood Res 2024; 59:43. [PMID: 39704857 PMCID: PMC11662102 DOI: 10.1007/s44313-024-00051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
INTRODUCTION Despite advances in the treatment of acute myeloid leukemia (AML), refractory forms of this malignancy and relapse remain common. Therefore, development of novel, synergistic targeted therapies are needed urgently. Recently, mesenchymal stem cells (MSCs) have been shown to be effective in treating various diseases, with most of their therapeutic outcomes attributed to their exosomes. In the current study, we investigated the effects of bone marrow mesenchymal stem cell (BM-MSC) exosomes on the expression of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling genes involved in AML pathogenesis. MATERIAL AND METHODS Exosomes were isolated from BM-MSCs and confirmed using transmission electron microscopy, dynamic light scattering, and flow cytometry. Subsequently, the exosome concentration was estimated using the bicinchoninic acid assay, and HL-60 cells were cocultured with 100 µg/mL of BM-MSC exosomes. Finally, the JAK2, STAT3, and STAT5 expression levels were analyzed using qRT-PCR. RESULTS The exosome characterization results confirmed that most isolated nanoparticles exhibited a round morphology, expressed CD9, CD63, and CD81, which are specific protein markers for exosome identification, and ranged between 80 and 100 nm in diameter. Furthermore, qRT-PCR analysis revealed a significant downregulation of JAK2, STAT3, and STAT5 in HL-60 cells treated with 100 μg/mL of BM-MSC exosomes. CONCLUSION Since JAK/STAT signaling contributes to AML survival, our findings suggest that the downregulation of JAK/STAT genes by BM-MSC exosomes in leukemic cells may aid in designing a potent therapeutic strategy for AML treatment.
Collapse
Affiliation(s)
- Sahar Jalilivand
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Nabigol
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Gharehbaghian
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Sun L, Rao S, Kerim K, Lu J, Li H, Zhao S, Shen P, Sun W. A chemically adjustable BMP6-IL6 axis in mesenchymal stem cells drives acute myeloid leukemia cell differentiation. Biochem Pharmacol 2024; 225:116262. [PMID: 38705535 DOI: 10.1016/j.bcp.2024.116262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Chemotherapy alone or in combination with allogeneic stem cell transplantation has been the standard of care for acute myeloid leukemia (AML) for decades. Leukemia relapse with limited treatment options remains the main cause of treatment failure. Therefore, an effective and safe approach to improve treatment outcomes is urgently needed for most AML patients. Mesenchymal stem cells (MSCs) have been reported to efficiently induce apoptosis and shape the fate of acute myeloid leukemia cells. Here, we identified LG190155 as a potent compound that enhances the antileukemia efficiency of MSCs. Pretreatment of MSCs with LG190155 significantly provoked differentiation in both AML patient-derived primary leukemia cells and AML cell lines and reduced the tumor burden in the AML mouse model. Using the quantitative proteomic technique, we discovered a pivotal mechanism that mediates AML cell differentiation, in which autocrine bone morphogenetic protein 6 (BMP6) in MSCs boosted IL-6 secretion and further acted on leukemic cells to trigger differentiation. Furthermore, the activity of the BMP6-IL6 axis was dramatically enhanced by activating vitamin D receptor (VDR) in MSCs. Our data illustrated an effective preactivated approach to reinforcing the antileukemia effect of MSCs, which could serve as an effective therapeutic strategy for AML.
Collapse
Affiliation(s)
- Luchen Sun
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Shangrui Rao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Kamran Kerim
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jianhua Lu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hongzheng Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Shengsheng Zhao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Pingping Shen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Shenzhen Research Institute of NanJing University, Shenzhen 518000, China.
| | - Weijian Sun
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
5
|
Yuce M, Albayrak E. Paracrine Factors Released from Tonsil-Derived Mesenchymal Stem Cells Inhibit Proliferation of Hematological Cancer Cells Under Hyperthermia in Co-culture Model. Appl Biochem Biotechnol 2024; 196:4105-4124. [PMID: 37897623 DOI: 10.1007/s12010-023-04757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
Mesenchymal stem cells (MSCs) are promising biological therapeutic candidates in cancer treatment. As a source of MSCs, palatine tonsil tissue is one of the secondary lymphoid organs that form an essential part of the immune system, and the relation between the secondary lymphoid organs and cancer progression leads us to investigate the effect of tonsil-derived MSCs (T-MSC) on cancer treatment. We aimed to determine the anti-tumoral effects of T-MSCs cultured at the febrile temperature (40 °C) on hematological cancer cell lines. The co-culture of cancer cells with T-MSCs was carried out under fever and normal culture conditions, and then the cell viability was determined by cell counting. In addition, apoptosis rate and cell cycle arrest were determined by flow cytometry. We confirmed the apoptotic effect of T-MSC co-culture at the transcriptional level by using real-time polymerase chain reaction (RT-PCR). We found that co-culture of cancer cells with T-MSCs significantly decreased the viable cell number under the febrile and normal culture conditions. Besides, the T-MSC co-culture induced apoptosis on K562 and MOLT-4 cells and induced the cell cycle arrest at the G2/M phase on MOLT-4 cells. The apoptotic effect of T-MSC co-culture under febrile stimulation was confirmed at the transcriptional level. Our study has highlighted the anti-tumoral effect of the cellular interaction between the T-MSCs and human hematological cancer cells during in vitro co-culture under hyperthermia.
Collapse
Affiliation(s)
- Melek Yuce
- Stem Cell Research & Application Center, Ondokuz Mayıs University, Kurupelit Campus, 55139, Atakum, Samsun, Turkey.
| | - Esra Albayrak
- Stem Cell Research & Application Center, Ondokuz Mayıs University, Kurupelit Campus, 55139, Atakum, Samsun, Turkey
| |
Collapse
|
6
|
Wu CH, Weng TF, Li JP, Wu KH. Biology and Therapeutic Properties of Mesenchymal Stem Cells in Leukemia. Int J Mol Sci 2024; 25:2527. [PMID: 38473775 DOI: 10.3390/ijms25052527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
This comprehensive review delves into the multifaceted roles of mesenchymal stem cells (MSCs) in leukemia, focusing on their interactions within the bone marrow microenvironment and their impact on leukemia pathogenesis, progression, and treatment resistance. MSCs, characterized by their ability to differentiate into various cell types and modulate the immune system, are integral to the BM niche, influencing hematopoietic stem cell maintenance and functionality. This review extensively explores the intricate relationship between MSCs and leukemic cells in acute myeloid leukemia, acute lymphoblastic leukemia, chronic myeloid leukemia, and chronic lymphocytic leukemia. This review also addresses the potential clinical applications of MSCs in leukemia treatment. MSCs' role in hematopoietic stem cell transplantation, their antitumor effects, and strategies to disrupt chemo-resistance are discussed. Despite their therapeutic potential, the dual nature of MSCs in promoting and inhibiting tumor growth poses significant challenges. Further research is needed to understand MSCs' biological mechanisms in hematologic malignancies and develop targeted therapeutic strategies. This in-depth exploration of MSCs in leukemia provides crucial insights for advancing treatment modalities and improving patient outcomes in hematologic malignancies.
Collapse
Affiliation(s)
- Cheng-Hsien Wu
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Te-Fu Weng
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Ju-Pi Li
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| |
Collapse
|
7
|
Sun L, Yang N, Chen B, Bei Y, Kang Z, Zhang C, Zhang N, Xu P, Yang W, Wei J, Ke J, Sun W, Li X, Shen P. A novel mesenchymal stem cell-based regimen for acute myeloid leukemia differentiation therapy. Acta Pharm Sin B 2023; 13:3027-3042. [PMID: 37521858 PMCID: PMC10372914 DOI: 10.1016/j.apsb.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 08/01/2023] Open
Abstract
Currently the main treatment of acute myeloid leukemia (AML) is chemotherapy combining hematopoietic stem cell transplantation. However, the unbearable side effect of chemotherapy and the high risk of life-threatening infections and disease relapse following hematopoietic stem cell transplantation restrict its application in clinical practice. Thus, there is an urgent need to develop alternative therapeutic tactics with significant efficacy and attenuated adverse effects. Here, we revealed that umbilical cord-derived mesenchymal stem cells (UC-MSC) efficiently induced AML cell differentiation by shuttling the neutrophil elastase (NE)-packaged extracellular vesicles (EVs) into AML cells. Interestingly, the generation and release of NE-packaged EVs could be dramatically increased by vitamin D receptor (VDR) activation in UC-MSC. Chemical activation of VDR by using its agonist 1α,25-dihydroxyvitamin D3 efficiently enhanced the pro-differentiation capacity of UC-MSC and then alleviated malignant burden in AML mouse model. Based on these discoveries, to evade the risk of hypercalcemia, we synthetized and identified sw-22, a novel non-steroidal VDR agonist, which exerted a synergistic pro-differentiation function with UC-MSC on mitigating the progress of AML. Collectively, our findings provided a non-gene editing MSC-based therapeutic regimen to overcome the differentiation blockade in AML.
