1
|
Chai C, Sultan E, Sarkar SR, Zhong L, Sarfati DN, Gershoni-Yahalom O, Jacobs-Wagner C, Rosental B, Wang B. Explosive cytotoxicity of 'ruptoblasts' bridges hormonal surveillance and immune defense. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.645876. [PMID: 40236000 PMCID: PMC11996342 DOI: 10.1101/2025.03.28.645876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Cytotoxic killing is an essential immune function, yet its cellular mechanisms have been characterized in only a few model species. Here, we show that planarian flatworms harness a unique cytotoxic strategy. In planarians, activin, a hormone regulating regeneration and reproduction, also acts as an inflammatory cytokine. Overactivation of activin signaling - through protein injection, genetic chimerism, or bacterial infection - triggers 'ruptoblasts', an undocumented immune cell type, to undergo 'ruptosis', a unique mode of cell bursting that eliminates nearby cells and bacteria in mere minutes, representing one of the fastest cytotoxic mechanisms observed. Ablating ruptoblasts suppresses inflammation but compromises bacterial clearance, highlighting ruptoblasts' broad-spectrum immune functions. We further identified ruptoblast-like cells in diverse basal bilaterians, unveiling an alternative strategy that couples hormonal regulation with immune defense and expanding the landscape of evolutionary immune innovations.
Collapse
|
2
|
Kulhari U, Ambujakshan A, Ahmed M, Washimkar K, Kachari J, Mugale MN, Sahu BD. Nuciferine inhibits TLR4/NF-κB/MAPK signaling axis and alleviates adjuvant-induced arthritis in rats. Eur J Pharmacol 2024; 982:176940. [PMID: 39182545 DOI: 10.1016/j.ejphar.2024.176940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Rheumatoid arthritis is an inflammatory condition primarily affecting the joints. Nuciferine (NCF), a key bioactive aporphine alkaloid biosynthesized in lotus leaves, exhibits promising anti-inflammatory and antioxidant properties. In this study, we investigated whether NCF could alleviate inflammatory arthritis conditions in a complete Freund's adjuvant (CFA)-mediated arthritis model in rats. The arthritis model was established through intradermal injection of CFA (100 μL) in the sub-plantar region of the right hind paw. The arthritic animals were treated orally with NCF at 5 and 10 mg/kg and indomethacin (Indo) at 5 mg/kg body weight as reference control. NCF treatment remarkably alleviated inflammatory joint swelling and arthritic index. The radiological and histological analysis revealed evidence of the beneficial effects of NCF. NCF treatment decreased the content of pro-inflammatory cytokines (TNF-α and IL-1β) and myeloperoxidase (MPO) activity and restored the anti-inflammatory cytokine (IL-10) in the paw joints. The serum levels of pro-inflammatory cytokines were also markedly reduced in the NCF (10 mg/kg) treatment group. Moreover, the arthritis-induced inflammatory mediators, including cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) and the toll-like receptor (TLR)-4, mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) signaling proteins were substantially decreased in the NCF treatment groups. NCF treatment also restored the antioxidant defense enzymes and abrogated lipid peroxidation in the paw tissue. Our findings strongly suggest that NCF is a promising therapeutic molecule for rheumatoid arthritis, inspiring further research, and development in this area.
Collapse
Affiliation(s)
- Uttam Kulhari
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, Assam, India
| | - Anju Ambujakshan
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, Assam, India
| | - Momitul Ahmed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, Assam, India
| | - Kaveri Washimkar
- Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India
| | - Jodumoni Kachari
- Department of Veterinary Surgery and Radiology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, 781022, India
| | - Madhav Nilakanth Mugale
- Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, Assam, India.
| |
Collapse
|
3
|
Samrit T, Changklungmao N, Sangpairoj K, Buddawong A, Kueakhai P, Chuanboon K, Sobhon P, Pranweerapaiboon K. Ethanolic extract of Parkia speciosa pods exhibits antioxidant and anti-inflammatory properties in lipopolysaccharide-induced murine macrophages by inhibiting the p38 MAPK pathway. Heliyon 2024; 10:e39641. [PMID: 39506962 PMCID: PMC11538774 DOI: 10.1016/j.heliyon.2024.e39641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/13/2024] [Accepted: 10/19/2024] [Indexed: 11/08/2024] Open
Abstract
Background Parkia speciosa (PS) is commonly used in Southeast Asian cuisine and traditional medicine to treat diabetes, hypertension, dermatitis, and kidney diseases. PS has emerged as a subject of interest because of its potential antioxidation and anti-inflammatory properties. However, despite its historically long and wide usage, a comprehensive investigation of these properties in PS pods (PSp) have not been conducted. Aims of this study This study aimed to identify the phytochemical compounds in the ethanolic extract of PSp collected from Southern Thailand and assess whether PSp exhibit antioxidant properties and mitigate inflammation in a lipopolysaccharide (LPS)-induced RAW264.7 model. Materials and methods The ethanolic extract of PSp was comprehensively analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-mass spectrometry (GC/MS) to identify its phytochemical constituents. To assess the antioxidant activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid (ABTS) assays were performed, and cytotoxicity was evaluated using the MTT assay. The effect of PSp on reactive nitrogen and oxygen species (RNS and ROS) was determined using a nitric oxide (NO) assay, and its effect on pro-inflammatory cytokines was assessed using enzyme-linked immunosorbent assay (ELISA) and real-time quatitvative polymerase chain reaction (qPCR). Morphological changes following treatment were observed using a microscope. Western blot analysis was performed to quantify MAPK pathway expression. Results PSp contain polyphenols, phytosterols, triterpenes, oxaloacetic acid, and unsaturated fatty acids. PSp demonstrated high antioxidant potential in scavenging free radicals and exhibited no cytotoxic effects on macrophages. Moreover, PSp effectively reduced NO release and inhibited pro-inflammatory cytokines such as IL1-β, TNF-α, and IL-6. PSp treatment induced notable morphological changes in macrophages, characterized by an increase in cell size and the presence of intracellular vacuoles. In addition, Western blot analysis showed the selective suppressive effect of PSp on the p38-MAPK pathway. Conclusion PSp possess strong antioxidant and anti-inflammatory properties, making it a potential therapeutic agent for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Tepparit Samrit