Collapse
Affiliation(s)
- Luchen Sun
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Nanfei Yang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Bing Chen
- Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210093, China
| | - Yuncheng Bei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210008, China
| | - Zisheng Kang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Can Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Nan Zhang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical & Materials Engineering, University College Dublin, Dublin 4, Ireland
| | - Peipei Xu
- Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210093, China
| | - Wei Yang
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210008, China
| | - Jiangqiong Ke
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Weijian Sun
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Pingping Shen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| |
Collapse
|
8
|
Liu Y, Huang W, Wang H, Lu W, Guo J, Yu L, Wang L. Influence of SPIO labelling on the function of BMSCs in chemokine receptors expression and chemotaxis. PeerJ 2023; 11:e15388. [PMID: 37283891 PMCID: PMC10241165 DOI: 10.7717/peerj.15388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/19/2023] [Indexed: 06/08/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are increasingly being used in bone marrow transplantation (BMT) to enable homing of the allogeneic hematopoietic stem cells and suppress acute graft versus host disease (aGVHD). The aim of this study was to optimize the labelling of BMSCs with superparamagnetic iron oxide particles (SPIOs), and evaluate the impact of the SPIOs on the biological characteristics, gene expression profile and chemotaxis function of the BMSCs. The viability and proliferation rates of the SPIO-labeled BMSCs were analyzed by trypan blue staining and CCK-8 assay respectively, and the chemotaxis function was evaluated by the transwell assay. The expression levels of chemokine receptors were measured by RT-PCR and flow cytometry. The SPIOs had no effect on the viability of the BMSCs regardless of the labelling concentration and culture duration. The labelling rate of the cells was higher when cultured for 48 h with the SPIOs. Furthermore, cells labeled with 25 µg/ml SPIOs for 48 h had the highest proliferation rates, along with increased expression of chemokine receptor genes and proteins. However, there was no significant difference between the chemotaxis function of the labeled and unlabeled BMSCs. To summarize, labelling BMSCs with 25 µg/ml SPIOs for 48h did not affect their biological characteristics and chemotaxis function, which can be of significance for in vivo applications.
Collapse
Affiliation(s)
- Yuanchun Liu
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wanyi Huang
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huiyang Wang
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wei Lu
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiayu Guo
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Li Yu
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lina Wang
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
9
|
Zhao X, Xu M, Hu X, Ding X, Zhang X, Xu L, Li L, Sun X, Song J. Human bone marrow-derived mesenchymal stem overexpressing microRNA-124-3p inhibit DLBCL progression by downregulating the NFATc1/cMYC pathway. Stem Cell Res Ther 2023; 14:148. [PMID: 37248542 DOI: 10.1186/s13287-023-03373-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Exosomes play important roles in intercellular communication by delivering microRNAs (miRNAs) that mediate tumor initiation and development, including those in diffuse large B cell lymphoma (DLBCL). To date, however, limited studies on the inhibitory effect of exosomes derived from human bone marrow mesenchymal stem cells (hBMSCs) on DLBCL progression have been reported. Therefore, this study aimed to investigate the role of hBMSC exosomes carrying microRNA-124-3p in the development of DLBCL. METHODS Microarray-based expression analysis was adopted to identify differentially expressed genes and regulatory miRNAs, which revealed the candidate NFATc1. Next, the binding affinity between miR-124-3p and NFATc1 was detected by luciferase activity assays. The mechanism underlying NFATc1 regulation was investigated using lentiviral transfections. Subsequently, DLBCL cells were cocultured with exosomes derived from hBMSCs transfected with a miR-124-3p mimic or control. Proliferation and apoptosis were measured in vitro. Finally, the effects of hBMSC-miR-124-3p on tumor growth were investigated in vivo. RESULTS MiR-124-3p was expressed at low levels, while NFATc1 was highly expressed in DLBCL cells. MiR-124-3p specifically targeted and negatively regulated the expression of NFATc1 in DLBCL cells, upregulated miR-124-3p-inhibited DLBCL cell proliferation and promoted apoptosis. The miR-124-3p derived from hBMSCs inhibits tumor growth both in vivo and in vitro via downregulation of the NFATc1/cMYC pathway. CONCLUSION Human bone marrow-derived mesenchymal stem cell overexpressing microRNA-124-3p represses the development of DLBCL through the downregulation of NFATc1.
Collapse
Affiliation(s)
- Xiaoxuan Zhao
- Department of Dermatology, Dalian Dermatosis Hospital, Dalian, 116021, Liaoning, People's Republic of China
- Graduate School of China Medical University, Shenyang, People's Republic of China
| | - Mingxi Xu
- Rheumatology Department, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, People's Republic of China
- Graduate School of Dalian Medical University, Dalian, People's Republic of China
| | - Xuemeng Hu
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, People's Republic of China
- Graduate School of Dalian Medical University, Dalian, People's Republic of China
| | - Xiaolei Ding
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, People's Republic of China
| | - Xian Zhang
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, People's Republic of China
| | - Liye Xu
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, People's Republic of China
| | - Li Li
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, People's Republic of China.
| | - Xiuhua Sun
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, People's Republic of China.
| | - Jincheng Song
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, People's Republic of China.
| |
Collapse
|
10
|
Yüce M, Albayrak E. Hyperthermia-stimulated tonsil-mesenchymal stromal cells suppress hematological cancer cells through downregulation of IL-6. J Cell Biochem 2022; 123:1966-1979. [PMID: 36029519 DOI: 10.1002/jcb.30322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022]
Abstract
There are contradictory reports on the use of mesenchymal stromal cells (MSCs) in cancer therapy. Variable outcomes have been associated with several factors including cancer pathology, experimental procedure, MSC source tissue, and individual genetic differences. It is also known that MSCs exert their therapeutic effects with various paracrine factors released from these cells. The profiles of the factors released from MSCs are altered by heat shock, hypoxia, oxidative stress, starvation or various agents such as inflammatory cytokines, and their therapeutic potential is affected. In this study, the antitumor potential of conditioned media (CM), which contains paracrine factors, of mild hyperthermia-stimulated mesenchymal stromal cells derived from lymphoid organ tonsil tissue (T-MSC) was investigated in comparison with CM obtained from T-MSCs grew under normal culture conditions. CM was obtained from T-MSCs that were successfully isolated from palatine tonsil tissue and characterized. The cytotoxic effect of CM on the growth of hematological cancer cell lines at different concentrations (1:1 and 1:2) was demonstrated by methylthiazoldiphenyl-tetrazolium bromide analysis. In addition, the apoptotic effect of T-MSC-CM treatment was evaluated on the cancer cells using Annexin-V/PI detection method by flow cytometry. The pro/anti-apoptotic and cytokine-related gene expressions were also analyzed by real-time polymerase chain reaction post T-MSC-CM treatment. In conclusion, we demonstrated that the factors released from hyperthermia-stimulated T-MSCs induced apoptosis in hematological cancer cell lines in a dose-dependent manner. Importantly, our results at the transcriptional level support that the factors and cytokines released from hyperthermia-stimulated T-MSC may exert antitumoral effects in cancer cells by downregulation of IL-6 that promotes tumorigenesis. These findings reveal that T-MSC-CM can be a powerful cell-free therapeutical strategy for cancer therapy.