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Chonburi, 20131, Thailand
| | - Narin Changklungmao
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Chonburi, 20131, Thailand
| | - Kant Sangpairoj
- Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani, 12120, Thailand
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| | - Aticha Buddawong
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| | - Pornanan Kueakhai
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Chonburi, 20131, Thailand
| | - Kititpong Chuanboon
- Mahidol University-Frontier Research Facility, Research Management and Development Division, Office of the President, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kanta Pranweerapaiboon
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| |
Collapse
|
4
|
Almeida RA, Ferreira CG, Matos VUS, Nogueira JM, Braga MP, Caldi Gomes L, Jorge EC, Soriani FM, Michel U, Ribas VT. AAV-Mediated Expression of miR-17 Enhances Neurite and Axon Regeneration In Vitro. Int J Mol Sci 2024; 25:9057. [PMID: 39201743 PMCID: PMC11355044 DOI: 10.3390/ijms25169057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Neurodegenerative disorders, including traumatic injuries to the central nervous system (CNS) and neurodegenerative diseases, are characterized by early axonal damage, which does not regenerate in the adult mammalian CNS, leading to permanent neurological deficits. One of the primary causes of the loss of regenerative ability is thought to be a developmental decline in neurons' intrinsic capability for axon growth. Different molecules are involved in the developmental loss of the ability for axon regeneration, including many transcription factors. However, the function of microRNAs (miRNAs), which are also modulators of gene expression, in axon re-growth is still unclear. Among the various miRNAs recently identified with roles in the CNS, miR-17, which is highly expressed during early development, emerges as a promising target to promote axon regeneration. Here, we used adeno-associated viral (AAV) vectors to overexpress miR-17 (AAV.miR-17) in primary cortical neurons and evaluate its effects on neurite and axon regeneration in vitro. Although AAV.miR-17 had no significant effect on neurite outgrowth and arborization, it significantly enhances neurite regeneration after scratch lesion and axon regeneration after axotomy of neurons cultured in microfluidic chambers. Target prediction and functional annotation analyses suggest that miR-17 regulates gene expression associated with autophagy and cell metabolism. Our findings suggest that miR-17 promotes regenerative response and thus could mitigate neurodegenerative effects.
Collapse
Affiliation(s)
- Raquel Alves Almeida
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte 31279-901, Brazil (E.C.J.)
| | - Carolina Gomes Ferreira
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte 31279-901, Brazil (E.C.J.)
| | - Victor Ulysses Souza Matos
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte 31279-901, Brazil (E.C.J.)
| | - Julia Meireles Nogueira
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte 31279-901, Brazil (E.C.J.)
| | - Marina Pimenta Braga
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31279-901, Brazil (F.M.S.)
| | - Lucas Caldi Gomes
- Clinical Department of Neurology, TUM School of Medicine, Rechts der Isar Hospital, Technical University of Munich, 81675 Munich, Germany;
| | - Erika Cristina Jorge
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte 31279-901, Brazil (E.C.J.)
| | - Frederico Marianetti Soriani
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31279-901, Brazil (F.M.S.)
| | - Uwe Michel
- Department of Neurology, University Medicine Göttingen, 37075 Göttingen, Germany
| | - Vinicius Toledo Ribas
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte 31279-901, Brazil (E.C.J.)
| |
Collapse
|
5
|
Novita BD, Wasiyastuti W, Tjahjono Y, Wijaya H, Hadinugroho W, Wijaya S, Soegianto L, Theodora I, Widoretno ETW, Samsudin K, Julian A. Glucomannan is a promising isoniazid's enhancer that inducing macrophage phagocytosis. J Adv Pharm Technol Res 2024; 15:237-241. [PMID: 39290545 PMCID: PMC11404426 DOI: 10.4103/japtr.japtr_96_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 09/19/2024] Open
Abstract
Isoniazid (INH) is a frontline antituberculosis agent effective against Mycobacterium tuberculosis (Mtb), but the increasing challenge of avoiding multidrug-resistant tuberculosis, including INH resistance, necessitates innovative approaches. This study focused on enhancing macrophage phagocytosis to overcome INH resistance. Glucomannan, an immunomodulatory polysaccharide, emerged as a potential macrophage activator. Our objective was to characterize the glucomannan-INH mixture and assess its impact on INH efficacy and macrophage activity. Detailed examination of the glucomannan from Amorphophallus muelleri (0.05%-0.2%) was performed in several methods. INH sensitivity tests were carried out with the Mtb strain H37RV on Löwenstein-Jensen medium. Murine macrophage (RAW264.7) viability and activity were evaluated through MTT and latex bead phagocytosis assays. Ultraviolet-wavelength spectrophotometry was used to analyze chemical structure changes. Glucomannan (0.05%-0.2%) significantly enhanced murine macrophage viability and activity. When glucomannan was combined with INH, the IC50 value was greater compared to INH only. Phagocytosis assays revealed heightened macrophage activity in the presence of 0.05% and 0.1% glucomannan. Importantly, glucomannan did not compromise INH efficacy or alter its chemical structure. This study underscores the potential of glucomannan, particularly with a lower molecular weight, as a promising enhancer of INH, boosting macrophage phagocytosis against INH-resistant Mtb. These findings challenge the assumptions about the impact of glucomannan on drug absorption and prompt potential reevaluation. While specific receptors for glucomannan in macrophage phagocytosis require further exploration, the complement receptors are proposed to be potential mediators.