Collapse
Affiliation(s)
- Melek Yüce
- Stem Cell Research & Application Center, Ondokuz Mayıs University, Kurupelit Campus, Atakum/Samsun, Turkey
| | - Esra Albayrak
- Stem Cell Research & Application Center, Ondokuz Mayıs University, Kurupelit Campus, Atakum/Samsun, Turkey
| |
Collapse
|
11
|
Nachmias B, Zimran E, Avni B. Mesenchymal stroma/stem cells: Haematologists' friend or foe? Br J Haematol 2022; 199:175-189. [PMID: 35667616 PMCID: PMC9796884 DOI: 10.1111/bjh.18292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/07/2023]
Abstract
Mesenchymal stromal cells (MSCs) are non-haematopoietic cells found in fetal and adult organs, that play important roles in tissue repair, inflammation and immune modulation. MSCs residing in the bone marrow interact closely with haematopoietic cells and comprise an important component of the microenvironment supporting haematopoiesis, in both health and disease states. Since their identification in 1970, basic scientific and preclinical research efforts have shed light on the role of MSCs in the regulation of haematopoiesis and evoked interest in their clinical application in haematopoietic stem cell transplantation (HSCT) and malignant haematology. Over the last two decades, these research efforts have led to numerous clinical trials, which have established the safety of MSC therapy; however, the optimal mode of administration and the benefit remain inconclusive. In this paper, we will review the clinical experience with use of MSCs in HSCT for enhancement of engraftment, prevention and treatment of graft-versus-host disease and haemorrhagic cystitis. Then, we will discuss the contradictory evidence regarding tumour-promoting versus tumour-suppressing effects of MSCs in haematological malignancies, which may have relevance for future clinical applications.
Collapse
Affiliation(s)
- Boaz Nachmias
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| | - Eran Zimran
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| | - Batia Avni
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| |
Collapse
|
12
|
Quiroz-Reyes AG, González-Villarreal CA, Martínez-Rodriguez H, Said-Fernández S, Salinas-Carmona MC, Limón-Flores AY, Soto-Domínguez A, Padilla-Rivas G, Montes De Oca-Luna R, Islas JF, Garza-Treviño EN. A combined antitumor strategy of separately transduced mesenchymal stem cells with soluble TRAIL and IFNβ produces a synergistic activity in the reduction of lymphoma and mice survival enlargement. Mol Med Rep 2022; 25:206. [PMID: 35485288 PMCID: PMC9073847 DOI: 10.3892/mmr.2022.12722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/29/2022] [Indexed: 11/11/2022] Open
Abstract
As the understanding of cancer grows, new therapies have been proposed to improve the well-known limitations of current therapies, whose efficiency relies mostly on early detection, surgery and chemotherapy. Mesenchymal stem cells (MSCs) have been introduced as a promissory and effective therapy. This fact is due to several useful features of MSCs, such as their accessibility and easy culture and expansion in vitro, and their remarkable ability for ‘homing’ towards tumors, allowing MSCs to exert their anticancer effects directly into tumors. Additionally, MSCs offer the practicability of being genetically engineered to carry anticancer genes, increasing their specificity and efficacy for fighting tumors. In the present study, the antitumoral efficacy and post-implant survival of mice bearing lymphomas implanted intratumorally were determined using mouse bone marrow-derived (BM)-MSCs transduced with soluble TRAIL (sTRAIL), full length TRAIL (flTRAIL), or interferon β (IFNβ), naïve BM-MSCs, or combinations of these. The percentage of surviving mice was determined once all not-implanted mice succumbed. It was found that the percentage of surviving mice implanted with the combination of MSCs-sTRAIL and MSCs-IFN-β was 62.5%. Lymphoma model achieved 100% fatality in the non-treated group by day 41. On the other hand, the percentage of surviving mice implanted with MSCs-sTRAIL was 50% and with MSCs-INFβ 25%. All the aforementioned differences were statistically significant (P<0.05). In conclusion, all implants exhibited tumor size reduction, growth delay, or apparent tumor clearance. MSCs proved to be effective anti-lymphoma agents; additionally, the combination of soluble TRAIL and IFN-β resulted in the most effective antitumor and life enlarging treatment, showing an additive antitumoral effect compared with individual treatments.
Collapse
Affiliation(s)
- Adriana G Quiroz-Reyes
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Carlos A González-Villarreal
- Laboratory of Molecular Genetics, Department of Basic Sciences, University of Monterrey, Monterrey, Nuevo León 66238, Mexico
| | - Herminia Martínez-Rodriguez
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Salvador Said-Fernández
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Mario César Salinas-Carmona
- Department of Immunology, Faculty of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Alberto Y Limón-Flores
- Department of Immunology, Faculty of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Adolfo Soto-Domínguez
- Department of Histology, Faculty of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Gerardo Padilla-Rivas
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Roberto Montes De Oca-Luna
- Department of Histology, Faculty of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Jose F Islas
- Department of Histology, Faculty of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Elsa N Garza-Treviño
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| |
Collapse
|
13
|
Zhu Y, Luo M, Bai X, Lou Y, Nie P, Jiang S, Li J, Li B, Luo P. Administration of mesenchymal stem cells in diabetic kidney disease: mechanisms, signaling pathways, and preclinical evidence. Mol Cell Biochem 2022; 477:2073-2092. [PMID: 35469057 DOI: 10.1007/s11010-022-04421-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Diabetic kidney disease (DKD) is a serious microvascular complication of diabetes. Currently, the prevalence and mortality of DKD are increasing annually. However, with no effective drugs to prevent its occurrence and development, the primary therapeutic option is to control blood sugar and blood pressure. Therefore, new and effective drugs/methods are imperative to prevent the development of DKD in patients with diabetes. Mesenchymal stem cells (MSCs) with multi-differentiation potential and paracrine function have received extensive attention as a new treatment option for DKD. However, their role and mechanism in the treatment of DKD remain unclear, and clinical applications are still being explored. Given this, we here provide an unbiased review of recent advances in MSCs for the treatment of DKD in the last decade from the perspectives of the pathogenesis of DKD, biological characteristics of MSCs, and different molecular and signaling pathways. Furthermore, we summarize information on combination therapy strategies using MSCs. Finally, we discuss the challenges and prospects for clinical application.
Collapse
Affiliation(s)
- Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Manyu Luo
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Xue Bai
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Yan Lou
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Ping Nie
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Shan Jiang
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Jicui Li
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Bing Li
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China.
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China.
| |
Collapse
|
14
|
Wu HW, Zhao YM, Huang H. [Mechanism of relapse and its therapeutic strategies after allogeneic hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:869-877. [PMID: 34788930 PMCID: PMC8607022 DOI: 10.3760/cma.j.issn.0253-2727.2021.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 11/19/2022]
Affiliation(s)
- H W Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University; Institute of Hematology, Zhejiang University, Hangzhou 310006, China
| | - Y M Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University; Institute of Hematology, Zhejiang University, Hangzhou 310006, China
| | - H Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University; Institute of Hematology, Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
15
|
Yu JL, Chan S, Fung MKL, Chan GCF. Mesenchymal stem cells accelerated growth and metastasis of neuroblastoma and preferentially homed towards both primary and metastatic loci in orthotopic neuroblastoma model. BMC Cancer 2021; 21:393. [PMID: 33838662 PMCID: PMC8035760 DOI: 10.1186/s12885-021-08090-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 03/23/2021] [Indexed: 12/26/2022] Open
Abstract
Background Majority of neuroblastoma patients develop metastatic disease at diagnosis and their prognosis is poor with current therapeutic approach. Major challenges are how to tackle the mechanisms responsible for tumorigenesis and metastasis. Human mesenchymal stem cells (hMSCs) may be actively involved in the constitution of cancer microenvironment. Methods An orthotopic neuroblastoma murine model was utilized to mimic the clinical scenario. Human neuroblastoma cell line SK-N-LP was transfected with luciferase gene, which were inoculated with/without hMSCs into the adrenal area of SCID-beige mice. The growth and metastasis of neuroblastoma was observed by using Xenogen IVIS 100 in vivo imaging and evaluating gross tumors ex vivo. The homing of hMSCs towards tumor was analyzed by tracing fluorescence signal tagged on hMSCs using CRI Maestro™ imaging system. Results hMSCs mixed with neuroblastoma cells significantly accelerated tumor growth and apparently enhanced metastasis of neuroblastoma in vivo. hMSCs could be recruited by primary tumor and also become part of the tumor microenvironment in the metastatic lesion. The metastatic potential was consistently reduced in lung and tumor when hMSCs were pre-treated with stromal cell derived factor-1 (SDF-1) blocker, AMD3100, suggesting that the SDF-1/CXCR4 axis was one of the prime movers in the metastatic process. Conclusions hMSCs accelerated and facilitated tumor formation, growth and metastasis. Furthermore, the homing propensity of hMSCs towards both primary tumor and metastatic loci can also provide new therapeutic insights in utilizing bio-engineered hMSCs as vehicles for targeted anti-cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08090-2.