Collapse
Affiliation(s)
- Bernadette Dian Novita
- Department of Pharmacology and Therapy, Faculty of Medicine, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia
| | - Widya Wasiyastuti
- Department of Physiology, Faculty of Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Yudy Tjahjono
- Department of Biomedicine, Faculty of Pharmacy, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia
| | - Hendy Wijaya
- Department of Biomedicine, Faculty of Pharmacy, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia
| | - Wuryanto Hadinugroho
- Department of Biomedicine, Faculty of Pharmacy, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia
| | - Sumi Wijaya
- Department of Biomedicine, Faculty of Pharmacy, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia
| | - Lisa Soegianto
- Department of Biomedicine, Faculty of Pharmacy, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia
| | - Imelda Theodora
- Department of Pathology, Faculty of Medicine, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia
| | | | - Kevin Samsudin
- Department of Internal Medicine, Faculty of Medicine, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia
| | - Alvin Julian
- Department of Internal Medicine, Faculty of Medicine, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia
| |
Collapse
|
6
|
von Ancken AC, de Medeiros NSS, Perdomo SK, Cruz MC, Alvares-Saraiva AM, Perez EC, Silva RAD, Eizayaga FX, Bonamin LV. Aspirin 15cH has Different Effects on Morphology and Function of Lipopolysaccharide-Challenged RAW 264.7 Macrophages In Vitro Compared to a Pharmacological Dose of Aspirin. HOMEOPATHY 2024; 113:4-15. [PMID: 37517405 DOI: 10.1055/s-0043-1769105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
INTRODUCTION Aspirin is one of the most commonly used drugs worldwide. It is known to present antipyretic, anti-inflammatory and anti-thrombotic actions, making it extremely useful in a wide range of clinical contexts. Interestingly, homeopathically prepared Aspirin 15cH has been found to have a pro-thrombotic effect in rats, raising the hypothesis that Aspirin 15cH could also modulate the activity of inflammatory cells in different pathological processes. OBJECTIVE Our objective was to assess what effect Aspirin 15cH has on RAW 264.7 macrophages in vitro. METHODS The effects of Aspirin 15cH on biochemical and morphological activities of lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages were evaluated. These effects were compared with unchallenged macrophages (negative control), untreated LPS-stimulated macrophages, macrophages treated with succussed water (vehicle control), or aspirin 200 µg/mL (pharmacological inhibitor of LPS activity). Cell morphology (adhered cell area and cytoskeleton arrangements), cell viability, toll-like receptor-4 (TLR-4) expression, and the production of nitric oxide, cytokines and intracellular reactive oxygen species were assessed. RESULTS Aspirin 15cH reduced the number of cells expressing TLR-4 on the surface (p = 0.03) and induced a "columnar" morphology of macrophage pseudopods, indicating changes in cytoskeleton arrangement. When cells were treated with both Aspirin 15cH and LPS, cell morphology became heterogeneous, suggesting that sub-populations of cells had differing sensitivities to LPS or Aspirin 15cH. Exposure of the cells to LPS alone, succussed water or aspirin 200 µg/mL produced effects consistent with the literature. CONCLUSION Aspirin 15cH, aspirin 200 µg/mL, LPS and succussed water appear to act as independent stimuli able to induce different patterns of macrophage response. Aspirin 15cH induced changes suggestive of M2 polarization of the macrophages (i.e., toward a wound healing or tissue repair, rather than inflammatory, phenotype). These preliminary findings need to be confirmed in further specific studies.
Collapse
Affiliation(s)
- Adalberto C von Ancken
- Research Center, Graduate Program in Environmental and Experimental Pathology, Universidade Paulista-UNIP, São Paulo, Brazil
- Faculty of Veterinary Medicine, Universidade Cruzeiro do sul, São Paulo, Brazil
- High Dilution Science, São Caetano do Sul, Brazil
| | - Nathalia Salles S de Medeiros
- Research Center, Graduate Program in Environmental and Experimental Pathology, Universidade Paulista-UNIP, São Paulo, Brazil
| | - Sandra Kalil Perdomo
- Research Center, Graduate Program in Environmental and Experimental Pathology, Universidade Paulista-UNIP, São Paulo, Brazil
| | - Mario Costa Cruz
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
| | - Anuska M Alvares-Saraiva
- Research Center, Graduate Program in Environmental and Experimental Pathology, Universidade Paulista-UNIP, São Paulo, Brazil
| | - Elizabeth C Perez
- Research Center, Graduate Program in Environmental and Experimental Pathology, Universidade Paulista-UNIP, São Paulo, Brazil
| | - Rodrigo Augusto da Silva
- Research Center, Graduate Program in Environmental and Experimental Pathology, Universidade Paulista-UNIP, São Paulo, Brazil
| | | | - Leoni Villano Bonamin
- Research Center, Graduate Program in Environmental and Experimental Pathology, Universidade Paulista-UNIP, São Paulo, Brazil
| |
Collapse
|
7
|
Zbiral B, Weber A, Vivanco MDM, Toca-Herrera JL. Characterization of Breast Cancer Aggressiveness by Cell Mechanics. Int J Mol Sci 2023; 24:12208. [PMID: 37569585 PMCID: PMC10418463 DOI: 10.3390/ijms241512208] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
In healthy tissues, cells are in mechanical homeostasis. During cancer progression, this equilibrium is disrupted. Cancer cells alter their mechanical phenotype to a softer and more fluid-like one than that of healthy cells. This is connected to cytoskeletal remodeling, changed adhesion properties, faster cell proliferation and increased cell motility. In this work, we investigated the mechanical properties of breast cancer cells representative of different breast cancer subtypes, using MCF-7, tamoxifen-resistant MCF-7, MCF10A and MDA-MB-231 cells. We derived viscoelastic properties from atomic force microscopy force spectroscopy measurements and showed that the mechanical properties of the cells are associated with cancer cell malignancy. MCF10A are the stiffest and least fluid-like cells, while tamoxifen-resistant MCF-7 cells are the softest ones. MCF-7 and MDA-MB-231 show an intermediate mechanical phenotype. Confocal fluorescence microscopy on cytoskeletal elements shows differences in actin network organization, as well as changes in focal adhesion localization. These findings provide further evidence of distinct changes in the mechanical properties of cancer cells compared to healthy cells and add to the present understanding of the complex alterations involved in tumorigenesis.