Collapse
Affiliation(s)
- Jiao-Le Yu
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Shing Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Marcus Kwong-Lam Fung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Godfrey Chi-Fung Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China. .,Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, Special Administrative Region, China.
| |
Collapse
|
16
|
Lyu T, Zhang B, Li M, Jiao X, Song Y. Research progress on exosomes derived from mesenchymal stem cells in hematological malignancies. Hematol Oncol 2021; 39:162-169. [PMID: 32869900 PMCID: PMC8246925 DOI: 10.1002/hon.2793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) are a subset of multifunctional stem cells with self-renewal and multidirectional differentiation properties that play a pivotal role in tumor progression. MSCs are reported to exert biological functions by secreting specialized vesicles, known as exosomes, with tumor cells. Exosomes participate in material and information exchange between cells and are crucial in multiple physiological and pathological processes. This study provides a comprehensive overview of the roles, mechanisms of action and sources of MSC exosomes in hematological malignancies, and different tumor types.
Collapse
Affiliation(s)
- Tianxin Lyu
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Binglei Zhang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Mengjia Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xueli Jiao
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Ji D, He Y, Lu W, Rong Y, Li F, Huang X, Huang R, Jiang Y, Chen G. Small-sized extracellular vesicles (EVs) derived from acute myeloid leukemia bone marrow mesenchymal stem cells transfer miR-26a-5p to promote acute myeloid leukemia cell proliferation, migration, and invasion. Hum Cell 2021; 34:965-976. [PMID: 33620671 DOI: 10.1007/s13577-021-00501-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/29/2021] [Indexed: 01/13/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) in acute myeloid leukemia (AML) microenvironment undergo modification that includes expression of contents in the small-sized extracellular vesicles (EVs) they secrete. This study aims to investigate whether small-sized EVs from BMSCs of AML patients regulate AML progression by modifying the expression of miR-26a-5p. Small-sized EVs from BMSCs of AML patients (AML-BMSC-EVs) or healthy controls (HC-BMSC-EVs) were isolated by ultra-centrifugation and administered to AML cells (OCI/AML-2 and THP-1). Cell proliferation, migration, and invasion were evaluated by CCK-8 assay, Transwell migration and invasion assays, respectively. Compared with HC-BMSC-EVs, AML-BMSC-EVs contained higher expression of miR-26a-5p and promoted AML cell proliferation, migration, and invasion. Inhibition of miR-26a-5p expression in AML-BMSC-EVs could abrogate the promoting effects of AML-BMSC-EVs on AML cell proliferation, migration, and invasion. Furthermore, GSK3β was a direct target of miR-26a-5p. Moreover, AML-BMSC-EVs inhibited GSK3β expression and activated Wnt/β-catenin signaling in AML cells. Additionally, GSK3β overexpression in THP-1 cells counteracted the promoting effects of AML-BMSCs-EVs on THP-1 cell proliferation, migration, and invasion. AML-BMSC-EVs promoted AML progression by transferring miR-26a-5p to AML cells and subsequently activating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Dexiang Ji
- Department of Hematology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang, 33000, Jiangxi, China
| | - Yue He
- Department of Hematology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang, 33000, Jiangxi, China
| | - Wei Lu
- Department of Hematology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang, 33000, Jiangxi, China
| | - Yanyan Rong
- Department of Hematology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang, 33000, Jiangxi, China
| | - Fei Li
- Department of Hematology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang, 33000, Jiangxi, China
| | - Xianbao Huang
- Department of Hematology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang, 33000, Jiangxi, China
| | - Ruibin Huang
- Department of Hematology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang, 33000, Jiangxi, China
| | - Yanxia Jiang
- Department of Endocrinology, The First Affiliated Hospital of Nanchang University, Nanchang, 33000, Jiangxi, China
| | - Guoan Chen
- Department of Hematology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang, 33000, Jiangxi, China.
| |
Collapse
|
18
|
Li H, Liu Q, Gao X, Zhang D, Mao S, Jia Y. IFN-γ gene loaded human umbilical mesenchymal stromal cells targeting therapy for Graft-versus-host disease. Int J Pharm 2021; 592:120058. [PMID: 33220383 DOI: 10.1016/j.ijpharm.2020.120058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/19/2020] [Accepted: 11/03/2020] [Indexed: 02/05/2023]
Abstract
Graft-versus-host disease (GVHD) is a frequent complication following allogeneic hematopoietic stem cell transplantation (allo-HSCT). The application of mesenchymal stromal cells (MSCs) to treat GVHD patients refractory to initial steroid treatment has led to impressive results. In this study, we explored the potential of human umbilical mesenchymal stem cells (HUMSCs) transfected with the IFN-γ gene of human (h)/mice (m) (HUMSCs + Ad-h/mIFN-γ) carried by a recombinant adenoviral vector in the prevention and treatment of GVHD. We demonstrated that HUMSCs + Ad-h/mIFN-γ efficiently suppressed T lymphocyte proliferation and activation, induced G1 cell cycle arrest and apoptosis in vitro. To assess the in vivo efficacy of HUMSCs + Ad-h/mIFN-γ, Balb/c mice were induced to develop GVHD symptoms by tail vein injection of C57BL/6 splenocytes after irradiation. Weight, hair, survival, hemogram, and chimera condition of GVHD model mice were monitored before and after treatment, respectively. The results showed that HUMSCs + Ad-h/mIFN-γ reduced GVHD's incidence and severity on the model mice and provided a significant survival benefit. In conclusion, this study may provide validated evidence that the introduction of IFN-γ into HUMSCs would help ameliorate GVHD after allo-HSCT.
Collapse
Affiliation(s)
- Hui Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| | - Qi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, People's Republic of China
| | - Xiaofeng Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, People's Republic of China
| | - Di Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, People's Republic of China
| | - Shengjun Mao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, People's Republic of China
| | - Yongqian Jia
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
19
|
Aging of Bone Marrow Mesenchymal Stromal Cells: Hematopoiesis Disturbances and Potential Role in the Development of Hematologic Cancers. Cancers (Basel) 2020; 13:cancers13010068. [PMID: 33383723 PMCID: PMC7794884 DOI: 10.3390/cancers13010068] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary As for many other cancers, the risk of developing hematologic malignancies increases considerably as people age. In recent years, a growing number of studies have highlighted the influence of the aging microenvironment on hematopoiesis and tumor progression. Mesenchymal stromal cells are a major player in intercellular communication inside the bone marrow microenvironment involved in hematopoiesis support. With aging, their functions may be altered, leading to hematopoiesis disturbances which can lead to hematologic cancers. A good understanding of the mechanisms involved in mesenchymal stem cell aging and the consequences on hematopoiesis and tumor progression is therefore necessary for a better comprehension of hematologic malignancies and for the development of therapeutic approaches. Abstract Aging of bone marrow is a complex process that is involved in the development of many diseases, including hematologic cancers. The results obtained in this field of research, year after year, underline the important role of cross-talk between hematopoietic stem cells and their close environment. In bone marrow, mesenchymal stromal cells (MSCs) are a major player in cell-to-cell communication, presenting a wide range of functionalities, sometimes opposite, depending on the environmental conditions. Although these cells are actively studied for their therapeutic properties, their role in tumor progression remains unclear. One of the reasons for this is that the aging of MSCs has a direct impact on their behavior and on hematopoiesis. In addition, tumor progression is accompanied by dynamic remodeling of the bone marrow niche that may interfere with MSC functions. The present review presents the main features of MSC senescence in bone marrow and their implications in hematologic cancer progression.
Collapse
|
20
|
Zhang J, Yuan Z, Zhong W, Wei Y. Stem Cell as Vehicles of Antibody in Treatment of Lymphoma: a Novel and Potential Targeted Therapy. Stem Cell Rev Rep 2020; 17:829-841. [PMID: 33205352 DOI: 10.1007/s12015-020-10080-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2020] [Indexed: 02/06/2023]
Abstract
Lymphoma is a heterogeneous malignancy and its incidence is increasing in the past decades all over the world. Although more than half of lymphoma patients achieve complete or partial remission from the standard first-line ABVD or R-CHOP based therapy, patients who fail to respond to these regimens will give rise to relapsed or refractory (R/R) lymphoma and may lead to a worse prognosis. Developing novel agents is important for R/R lymphoma. Based on the homing ability and being genetically modified easily, stem cells are usually used as vehicles in cell-based anti-tumor therapy, which can not only retain their own biological characteristics, but also make anti-tumor agents secrete constantly in tumor environment, to eventually kill the tumor cells more effectively. In this review, we will briefly introduce the properties of antibody therapy carried by stem cells, especially the hopes and hurdles of stem cell-mediated antibody secretion in the treatment of lymphoma.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China
| | - Zhaohu Yuan
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Weijie Zhong
- Department of Geriatrics, Hematology & Oncology ward, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yaming Wei
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China. .,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China.
| |
Collapse
|
21
|
Cheng YQ, Wang SB, Liu JH, Jin L, Liu Y, Li CY, Su YR, Liu YR, Sang X, Wan Q, Liu C, Yang L, Wang ZC. Modifying the tumour microenvironment and reverting tumour cells: New strategies for treating malignant tumours. Cell Prolif 2020; 53:e12865. [PMID: 32588948 PMCID: PMC7445401 DOI: 10.1111/cpr.12865] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
The tumour microenvironment (TME) plays a pivotal role in tumour fate determination. The TME acts together with the genetic material of tumour cells to determine their initiation, metastasis and drug resistance. Stromal cells in the TME promote the growth and metastasis of tumour cells by secreting soluble molecules or exosomes. The abnormal microenvironment reduces immune surveillance and tumour killing. The TME causes low anti‐tumour drug penetration and reactivity and high drug resistance. Tumour angiogenesis and microenvironmental hypoxia limit the drug concentration within the TME and enhance the stemness of tumour cells. Therefore, modifying the TME to effectively attack tumour cells could represent a comprehensive and effective anti‐tumour strategy. Normal cells, such as stem cells and immune cells, can penetrate and disrupt the abnormal TME. Reconstruction of the TME with healthy cells is an exciting new direction for tumour treatment. We will elaborate on the mechanism of the TME to support tumours and the current cell therapies for targeting tumours and the TME—such as immune cell therapies, haematopoietic stem cell (HSC) transplantation therapies, mesenchymal stem cell (MSC) transfer and embryonic stem cell‐based microenvironment therapies—to provide novel ideas for producing breakthroughs in tumour therapy strategies.
Collapse
Affiliation(s)
- Ya Qi Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shou Bi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jia Hui Liu
- Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Lin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chao Yang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ya Ru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yu Run Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xuan Sang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qi Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chang Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Liu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhi Chong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Motais B, Charvátová S, Hrdinka M, Šimíček M, Jelínek T, Ševčíková T, Kořístek Z, Hájek R, Bagó JR. A Bird's-Eye View of Cell Sources for Cell-Based Therapies in Blood Cancers. Cancers (Basel) 2020; 12:E1333. [PMID: 32456165 PMCID: PMC7281611 DOI: 10.3390/cancers12051333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 12/25/2022] Open
Abstract
: Hematological malignancies comprise over a hundred different types of cancers and account for around 6.5% of all cancers. Despite the significant improvements in diagnosis and treatment, many of those cancers remain incurable. In recent years, cancer cell-based therapy has become a promising approach to treat those incurable hematological malignancies with striking results in different clinical trials. The most investigated, and the one that has advanced the most, is the cell-based therapy with T lymphocytes modified with chimeric antigen receptors. Those promising initial results prepared the ground to explore other cell-based therapies to treat patients with blood cancer. In this review, we want to provide an overview of the different types of cell-based therapies in blood cancer, describing them according to the cell source.
Collapse
Affiliation(s)
- Benjamin Motais
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
| | - Sandra Charvátová
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
| | - Matouš Hrdinka
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
| | - Michal Šimíček
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
| | - Tomáš Jelínek
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
| | - Tereza Ševčíková
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
| | - Zdeněk Kořístek
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
| | - Roman Hájek
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
| | - Juli R. Bagó
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
| |
Collapse
|
23
|
Rahmatizadeh F, Gholizadeh-Ghaleh Aziz S, Khodadadi K, Lale Ataei M, Ebrahimie E, Soleimani Rad J, Pashaiasl M. Bidirectional and Opposite Effects of Naïve Mesenchymal Stem Cells on Tumor Growth and Progression. Adv Pharm Bull 2019; 9:539-558. [PMID: 31857958 PMCID: PMC6912184 DOI: 10.15171/apb.2019.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/31/2019] [Accepted: 08/13/2019] [Indexed: 12/16/2022] Open
Abstract
Cancer has long been considered as a heterogeneous population of uncontrolled proliferation of
different transformed cell types. The recent findings concerning tumorigeneses have highlighted
the fact that tumors can progress through tight relationships among tumor cells, cellular, and
non-cellular components which are present within tumor tissues. In recent years, studies have
shown that mesenchymal stem cells (MSCs) are essential components of non-tumor cells within
the tumor tissues that can strongly affect tumor development. Several forms of MSCs have been
identified within tumor stroma. Naïve (innate) mesenchymal stem cells (N-MSCs) derived from
different sources are mostly recruited into the tumor stroma. N-MSCs exert dual and divergent
effects on tumor growth through different conditions and factors such as toll-like receptor
priming (TLR-priming), which is the primary underlying causes of opposite effects. Moreover,
MSCs also have the contrary effects by various molecular mechanisms relying on direct cellto-
cell connections and indirect communications through the autocrine, paracrine routes, and
tumor microenvironment (TME).
Overall, cell-based therapies will hold great promise to provide novel anticancer treatments.
However, the application of intact MSCs in cancer treatment can theoretically cause adverse
clinical outcomes. It is essential that to extensively analysis the effective factors and conditions
in which underlying mechanisms are adopted by MSCs when encounter with cancer.
The aim is to review the cellular and molecular mechanisms underlying the dual effects of
MSCs followed by the importance of polarization of MSCs through priming of TLRs.
Collapse
Affiliation(s)
- Faramarz Rahmatizadeh
- Department of Molecular Medicine, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Khodadad Khodadadi
- Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, Melbourne, Australia
| | - Maryam Lale Ataei
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esmaeil Ebrahimie
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, Australia
| | - Jafar Soleimani Rad
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Reproductive Biology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Maryam Pashaiasl
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Reproductive Biology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran.,Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Fathi E, Sanaat Z, Farahzadi R. Mesenchymal stem cells in acute myeloid leukemia: a focus on mechanisms involved and therapeutic concepts. Blood Res 2019; 54:165-174. [PMID: 31730689 PMCID: PMC6779935 DOI: 10.5045/br.2019.54.3.165] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/19/2019] [Accepted: 07/04/2019] [Indexed: 12/15/2022] Open
Abstract
Drug resistance in cancer, especially in leukemia, creates a dilemma in treatment planning. Consequently, studies related to the mechanisms underlying drug resistance, the molecular pathways involved in this phenomenon, and alternate therapies have attracted the attention of researchers. Among a variety of therapeutic modalities, mesenchymal stem cells (MSCs) are of special interest due to their potential clinical use. Therapies involving MSCs are showing increasing promise in cancer treatment and anticancer drug screening applications; however, results have been inconclusive, possibly due to the heterogeneity of MSC populations. Most recently, the effect of MSCs on different types of cancer, such as hematologic malignancies, their mechanisms, sources of MSCs, and its advantages and disadvantages have been discussed. There are many proposed mechanisms describing the effects of MSCs in hematologic malignancies; however, the most commonly-accepted mechanism is that MSCs induce tumor cell cycle arrest. This review explains the anti-tumorigenic effects of MSCs through the suppression of tumor cell proliferation in hematological malignancies, especially in acute myeloid leukemia.