Collapse
Affiliation(s)
- Barbara Zbiral
- Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (A.W.)
| | - Andreas Weber
- Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (A.W.)
| | - Maria dM. Vivanco
- Cancer Heterogeneity Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain;
| | - José L. Toca-Herrera
- Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (A.W.)
| |
Collapse
|
8
|
Cheng W, Fukuda M, Kim S, Liu Y, Chen X, Holmes C, Li Y, Chung H, Ren Y, Guan J. Osmotically Rupturing Phagosomes in Macrophages Using PNIPAM Microparticles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24244-24256. [PMID: 37186785 PMCID: PMC10426762 DOI: 10.1021/acsami.3c05335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The rupture of macrophage phagosomes has been implicated in various human diseases and plays a critical role in immunity. However, the mechanisms underlying this process are complex and not yet fully understood. This study describes the development of a robust engineering method for rupturing phagosomes based on a well-defined mechanism. The method utilizes microfabricated microparticles composed of uncrosslinked linear poly(N-isopropylacrylamide) (PNIPAM) as phagocytic objects. These microparticles are internalized into phagosomes at 37 °C. By exposing the cells to a cold shock at 0 °C, the vast majority of the microparticle-containing phagosomes rupture. The percentage of phagosomal rupture decreases with the increase of the cold-shock temperature. The osmotic pressure in the phagosomes and the tension in the phagosomal membrane are calculated using the Flory-Huggins theory and the Young-Laplace equation. The modeling results indicate that the osmotic pressure generated by dissolved microparticles is probably responsible for phagosomal rupture, are consistent with the experimentally observed dependence of phagosomal rupture on the cold-shock temperature, and suggest the existence of a cellular mechanism for resisting phagosomal rupture. Moreover, the effects of various factors including hypotonic shock, chloroquine, tetrandrine, colchicine, and l-leucyl-l-leucine O-methyl ester (LLOMe) on phagosomal rupture have been studied with this method. The results further support that the osmotic pressure generated by the dissolved microparticles causes phagosomal rupture and demonstrated usefulness of this method for studying phagosomal rupture. This method can be further developed, ultimately leading to a deeper understanding of phagosomal rupture.
Collapse
Affiliation(s)
- Wenhao Cheng
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-2870, USA
| | - Masahiro Fukuda
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-2870, USA
| | - Sundol Kim
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-2870, USA
| | - Yuan Liu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-2870, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-2870, USA
| | - Christina Holmes
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-2870, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-2870, USA
| | - Hoyong Chung
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-2870, USA
| | - Yi Ren
- College of Medicine, Florida State University, Tallahassee, Florida 32306-4370, USA
| | - Jingjiao Guan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-2870, USA
| |
Collapse
|
9
|
Nishinakagawa T, Hazekawa M, Hosokawa M, Ishibashi D. RCAS1 increases cell morphological changes in murine fibroblasts by reducing p38 phosphorylation. Mol Med Rep 2023; 27:62. [PMID: 36734265 PMCID: PMC9926866 DOI: 10.3892/mmr.2023.12949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 12/09/2022] [Indexed: 02/04/2023] Open
Abstract
Receptor‑binding cancer antigen expressed on SiSo cells (RCAS1) is a tumor‑associated antigen that is expressed in a number of human malignancies. RCAS1 acts as a ligand for a putative RCAS1 receptor that is present on various human cells including T and B lymphocytes and natural killer cells, in which it induces cell growth inhibition and apoptosis. It has been suggested that RCAS1 might serve an important role in tumor cell evasion from the host immune system. In fact, RCAS1 expression is related to malignant characteristics including tumor size, invasion depth, clinical stage and poor overall survival. The authors previously established doxycycline‑induced RCAS1 overexpression murine fibroblast L cells to analyze the biological functions of RCAS1 and reported that its expression inhibited cell cycle progression via the downregulation of cyclin D3, which subsequently induced apoptosis. Additionally, it was found that RCAS1 expression induced cell morphological changes prior to caspase‑mediated apoptosis. Thus, the present study examined signaling pathways associated with changes in cell morphology that were induced by RCAS1 expression. The data showed that increased RCAS1 expression caused a reduction in actin stress fibers and decreased cofilin phosphorylation. Recent studies have shown that p38 signaling regulates actin polymerization. The data the present study showed that increased RCAS1 expression significantly decreased p38 phosphorylation.
Collapse
Affiliation(s)
- Takuya Nishinakagawa
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Science, Fukuoka University, Fukuoka 814-0180, Japan,Correspondence to: Dr Takuya Nishinakagawa or Professor Daisuke Ishibashi, Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan, E-mail:
| | - Mai Hazekawa
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Masato Hosokawa
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Daisuke Ishibashi
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Science, Fukuoka University, Fukuoka 814-0180, Japan,Correspondence to: Dr Takuya Nishinakagawa or Professor Daisuke Ishibashi, Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan, E-mail:
| |
Collapse
|
10
|
Zhi Y, Chen X, Cao G, Chen F, Seo HS, Li F. The effects of air pollutants exposure on the transmission and severity of invasive infection caused by an opportunistic pathogen Streptococcus pyogenes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119826. [PMID: 35932897 DOI: 10.1016/j.envpol.2022.119826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Currently, urbanization is associated with an increase in air pollutants that contribute to invasive pathogen infections by altering the host's innate immunity and antimicrobial resistance capability. Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is a gram-positive opportunistic pathogen that causes a wide range of diseases, especially in children and immunosuppressed individuals. Diesel exhaust particle (DEP), a significant constituent of particulate matter (PM), are considered a prominent risk factor for respiratory illness and circulatory diseases worldwide. Several clinical and epidemiological studies have identified a close association between PM and the prevalence of viral and bacterial infections. This study investigated the role of DEP exposure in increasing pulmonary and blood bacterial counts and mortality during GAS M1 strain infection in mice. Thus, we characterized the upregulation of reactive oxygen species production and disruption of tight junctions in the A549 lung epithelial cell line due to DEP exposure, leading to the upregulation of GAS adhesion and invasion. Furthermore, DEP exposure altered the leukocyte components of infiltrated cells in bronchoalveolar lavage fluid, as determined by Diff-Quik staining. The results highlighted the DEP-related macrophage dysfunction, neutrophil impairment, and imbalance in pro-inflammatory cytokine production via the toll-like receptor 4/mitogen-activated protein kinase signaling axis. Notably, the tolerance of the GAS biofilms toward potent antibiotics and bacterial resistance against environmental stresses was also significantly enhanced by DEP. This study aimed to provide a better understanding of the physiological and molecular interactions between exposure to invasive air pollutants and susceptibility to invasive GAS infections.