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Li H, Li J, Cheng J, Chen X, Zhou L, Li Z. AML‑derived mesenchymal stem cells upregulate CTGF expression through the BMP pathway and induce K562‑ADM fusiform transformation and chemoresistance. Oncol Rep 2019; 42:1035-1046. [PMID: 31322275 PMCID: PMC6667869 DOI: 10.3892/or.2019.7237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/12/2019] [Indexed: 12/27/2022] Open
Abstract
Bone marrow‑derived mesenchymal stem cells (MSCs), are the basic cellular components that make up the bone marrow microenvironment (BMM). In acute myeloid leukemia (AML), the morphology and function of MSCs changes in accordance with the transformation of the BMM. Moreover, the transformation of MSCs into osteoblasts is determined through the bone morphogenetic protein (BMP) pathway, ultimately leading to an altered expression of the downstream adhesion molecule, connective tissue growth factor (CTGF). In this study, we aimed to explore the interaction of possible pathways in AML‑derived mesenchymal stem cells (AML‑MSCs) co‑cultured with the K562 and K562‑ADM cell lines. AML‑MSCs were co‑cultured with K562/K562‑ADM cells, and the interactions between the cells were verified by morphological detection, peroxidase staining (POX), reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and fluorescence in situ hybridization (FISH). The proliferation of K562/K562‑ADM cells under co‑culture conditions was detected by flow cytometry. The expression levels of BMP4 and CTGF were examined by RT‑qPCR and western blot (WB) analysis. The detection of interleukin (IL)‑6 and IL‑32 was also determined by enzyme linked immunosorbent assay (ELISA). In the co‑culture system, the K562‑ADM cells underwent fusiform transformation. The occurrence of this transformation was associated with an increased expression of CTGF due to the dysregulation of the BMP pathway. The AML‑MSCs promoted the proliferation of the K562‑ADM cell, but inhibited that of the K562 cells. These findings were confirmed by changes in the expression of the soluble cytokines, IL‑6 and IL‑32. On the whole, the findings of this study demonstrate that AML‑MSCs regulate the expression of CTGF through the BMP pathway. In addition, they affect cytokine production, induce spindle‑shaped transformation, and increase drug resistance in the K562‑ADM cells. Thus, the morphological transformation through the BMP pathway provides us with a novel target with which to circumvent tumor occurrence, development, drug resistance, invasion and metastasis.
Collapse
Affiliation(s)
- Haiying Li
- Department of Central Laboratory, The First Medical College of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Juan Li
- Department of Central Laboratory, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Juan Cheng
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xuan Chen
- Department of Central Laboratory, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Lanxia Zhou
- Department of Central Laboratory, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Zhao Li
- Department of Central Laboratory, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
26
|
Ryan D, Paul BT, Koziol J, ElShamy WM. The pro- and anti-tumor roles of mesenchymal stem cells toward BRCA1-IRIS-overexpressing TNBC cells. Breast Cancer Res 2019; 21:53. [PMID: 31014367 PMCID: PMC6480921 DOI: 10.1186/s13058-019-1131-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background To evaluate the cross-talk between BRCA1-IRIS (IRIS)-overexpressing (IRISOE) TNBC cells and tumor-resident mesenchymal stem cells (MSCs) that triggers the aggressiveness or elimination of IRISOE TNBC tumors. Methods We analyzed the effect of silencing or inactivating IRIS on the bi-directional interaction between IRISOE TNBC cells and MSCs on tumor formation and progression. We analyzed the downstream signaling in MSCs induced by IL-6 secreted from IRISOE TNBC cells. We compared the effect of MSCs on the formation and progression of IRIS-proficient and deficient-TNBC cells/tumors using in vitro and in vivo models. Finally, we analyzed the association between IL-6, PTGER2, and PTGER4 overexpression and breast cancer subtype; hormone receptor status; and distant metastasis-free or overall survival. Results We show high-level IL-6 secreted from IRISOE TNBC cells that enhances expression of its receptor (IL-6R) in MSCs, their proliferation, and migration toward IRISOE, in vitro, and recruitment into IRISOE TNBC tumors, in vivo. In serum-free medium, recombinant IL-6 and the IL-6-rich IRISOE TNBC cell condition media (CM) decreased STAT3Y705 phosphorylation (p-STAT3Y705) in MSCs. Inhibiting IRIS expression or activity prolonged STAT3Y705 phosphorylation in MSCs. The interaction with IRISOE TNBC cells skewed MSC differentiation toward prostaglandin E2 (PGE2)-secreting pro-aggressiveness cancer-associated fibroblasts (CAFs). Accordingly, co-injecting human or mouse MSCs with IRISOE TNBC tumor cells promoted the formation of aggressive mammary tumors, high circulating IL-6 and PGE2 levels, and reduced overall survival. In contrast, IRIS-silenced or inactivated cells showed reduced tumor formation ability, limited MSC recruitment into tumors, reduced circulating IL-6 and PGE2 levels, and prolonged overall survival. A positive correlation between IL-6, PTGER2, and PTGER4 expression and basal phenotype; ER-negativity; distant metastasis-free and overall survival in basal; or BRCAmutant carriers was observed. Finally, the bi-directional interaction with MSCs triggered death rather than growth of IRIS-silenced TNBC cells, in vitro and in vivo. Conclusions The IL-6/PGE2-positive feedback loop between IRISOE TNBC tumor cells and MSCs enhances tumor aggressiveness. Inhibiting IRIS expression limits TNBC tumor growth and progression through an MSC-induced death of IRIS-silenced/inactivated TNBC cells. Electronic supplementary material The online version of this article (10.1186/s13058-019-1131-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Ryan
- Breast Cancer Program, San Diego Biomedical Research Institute, 10865 Road to Cure, Suite 100, San Diego, CA, 92121, USA
| | - Bibbin T Paul
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Jim Koziol
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Wael M ElShamy
- Breast Cancer Program, San Diego Biomedical Research Institute, 10865 Road to Cure, Suite 100, San Diego, CA, 92121, USA.
| |
Collapse
|
27
|
Zhou X, Li T, Chen Y, Zhang N, Wang P, Liang Y, Long M, Liu H, Mao J, Liu Q, Sun X, Chen H. Mesenchymal stem cell‑derived extracellular vesicles promote the in vitro proliferation and migration of breast cancer cells through the activation of the ERK pathway. Int J Oncol 2019; 54:1843-1852. [PMID: 30864702 DOI: 10.3892/ijo.2019.4747] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/14/2019] [Indexed: 11/06/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been demonstrated to be involved in tumor progression and the modulation of the tumor microenvironment, partly through their secretome. Extracellular vesicles (EVs) are membranous nanovesicles secreted by multiple types of cells and have been demonstrated to mediate intercellular communication in both physiological and pathological conditions. However, numerous questions still remain regarding the underlying mechanisms and functional consequences of these interactions. The purpose of this study was to investigate the effects of human umbilical cord mesenchymal stem cell‑derived EVs (hUC‑MSC‑EVs) on the proliferation, migration and invasion of human breast cancer cells. We successfully generated and identified hUC‑MSCs and hUC‑MSC‑EVs which were used in this study. The results revealed that treatment of the MDA‑MB‑231 and MCF‑7 human breast cancer cells with medium containing hUC‑MSC‑EVs significantly enhanced the proliferation, migration and invasion of the cells in vitro. Treatment of the cells with medium containing hUC‑MSC‑EVs also reduced E‑cadherin expression and increased N‑cadherin expression, thus promoting the epithelial‑mesenchymal transition (EMT) of the breast cancer cells. Treatment of the breast cancer cells with extracellular signal‑regulated kinase (ERK) inhibitor prior to the interaction with hUC‑MSC‑EVs significantly reversed the enhanced proliferation, migration and invasion, as well as the EMT of the breast cancer cells induced by the hUC‑MSC‑EVs. On the whole, these data indicate that hUC‑MSC‑EVs promote the invasive and migratory potential of breast cancer cells through the induction of EMT via the ERK pathway, leading to malignant tumor progression and metastasis. Taken together, the findings of this study suggest that targeting pathways to reverse EMT may lead to the development of novel therapeutic approaches with which to combat breast cancer.
Collapse
Affiliation(s)
- Xiaohe Zhou
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Tao Li
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yufei Chen
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Nannan Zhang
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Pengli Wang
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yingying Liang
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Melissa Long
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Haoran Liu
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jian Mao
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Qiuyan Liu
- National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai 200433, P.R. China
| | - Xiaochun Sun
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Huabiao Chen
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
28
|
Mesenchymal stem cells in suppression or progression of hematologic malignancy: current status and challenges. Leukemia 2019; 33:597-611. [PMID: 30705410 PMCID: PMC6756083 DOI: 10.1038/s41375-018-0373-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/17/2018] [Accepted: 12/23/2018] [Indexed: 12/27/2022]
Abstract
Mesenchymal stem cells (MSCs) are known for being multi-potent. However, they also possess anticancer properties, which has prompted efforts to adapt MSCs for anticancer therapies. However, MSCs have also been widely implicated in pathways that contribute to tumor growth. Numerous studies have been conducted to adapt MSCs for further clinical use; however, the results have been inconclusive, possibly due to the heterogeneity of MSC populations. Moreover, the conflicting roles of MSCs in tumor inhibition and tumor growth impede their adaptation for anticancer therapies. Antitumorigenic and protumorigenic properties of MSCs in hematologic malignancies are not as well established as they are for solid malignancies, and data comparing them are still limited. Herein the effect of MSCs on hematologic malignancies, such as leukemia and lymphoma, their mechanisms, sources of MSCs, and their effects on different types of cancer, have been discussed. This review describes how MSCs preserve both antitumorigenic and protumorigenic effects, as they tend to not only inhibit tumor growth by suppressing tumor cell proliferation but also promote tumor growth by suppressing tumor cell apoptosis. Thus clinical studies trying to adapt MSCs for anticancer therapies should consider that MSCs could actually promote hematologic cancer progression. It is necessary to take extreme care while developing MSC-based cell therapies in order to boost anticancer properties while eliminating tumor-favoring effects. This review emphasizes that research on the therapeutic applications of MSCs must consider that they exert both antitumorigenic and protumorigenic effects on hematologic malignancies.
Collapse
|
29
|
Lee MW, Park YJ, Kim DS, Park HJ, Jung HL, Lee JW, Sung KW, Koo HH, Yoo KH. Human Adipose Tissue Stem Cells Promote the Growth of Acute Lymphoblastic Leukemia Cells in NOD/SCID Mice. Stem Cell Rev Rep 2018; 14:451-460. [PMID: 29594684 DOI: 10.1007/s12015-018-9806-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, the effect of adipose tissue stem cells (ASCs) on the growth of acute lymphoblastic leukemia (ALL) cells was examined in an in vivo model. We established ALL cell lines expressing firefly luciferase (ALL/fLuc) by lentiviral infection that were injected intraperitoneally to NOD/SCID mice. The luciferase activities were significantly higher in mice co-injected with 105 ALL/fLuc cells and ASCs than in those injected with ALL/fLuc cells alone. Co-injection of 105 ALL/fLuc cells and ASCs in differing ratios into mice gradually increased the bioluminescence intensity in all groups, and mice co-injected with 1 or 2 × 106 ASCs showed higher bioluminescence intensity than those receiving lower numbers. Interestingly, in the mice injected with 105 or 107 ALL/fLuc cells alone, the formation of tumor masses was not observed for at least five weeks. Moreover, co-injection of 107 ALL/fLuc cells and 5 × 105 ASCs into mice increased the bioluminescence intensity in all groups, and showed significantly higher bioluminescence intensity compared to mice co-injected with human normal fibroblast HS68 cells. Overall, ASCs promote the growth of ALL cells in vivo, suggesting that ASCs negatively influence hematologic malignancy, which should be considered in developing cell therapy using ASCs.
Collapse
Affiliation(s)
- Myoung Woo Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, South Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - Yoo Jin Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, South Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - Dae Seong Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, South Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - Hyun Jin Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, South Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - Hye Lim Jung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, South Korea
| | - Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, South Korea
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, South Korea
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, South Korea. .,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, South Korea. .,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea. .,Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| |
Collapse
|
30
|
Knockdown of TGF-β1 expression in human umbilical cord mesenchymal stem cells reverts their exosome-mediated EMT promoting effect on lung cancer cells. Cancer Lett 2018; 428:34-44. [DOI: 10.1016/j.canlet.2018.04.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 02/08/2023]
|
31
|
Wang L, Zhang H, Guan L, Zhao S, Gu Z, Wei H, Gao Z, Wang F, Yang N, Luo L, Li Y, Wang L, Liu D, Gao C. Mesenchymal stem cells provide prophylaxis against acute graft-versus-host disease following allogeneic hematopoietic stem cell transplantation: A meta-analysis of animal models. Oncotarget 2018; 7:61764-61774. [PMID: 27528221 PMCID: PMC5308689 DOI: 10.18632/oncotarget.11238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/28/2016] [Indexed: 02/06/2023] Open
Abstract
A meta-analysis of animal models was conducted to evaluate the prophylactic effects of mesenchymal stem cells (MSCs) on acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation. A total of 50 studies involving 1848 animals were included. The pooled results showed that MSCs significantly reduced aGVHD-associated mortality (risk ratio = 0.70, 95% confidence interval 0.62 to 0.79, P = 2.73×10−9) and clinical scores (standardized mean difference = −3.60, 95% confidence interval −4.43 to −2.76, P = 3.61×10−17). In addition, MSCs conferred robust favorable prophylactic effects on aGVHD across recipient species, MSC doses, and administration times, but not MSC sources. Our meta-analysis showed that MSCs significantly prevented mortality and alleviated the clinical manifestations of aGVHD in animal models. These data support further clinical trials aimed at evaluating the efficacy of using MSCs to prevent aGVHD.
Collapse
Affiliation(s)
- Li Wang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Department of Hematology and Oncology, Laoshan Branch, No. 401 Hospital of Chinese PLA, Qingdao, China
| | - Haiyan Zhang
- Department of Hematology, Linyi People's Hospital, Linyi, China
| | - Lixun Guan
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Shasha Zhao
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhenyang Gu
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Huaping Wei
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhe Gao
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Feiyan Wang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Nan Yang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lan Luo
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yonghui Li
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lili Wang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Daihong Liu
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Chunji Gao
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
32
|
Thirumal Raj A, Kheur S. Hypothesizing the potential implications of exposing known carcinogens on normal stem cells. Oral Oncol 2018. [PMID: 29519751 DOI: 10.1016/j.oraloncology.2018.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- A Thirumal Raj
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, India.
| | - Supriya Kheur
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, India.
| |
Collapse
|
33
|
The Superiority of Sucrose Cushion Centrifugation to Ultrafiltration and PEGylation in Generating High-Titer Lentivirus Particles and Transducing Stem Cells with Enhanced Efficiency. Mol Biotechnol 2018; 60:185-193. [DOI: 10.1007/s12033-017-0044-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Lee MJ, Park SY, Ko JH, Lee HJ, Ryu JS, Park JW, Khwarg SI, Yoon SO, Oh JY. Mesenchymal stromal cells promote B-cell lymphoma in lacrimal glands by inducing immunosuppressive microenvironment. Oncotarget 2017; 8:66281-66292. [PMID: 29029511 PMCID: PMC5630411 DOI: 10.18632/oncotarget.19971] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 07/18/2017] [Indexed: 01/30/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have therapeutic potential for various diseases because of their anti-inflammatory and immunosuppressive properties. However, the immunosuppressive microenvironment allows tumor cells to evade immune surveillance, whereas maintenance of inflammation is required for tumor development and progression. Hence, MSCs may promote or suppress tumors in a context-dependent manner. We here investigated the effects of bone marrow-derived MSCs in a murine model of lacrimal gland B-cell lymphoma. Co-injection of MSCs with B lymphoma cells enhanced tumor growth in lacrimal glands without long-term engraftment. Of note, MSCs induced greater infiltration of immune and immune-regulatory cells near tumor: CD4+ cells, CD11b+ cells, CD4+Foxp3+ regulatory T cells and CD11b+Ly6C+Ly6G− myeloid-derived suppressor cells. Concurrently, there was up-regulation of immune-related molecules including TNF-α, IL-1β, TGF-β1, and arginase in glands treated with MSCs. Apoptosis in tumor was less severe in mice treated with MSCs compared to those without MSCs; however, MSCs did not directly inhibit apoptosis of B lymphoma cells in an in vitro co-culture. Together, data demonstrate that MSCs create immunosuppressive milieu by recruiting regulatory immune cells and promote B-cell lymphoma growth in lacrimal glands.