Collapse
Affiliation(s)
- Yong Zhi
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xinyu Chen
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Guangxu Cao
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Fengjia Chen
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, 56212, Jeollabuk-do, Republic of Korea
| | - Ho Seong Seo
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, 56212, Jeollabuk-do, Republic of Korea; Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Fang Li
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
11
|
An R. MRTF may be the missing link in a multiscale mechanobiology approach toward macrophage dysfunction in space. Front Cell Dev Biol 2022; 10:997365. [PMID: 36172272 PMCID: PMC9510870 DOI: 10.3389/fcell.2022.997365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
Macrophages exhibit impaired phagocytosis, adhesion, migration, and cytokine production in space, hindering their ability to elicit immune responses. Considering that the combined effect of spaceflight microgravity and radiation is multiscale and multifactorial in nature, it is expected that contradictory findings are common in the field. This theory paper reanalyzes research on the macrophage spaceflight response across multiple timescales from seconds to weeks, and spatial scales from the molecular, intracellular, extracellular, to the physiological. Key findings include time-dependence of both pro-inflammatory activation and integrin expression. Here, we introduce the time-dependent, intracellular localization of MRTF-A as a hypothetical confounder of macrophage activation. We discuss the mechanosensitive MRTF-A/SRF pathway dependence on the actin cytoskeleton/nucleoskeleton, microtubules, membrane mechanoreceptors, hypoxia, oxidative stress, and intracellular/extracellular crosstalk. By adopting a multiscale perspective, this paper provides the first mechanistic answer for a three-decade-old question regarding impaired cytokine secretion in microgravity—and strengthens the connection between the recent advances in mechanobiology, microgravity, and the spaceflight immune response. Finally, we hypothesize MRTF involvement and complications in treating spaceflight-induced cardiovascular, skeletal, and immune disease.
Collapse
Affiliation(s)
- Rocky An
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, United States
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
- *Correspondence: Rocky An,
| |
Collapse
|
12
|
Xie X, Lv H, Liu C, Su X, Yu Z, Song S, Bian H, Tian M, Qin C, Qi J, Zhu Q. HBeAg mediates inflammatory functions of macrophages by TLR2 contributing to hepatic fibrosis. BMC Med 2021; 19:247. [PMID: 34649530 PMCID: PMC8518250 DOI: 10.1186/s12916-021-02085-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND We and others have confirmed activation of macrophages plays a critical role in liver injury and fibrogenesis during HBV infection. And we have also proved HBeAg can obviously induce the production of macrophage inflammatory cytokines compared with HBsAg and HBcAg. However, the receptor and functional domain of HBeAg in macrophage activation and its effects and mechanisms on hepatic fibrosis remain elusive. METHODS The potentially direct binding receptors of HBeAg were screened and verified by Co-IP assay. Meanwhile, the function domain and accessible peptides of HBeAg for macrophage activation were analyzed by prediction of surface accessible peptide, construction, and synthesis of truncated fragments. Furthermore, effects and mechanisms of the activation of hepatic stellate cells induced by HBeAg-treated macrophages were investigated by Transwell, CCK-8, Gel contraction assay, Phospho Explorer antibody microarray, and Luminex assay. Finally, the effect of HBeAg in hepatic inflammation and fibrosis was evaluated in both human and murine tissues by immunohistochemistry, immunofluorescence, ELISA, and detection of liver enzymes. RESULTS Herein, we verified TLR-2 was the direct binding receptor of HBeAg. Meanwhile, C-terminal peptide (122-143 aa.) of core domain in HBeAg was critical for macrophage activation. But arginine-rich domain of HBcAg hided this function, although HBcAg and HBeAg shared the same core domain. Furthermore, HBeAg promoted the proliferation, motility, and contraction of hepatic stellate cells (HSCs) in a macrophage-dependent manner, but not alone. PI3K-AKT-mTOR and p38 MAPK signaling pathway were responsible for motility phenotype of HSCs, while the Smad-dependent TGF-β signaling pathway for proliferation and contraction of them. Additionally, multiple chemokines and cytokines, such as CCL2, CCL5, CXCL10, and TNF-α, might be key mediators of HSC activation. Consistently, HBeAg induced transient inflammation response and promoted early fibrogenesis via TLR-2 in mice. Finally, clinical investigations suggested that the level of HBeAg is associated with inflammation and fibrosis degrees in patients infected with HBV. CONCLUSIONS HBeAg activated macrophages via the TLR-2/NF-κB signal pathway and further exacerbated hepatic fibrosis by facilitating motility, proliferation, and contraction of HSCs with the help of macrophages.