Collapse
Affiliation(s)
- Min Joung Lee
- Department of Ophthalmology, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Se Yeon Park
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jung Hwa Ko
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jin Suk Ryu
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jong Woo Park
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Sang In Khwarg
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea
| | | | - Joo Youn Oh
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
35
|
Ji Y, Ma Y, Chen X, Ji X, Gao J, Zhang L, Ye K, Qiao F, Dai Y, Wang H, Wen X, Lin J, Hu J. Microvesicles released from human embryonic stem cell derived-mesenchymal stem cells inhibit proliferation of leukemia cells. Oncol Rep 2017. [PMID: 28627682 DOI: 10.3892/or.2017.5729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human embryonic stem cell derived-mesenchymal stem cells (hESC‑MSCs) are able to inhibit proliferation of leukemia cells. Microvesicles released from human embryonic stem cell derived-mesenchymal stem cells (hESC‑MSC‑MVs) might play an important part in antitumor activity. Microvesicles were isolated by ultracentrifugation and identified under a scanning electron microscopy and transmission electron microscope separately. After 48-h cocultured with hESC‑MSCs and hESC‑MSC‑MVs, the number of K562 and HL60 was counted and tumor cell viability was measured by CCK8 assay. The expression of proteins Bcl-2 and Bax were estimated by western blotting. Transmission electron microscope and western blot analysis were adopted to evaluate the autophagy level. Results showed that both hESC‑MSCs and hESC‑MSC‑MVs inhibited proliferation of leukemia cells in a concentration-dependent manner. hESC‑MSC‑MVs reduced the ratio of Bcl/Bax, enhanced the protein level of Beclin-1 and LC3-II conversion, thus upregulating autophagy and apoptosis. In conclusion, microvesicles released from human embryonic stem cell derived-mesenchymal stem cells inhibited tumor growth and stimulated autophagy and excessive autophagy might induce apoptosis.
Collapse
Affiliation(s)
- Yuan Ji
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yongbin Ma
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiang Chen
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xianyan Ji
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jianyi Gao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Lei Zhang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Kai Ye
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Fuhao Qiao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yao Dai
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hui Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiangmei Wen
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Jiabo Hu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
36
|
Ji X, Zhang Z, Han Y, Song J, Xu X, Jin J, Su S, Mu D, Liu X, Xu S, Cui H, Zhao Z, Wang Y, Liu H. Mesenchymal stem cells derived from normal gingival tissue inhibit the proliferation of oral cancer cells in vitro and in vivo. Int J Oncol 2016; 49:2011-2022. [PMID: 27826624 DOI: 10.3892/ijo.2016.3715] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/23/2016] [Indexed: 11/06/2022] Open
Abstract
The interplay between tumor cells and mesenchymal stem cells (MSCs) within tumor microenvironment plays a significant role in tumor development, and thus might be exploited for therapeutic intervention. In this study, we isolated MSCs from normal gingival tissue (GMSCs), and detected the effect of GMSCs on oral cancer cells via direct co-culture and indirect co-culture systems. The cell proliferation assay of direct co-culture showed that GMSCs could inhibit the growth of oral cancer cells. Conditioned medium derived from GMSCs (GMSCs-CM) also exerted an anticancer effect, which indicates that soluble factors in GMSCs-CM played a dominant role in GMSCs-induced cancer cell growth inhibition. To investigate the mechanism, we performed apoptosis assay by flow cytometry, and confirmed that cancer cell apoptosis induced by GMSCs could be a reason for the effect of GMSCs on the growth of oral cancer cells. Western blotting also confirmed that GMSCs could upregulate expression of pro-apoptotic genes including p-JNK, cleaved PARP, cleaved caspase-3, Bax expression and downregulate proliferation- and anti-apoptosis-related gene expression such as p-ERK1/2, Bcl-2, CDK4, cyclin D1, PCNA and survivin. Importantly, the inhibitory effect of GMSCs on cancer cells can partially be restored by blockade of JNK pathway. Moreover, animal studies showed that GMSCs exerted an anticancer effect after oral cancer cells and GMSCs were co-injected with oral cancer cells. Taken together, our data suggest that GMSCs can suppress oral cancer cell growth in vitro and in vivo via altering the surrounding microenvironment of oral cancer cells, which indicates that GMSCs have a potential use in the management of oral dysplasia and oral cancer in future.
Collapse
Affiliation(s)
- Xiaoli Ji
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Haidian, Beijing 100081, P.R. China
| | - Zhihui Zhang
- Department of Stomatology, Peking University Third Hospital, Haidian, Beijing 100191, P.R. China
| | - Ying Han
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Haidian, Beijing 100081, P.R. China
| | - Jiangyuan Song
- Department of Stomatology, Wuhan Union Hospital, Wuhan, Hubei 430022, P.R. China
| | - Xiangliang Xu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Haidian, Beijing 100081, P.R. China
| | - Jianqiu Jin
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Haidian, Beijing 100081, P.R. China
| | - Sha Su
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Haidian, Beijing 100081, P.R. China
| | - Dongdong Mu
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Haidian, Beijing 100081, P.R. China
| | - Xiaodan Liu
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Haidian, Beijing 100081, P.R. China
| | - Si Xu
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Haidian, Beijing 100081, P.R. China
| | - Hongwei Cui
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Haidian, Beijing 100081, P.R. China
| | - Zhongfang Zhao
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Haidian, Beijing 100081, P.R. China
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Haidian, Beijing 100081, P.R. China
| | - Hongwei Liu
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Haidian, Beijing 100081, P.R. China
| |
Collapse
|
37
|
Clinical Observation of Employment of Umbilical Cord Derived Mesenchymal Stem Cell for Juvenile Idiopathic Arthritis Therapy. Stem Cells Int 2015; 2016:9165267. [PMID: 26770214 PMCID: PMC4684881 DOI: 10.1155/2016/9165267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/31/2015] [Accepted: 08/06/2015] [Indexed: 12/30/2022] Open
Abstract
Juvenile idiopathic arthritis (JIA), known as Juvenile rheumatoid arthritis, is the most common type of arthritis in children aged under 17. It may cause sequelae due to lack of effective treatment. The goal of this study is to explore the therapeutic effect of umbilical cord mesenchymal stem cells (UC-MSCs) for JIA. Ten JIA patients were treated with UC-MSCs and received second infusion three months later. Some key values such as 28-joint disease activity score (DAS28), TNF-α, IL-6, and regulatory T cells (Tregs) were evaluated. Data were collected at 3 months and 6 months after first treatment. DAS28 score of 10 patients was between 2.6 and 3.2 at three months after infusion. WBC, ESR, and CRP were significantly decreased while Tregs were remarkably increased and IL-6 and TNF-α were declined. Similar changes of above values were found after 6 months. At the same time, the amount of NSAIDS and steroid usage in patients was reduced. However, no significant changes were found comparing the data from 3 and 6 months. These results suggest that UC-MSCs can reduce inflammatory cytokines, improve immune network effects, adjust immune tolerance, and effectively alleviate the symptoms and they might provide a safe and novel approach for JIA treatment.
Collapse
|