Collapse
Affiliation(s)
- Xiaoyu Xie
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.,Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong, 250021, People's Republic of China
| | - Huanran Lv
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Chenxi Liu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Xiaonan Su
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Zhen Yu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Shouyang Song
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.,Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Miaomiao Tian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong, 250021, People's Republic of China
| | - Chengyong Qin
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.,Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong, 250021, People's Republic of China
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China. .,Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China. .,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong, 250021, People's Republic of China.
| | - Qiang Zhu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China. .,Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China. .,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong, 250021, People's Republic of China. .,The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, People's Republic of China.
| |
Collapse
|
13
|
Liebold I, Jawazneh AA, Hamley M, Bosurgi L. Apoptotic cell signals and heterogeneity in macrophage function: Fine-tuning for a healthy liver. Semin Cell Dev Biol 2021; 119:72-81. [PMID: 34246569 DOI: 10.1016/j.semcdb.2021.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
Functional heterogeneity in tissue macrophage populations has often been traced to developmental and spatial cues. Upon tissue damage, macrophages are exposed to soluble mediators secreted by activated cells, which shape their polarisation. Interestingly, macrophages are concomitantly exposed to a variety of different dying cells, which carry miscellaneous signals and that need to be recognised and promptly up-taken by professional phagocytes. This review discusses how differences in the nature of the dying cells, like their morphological and biochemical features as well as the specificity of phagocytic receptor usage on macrophages, might contribute to the transcriptional and functional heterogeneity observed in phagocytic cells in the tissue.
Collapse
Affiliation(s)
- Imke Liebold
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Amirah Al Jawazneh
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Madeleine Hamley
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Lidia Bosurgi
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
14
|
Chen W, Bian H, Xie X, Yang X, Bi B, Li C, Zhang Y, Zhu Q, Song J, Qin C, Qi J. Negative feedback loop of ERK/CREB/miR-212-3p inhibits HBeAg-induced macrophage activation. J Cell Mol Med 2020; 24:10935-10945. [PMID: 32767729 PMCID: PMC7521245 DOI: 10.1111/jcmm.15723] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/07/2020] [Accepted: 07/18/2020] [Indexed: 12/21/2022] Open
Abstract
The activation of liver macrophages is closely related to liver injury after HBV infection. Our previous results demonstrated that HBeAg played a key role in inducing macrophage activation. As we all know, miRNAs are involved in the regulation of multiple immune cell functions. Meanwhile, we have shown that miR‐155 positively regulates HBeAg‐induced macrophage activation and accelerates liver injury. Subsequently, based on our previous miRNA sequencing results, we further evaluated the role of miR‐212‐3p called ‘neurimmiR’ in HBeAg‐induced macrophages in this study. First, miR‐212‐3p expression was significantly elevated in HBeAg‐treated macrophages. Meanwhile, we found up‐regulation of miR‐212‐3p significantly decreased the production of cytokines, whereas knockdown of miR‐212‐3p held the opposite effect by gains and losses of function. Mechanically, although MAPK signal pathway, including ERK, JNK and p38, was activated in HBeAg‐induced macrophages, only ERK promoted the expression of miR‐212‐3p via transcription factor CREB, which was able to bind to the promoter of miR‐212‐3p verified by ChIP assay. Moreover, we further indicated that up‐regulated miR‐212‐3p inhibited HBeAg‐induced inflammatory cytokine production through targeting MAPK1. In conclusion, miR‐212‐3p was augmented in HBeAg‐stimulated macrophages via ERK/CREB signal pathway and the elevated miR‐212‐3p suppressed inflammatory cytokine production induced by HBeAg through targeting MAPK1.
Collapse
Affiliation(s)
- Wenjun Chen
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, China
| | - Hongjun Bian
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoyu Xie
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
| | - Xia Yang
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
| | - Benjun Bi
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chunliu Li
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Yuejuan Zhang
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Zhu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
| | - Jing Song
- The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, China
| | - Chengyong Qin
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
| | - Jianni Qi
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
| |
Collapse
|
15
|
Wei C, Pan L, Zhang X, Xu L, Si L, Tong R, Wang H. Transcriptome analysis of hemocytes from the white shrimp Litopenaeus vannamei with the injection of dopamine. FISH & SHELLFISH IMMUNOLOGY 2019; 94:497-509. [PMID: 31541775 DOI: 10.1016/j.fsi.2019.09.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
As a crucial neuroendocrine-immune factor, dopamine (DA) could regulate the immune system of Litopenaeus vannamei. To understand the immune mechanisms and regulatory pathways of DA in L. vannamei, the transcriptome analysis of hemocytes of L. vannamei with injection of DA (10-6 mol/shrimp) at 3 and 12 h were performed in this study. Moreover, quantitative real-time PCR (qPCR) method was applied to validate the accuracy of transcriptome sequencing and analyze the expression pattern of candidate differentially expressed genes (DEGs) at different time points (0, 3, 6, 12, and 24 h) after DA injection. The results showed that a total of 51382 unigenes with a N50 length of 2341 bp were generated. And 1397 and 457 DEGs were obtained by comparative transcriptome at 3 and 12h respectively. Moreover, the results of functional annotation and enriched pathway showed that the DEGs were involved in phagosome (ko04145), lysosome (ko04142), Endocytosis (ko04144), and NOD-like receptor signaling pathway (ko04621). Besides, the Pearson's correlation coefficient (R) between transcriptome sequencing and qPCR was 0.845, which confirmed the reliability of the transcriptome sequencing results and the accuracy of assembly. Furthermore, the expression pattern of 15 candidate DEGs, containing 9 up-regulated and 6 down-regulated DEGs at 3 h, indicated the regulation of DA in physiological functions especially in the immune system. Therefore, these results revealed that DA induced the expressions of membrane receptors or proteins, activated intracellular signaling pathways, regulated cellular and humoral immune systems, controlled antioxidation and apoptosis, and was involved in the regulation of neuroendocrine system. These findings are helpful to promote the understanding on the effects of biogenic amines on physiological functions and regulatory networks of crustacean, and offer a substantial material and foundation for researching the immune response of crustacean.
Collapse
Affiliation(s)
- Cun Wei
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Lijun Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Lingjun Si
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Hongdan Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
16
|
Zang L, Wang J, Ren Y, Liu W, Yu Y, Zhao S, Otkur W, Zhao Y, Hayashi T, Tashiro SI, Onodera S, Ikejima T. Activated toll-like receptor 4 is involved in oridonin-induced phagocytosis via promotion of migration and autophagy-lysosome pathway in RAW264.7 macrophages. Int Immunopharmacol 2019; 66:99-108. [DOI: 10.1016/j.intimp.2018.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 12/19/2022]
|
17
|
Li F, Bian H, Wang W, Ning L, Xu M, Sun S, Ren W, Qin C, Qi J. HBV infection suppresses the expression of inflammatory macrophage miR‑210. Mol Med Rep 2018; 19:1833-1839. [PMID: 30592291 DOI: 10.3892/mmr.2018.9795] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/26/2018] [Indexed: 11/06/2022] Open
Abstract
It has been previously reported that hepatitis B e‑antigen (HBeAg) induces microRNA (miR)‑155 expression and promotes liver injury by increasing inflammatory cytokine production in macrophages. Moreover, it was previously demonstrated that miR‑210 alleviates lipopolysaccharide‑stimulated proinflammatory cytokine production in macrophages. In addition, accumulating evidence suggests that miR‑210 is able to suppress hepatitis B virus (HBV) replication in HepG2.2.15 cells. However, it remains unclear whether miR‑210, similar to miR‑155, affects the progress of hepatitis B by regulating macrophage function. Reverse transcription‑quantitative polymerase chain reaction analysis was used to detect miR‑210 levels in serum and cells. HBV‑associated antigens stimulated different types of macrophages and facilitated the observation of the effects of these antigens on miR‑210 expression in macrophages. Co‑culture of peripheral blood monocytes from healthy controls and the serum of patients with chronic hepatitis B (CHB) was conducted to evaluate the effect of HBV‑associated elements in the serum on the expression of the macrophage miR‑210 in vivo. It was observed that miR‑210 expression levels were decreased in the peripheral blood monocytes (PBMs) and serum of patients with CHB and negatively associated with serum alanine aminotransferase and aspartate aminotransferase, but not other clinical parameters including hepatitis B surface antigen (HBsAg), HBeAg, anti‑HBe antibody (HBeAb) and hepatitis B core antibody (HBcAb) and HBV‑DNA. Notably, it was demonstrated that miR‑210 expression was not affected by treatment with HBV‑associated antigens in different types of macrophages. Notably, the serum of patients with CHB was able to markedly downregulate the miR‑210 expression of PBMs in healthy controls. These findings suggested that, unlike the induction of miR‑155 by HBeAg, there may be certain other elements, apart from HBV‑associated antigens, regulating miR‑210 levels in the serum and PBMs of patients with CHB that affect macrophage activation.
Collapse
Affiliation(s)
- Feifei Li
- Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hongjun Bian
- Department of Emergency Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Wenwen Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Liping Ning
- Department of Rehabilitation Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Miao Xu
- Department of Gastroenterology, Jinan Hospital, Jinan, Shandong 250013, P.R. China
| | - Shuohuan Sun
- Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Wanhua Ren
- Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Chengyong Qin
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jianni Qi
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
18
|
Wang W, Bian H, Li F, Li X, Zhang D, Sun S, Song S, Zhu Q, Ren W, Qin C, Qi J. HBeAg induces the expression of macrophage miR-155 to accelerate liver injury via promoting production of inflammatory cytokines. Cell Mol Life Sci 2018; 75:2627-2641. [PMID: 29349567 PMCID: PMC11105519 DOI: 10.1007/s00018-018-2753-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 12/14/2022]
Abstract
Activation of Kupffer cells (KCs) induced that inflammatory cytokine production plays a central role in the pathogenesis of HBV infection. The previous studies from our and other laboratory demonstrated miRNAs can regulate TLR-inducing inflammatory responses to macrophage. However, the involvement of miRNAs in HBV-associated antigen-induced macrophage activation is still not thoroughly understood. Here, we evaluated the effects and mechanisms of miR-155 in HBV-associated antigen-induced macrophage activation. First, co-culture assay of HepG2 or HepG2.2.15 cells and RAW264.7 macrophages showed that HepG2.2.15 cells could significantly promote macrophages to produce inflammatory cytokines. Furthermore, we, respectively, stimulated RAW264.7 macrophages, mouse primary peritoneal macrophages, or healthy human peripheral blood monocytes with HBV-associated antigens, including HBcAg, HBeAg, and HBsAg, and found that only HBeAg could steadily enhance the production of inflammatory cytokines in these cells. Subsequently, miRNAs sequencing presented the up- or down-regulated expression of multiple miRNAs in HBeAg-stimulated RAW264.7 cells. In addition, we verified the expression of miR-155 and its precursors BIC gene with q-PCR in the system of co-culture or HBeAg-stimulated macrophages. Meanwhile, the increased miR-155 expression was positively correlation with serum ALT, AST, and HBeAg levels in AHB patients. Although MAPK, PI3K, and NF-κB signal pathways were all activated during HBeAg treatment, only PI3K and NF-κB pathways were involved in miR-155 expression induced by HBeAg stimulation. Consistently, miR-155 over-expression inhibited production of inflammatory cytokines, which could be reversed by knocking down miR-155. Moreover, we demonstrated that miR-155 regulated HBeAg-induced cytokine production by targeting BCL-6, SHIP-1, and SOCS-1. In conclusion, our data revealed that HBeAg augments the expression of miR-155 in macrophages via PI3K and NF-κB signal pathway and the increased miR-155 promotes HBeAg-induced inflammatory cytokine production by inhibiting the expression of BCL-6, SHIP-1, and SOCS-1.
Collapse
Affiliation(s)
- Wenwen Wang
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, 250021, Shandong, China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, 250021, Shandong, China
| | - Feifei Li
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, 250021, Shandong, China
| | - Xiao Li
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, 250021, Shandong, China
| | - Di Zhang
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, 250021, Shandong, China
| | - Shuohuan Sun
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, 250021, Shandong, China
| | - Shouyang Song
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, 250021, Shandong, China
| | - Qiang Zhu
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, 250021, Shandong, China
| | - Wanhua Ren
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, 250021, Shandong, China
| | - Chengyong Qin
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, 250021, Shandong, China
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China.
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, 250021, Shandong, China.
| |
Collapse
|
19
|
Del Campo JA, Gallego P, Grande L. Role of inflammatory response in liver diseases: Therapeutic strategies. World J Hepatol 2018; 10:1-7. [PMID: 29399273 PMCID: PMC5787673 DOI: 10.4254/wjh.v10.i1.1] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/21/2017] [Accepted: 01/15/2018] [Indexed: 02/06/2023] Open
Abstract
Inflammation and tumorigenesis are tightly linked pathways impacting cancer development. Inflammasomes are key signalling platforms that detect pathogenic microorganisms, including hepatitis C virus (HCV) infection, and sterile stressors (oxidative stress, insulin resistance, lipotoxicity) able to activate pro-inflammatory cytokines interleukin-1β and IL-18. Most of the inflammasome complexes that have been described to date contain a NOD-like receptor sensor molecule. Redox state and autophagy can regulate inflammasome complex and, depending on the conditions, can be either pro- or anti-apoptotic. Acute and chronic liver diseases are cytokine-driven diseases as several proinflammatory cytokines (IL-1α, IL-1β, tumor necrosis factor-alpha, and IL-6) are critically involved in inflammation, steatosis, fibrosis, and cancer development. NLRP3 inflammasome gain of function aggravates liver disease, resulting in severe liver fibrosis and highlighting this pathway in the pathogenesis of non-alcoholic fatty liver disease. On the other hand, HCV infection is the primary catalyst for progressive liver disease and development of liver cancer. It is well established that HCV-induced IL-1β production by hepatic macrophages plays a critical and central process that promotes liver inflammation and disease. In this review, we aim to clarify the role of the inflammasome in the aggravation of liver disease, and how selective blockade of this main pathway may be a useful strategy to delay fibrosis progression in liver diseases.
Collapse
Affiliation(s)
- José A Del Campo
- Department of Digestive Diseases, Valme University Hospital and CIBERehd, Sevilla 41014, Spain
| | - Paloma Gallego
- Department of Digestive Diseases, Valme University Hospital and CIBERehd, Sevilla 41014, Spain
| | - Lourdes Grande
- Department of Digestive Diseases, Valme University Hospital and CIBERehd, Sevilla 41014, Spain
| |
Collapse
|
20
|
Bian H, Gao S, Zhang D, Zhao Q, Li F, Li X, Sun S, Song S, Li T, Zhu Q, Ren W, Qin C, Qi J. The E3 ubiquitin ligase MuRF2 attenuates LPS-induced macrophage activation by inhibiting production of inflammatory cytokines and migration. FEBS Open Bio 2018; 8:234-243. [PMID: 29435413 PMCID: PMC5794466 DOI: 10.1002/2211-5463.12367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/15/2017] [Accepted: 11/24/2017] [Indexed: 01/06/2023] Open
Abstract
Muscle RING-finger (MuRF) proteins are E3 ubiquitin ligases that are expressed in striated muscle. MuRF2 is an important member of this family, but whether it is expressed in tissues other than striated muscle has not been thoroughly elucidated to date. In this study, we determined that MuRF2 is also expressed in other vital organs, including liver, lung, brain, spleen and kidney. Moreover, we show that the level of MuRF2 expression is significantly decreased in hepatic mononuclear cells of mice with lipopolysaccharide (LPS)/d-galactosamine-induced hepatitis and negatively correlated with the serum levels of alanine aminotransferase and aspartate aminotransferase in these mice. Furthermore, the expression of MuRF2 was down-regulated in RAW264.7 cells activated with LPS but not in cells treated with polyinosinic-polycytidylic acid (Poly(I:C)) or with lipidosome plus Poly(I:C). We also found that MuRF2 was able to translocate from the cytoplasm to the nucleus in RAW264.7 cells activated with LPS but not in cells treated with Poly(I:C). In addition, we demonstrated that interleukin 6 and tumour necrosis factor α production and macrophage migration were inhibited after MuRF2 was overexpressed in RAW264.7 cells. We further verified that nuclear factor-κB p65 subunit level was greatly reduced in RAW264.7 macrophage nuclei by gain of function. Taken together, these findings indicate that MuRF2 may rescue LPS-induced macrophage activation by suppressing the production of proinflammatory cytokines and cell migration. We also identify a novel function of MuRF2 in non-muscle tissues and cells.
Collapse
Affiliation(s)
- Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong University Jinan China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control Jinan China
| | - Shanshan Gao
- Shandong Provincial Hospital Affiliated to Shandong University Jinan China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control Jinan China
| | - Di Zhang
- Shandong Provincial Hospital Affiliated to Shandong University Jinan China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control Jinan China
| | - Qi Zhao
- Shandong Provincial Hospital Affiliated to Shandong University Jinan China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control Jinan China
| | - Feifei Li
- Shandong Provincial Hospital Affiliated to Shandong University Jinan China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control Jinan China
| | - Xiao Li
- Shandong Provincial Hospital Affiliated to Shandong University Jinan China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control Jinan China
| | - Shuohuan Sun
- Shandong Provincial Hospital Affiliated to Shandong University Jinan China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control Jinan China
| | - Shouyang Song
- Shandong Provincial Hospital Affiliated to Shandong University Jinan China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control Jinan China
| | - Tao Li
- Shandong Provincial Hospital Affiliated to Shandong University Jinan China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control Jinan China
| | - Qiang Zhu
- Shandong Provincial Hospital Affiliated to Shandong University Jinan China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control Jinan China
| | - Wanhua Ren
- Shandong Provincial Hospital Affiliated to Shandong University Jinan China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control Jinan China
| | - Chengyong Qin
- Shandong Provincial Hospital Affiliated to Shandong University Jinan China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control Jinan China
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong University Jinan China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control Jinan China
| |
Collapse
|