1
|
Repczynska A, Ciastek B, Haus O. New Insights into the Fanconi Anemia Pathogenesis: A Crosstalk Between Inflammation and Oxidative Stress. Int J Mol Sci 2024; 25:11619. [PMID: 39519169 PMCID: PMC11547024 DOI: 10.3390/ijms252111619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Fanconi anemia (FA) represents a rare hereditary disease; it develops due to germline pathogenic variants in any of the 22 currently discovered FANC genes, which interact with the Fanconi anemia/breast cancer-associated (FANC/BRCA) pathway to maintain genome integrity. FA is characterized by a triad of clinical traits, including congenital anomalies, bone marrow failure (BMF) and multiple cancer susceptibility. Due to the complex genetic background and a broad spectrum of FA clinical symptoms, the diagnostic process is complex and requires the use of classical cytogenetic, molecular cytogenetics and strictly molecular methods. Recent findings indicate the interplay of inflammation, oxidative stress, disrupted mitochondrial metabolism, and impaired intracellular signaling in the FA pathogenesis. Additionally, a shift in the balance towards overproduction of proinflammatory cytokines and prooxidant components in FA is associated with advanced myelosuppression and ultimately BMF. Although the mechanism of BMF is very complex and needs further clarification, it appears that mutual interaction between proinflammatory cytokines and redox imbalance causes pancytopenia. In this review, we summarize the available literature regarding the clinical phenotype, genetic background, and diagnostic procedures of FA. We also highlight the current understanding of disrupted autophagy process, proinflammatory state, impaired signaling pathways and oxidative genotoxic stress in FA pathogenesis.
Collapse
Affiliation(s)
- Anna Repczynska
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Curie Sklodowskiej 9, 85-094 Bydgoszcz, Poland;
| | - Barbara Ciastek
- Institute of Health Sciences, University of Opole, Katowicka 68, 45-060 Opole, Poland
| | - Olga Haus
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Curie Sklodowskiej 9, 85-094 Bydgoszcz, Poland;
| |
Collapse
|
2
|
Duan JJ, Cai J, Gao L, Yu SC. ALDEFLUOR activity, ALDH isoforms, and their clinical significance in cancers. J Enzyme Inhib Med Chem 2023; 38:2166035. [PMID: 36651035 PMCID: PMC9858439 DOI: 10.1080/14756366.2023.2166035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
High aldehyde dehydrogenase (ALDH) activity is a metabolic feature of adult stem cells and various cancer stem cells (CSCs). The ALDEFLUOR system is currently the most commonly used method for evaluating ALDH enzyme activity in viable cells. This system is applied extensively in the isolation of normal stem cells and CSCs from heterogeneous cell populations. For many years, ALDH1A1 has been considered the most important subtype among the 19 ALDH family members in determining ALDEFLUOR activity. However, in recent years, studies of many types of normal and tumour tissues have demonstrated that other ALDH subtypes can also significantly influence ALDEFLUOR activity. In this article, we briefly review the relationships between various members of the ALDH family and ALDEFLUOR activity. The clinical significance of these ALDH isoforms in different cancers and possible directions for future studies are also summarised.
Collapse
Affiliation(s)
- Jiang-Jie Duan
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital; Third Military Medical University (Army Medical University), Chongqing, China,International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, China,Ministry of Education, Key Laboratory of Cancer Immunopathology, Chongqing, China
| | - Jiao Cai
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital; Third Military Medical University (Army Medical University), Chongqing, China,International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, China,Ministry of Education, Key Laboratory of Cancer Immunopathology, Chongqing, China
| | - Lei Gao
- Department of Hematology, Xinqiao Hospital; Third Medical University (Army Medical University), Chongqing, China
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital; Third Military Medical University (Army Medical University), Chongqing, China,International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, China,Ministry of Education, Key Laboratory of Cancer Immunopathology, Chongqing, China,Jin-feng Laboratory, Chongqing, China,CONTACT Shi-Cang Yu Department of Stem Cell and Regenerative Medicine, Third Military Medical University (Army Medical University), Chongqing400038, China
| |
Collapse
|
3
|
Dorna D, Paluszczak J. Targeting cancer stem cells as a strategy for reducing chemotherapy resistance in head and neck cancers. J Cancer Res Clin Oncol 2023; 149:13417-13435. [PMID: 37453969 PMCID: PMC10587253 DOI: 10.1007/s00432-023-05136-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE Resistance to chemotherapy and radiotherapy is the primary cause of a poor prognosis in oncological patients. Researchers identified many possible mechanisms involved in gaining a therapy-resistant phenotype by cancer cells, including alterations in intracellular drug accumulation, detoxification, and enhanced DNA damage repair. All these features are characteristic of stem cells, making them the major culprit of chemoresistance. This paper reviews the most recent evidence regarding the association between the stemness phenotype and chemoresistance in head and neck cancers. It also investigates the impact of pharmacologically targeting cancer stem cell populations in this subset of malignancies. METHODS This narrative review was prepared based on the search of the PubMed database for relevant papers. RESULTS Head and neck cancer cells belonging to the stem cell population are distinguished by the high expression of certain surface proteins (e.g., CD10, CD44, CD133), pluripotency-related transcription factors (SOX2, OCT4, NANOG), and increased activity of aldehyde dehydrogenase (ALDH). Chemotherapy itself increases the percentage of stem-like cells. Importantly, the intratumor heterogeneity of stem cell subpopulations reflects cell plasticity which has great importance for chemoresistance induction. CONCLUSIONS Evidence points to the advantage of combining classical chemotherapeutics with stemness modulators thanks to the joint targeting of the bulk of proliferating tumor cells and chemoresistant cancer stem cells, which could cause recurrence.
Collapse
Affiliation(s)
- Dawid Dorna
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Ul. Święcickiego 4, 60-781 Poznan, Poland
| | - Jarosław Paluszczak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Ul. Święcickiego 4, 60-781 Poznan, Poland
| |
Collapse
|
4
|
Xanthis V, Mantso T, Dimtsi A, Pappa A, Fadouloglou VE. Human Aldehyde Dehydrogenases: A Superfamily of Similar Yet Different Proteins Highly Related to Cancer. Cancers (Basel) 2023; 15:4419. [PMID: 37686694 PMCID: PMC10650815 DOI: 10.3390/cancers15174419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
The superfamily of human aldehyde dehydrogenases (hALDHs) consists of 19 isoenzymes which are critical for several physiological and biosynthetic processes and play a major role in the organism's detoxification via the NAD(P) dependent oxidation of numerous endogenous and exogenous aldehyde substrates to their corresponding carboxylic acids. Over the last decades, ALDHs have been the subject of several studies as it was revealed that their differential expression patterns in various cancer types are associated either with carcinogenesis or promotion of cell survival. Here, we attempt to provide a thorough review of hALDHs' diverse functions and 3D structures with particular emphasis on their role in cancer pathology and resistance to chemotherapy. We are especially interested in findings regarding the association of structural features and their changes with effects on enzymes' functionalities. Moreover, we provide an updated outline of the hALDHs inhibitors utilized in experimental or clinical settings for cancer therapy. Overall, this review aims to provide a better understanding of the impact of ALDHs in cancer pathology and therapy from a structural perspective.
Collapse
Affiliation(s)
| | | | | | | | - Vasiliki E. Fadouloglou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
5
|
Hurník P, Putnová BM, Ševčíková T, Hrubá E, Putnová I, Škarda J, Havel M, Res O, Cvek J, Buchtová M, Štembírek J. Metastasising ameloblastoma or ameloblastic carcinoma? A case report with mutation analyses. BMC Oral Health 2023; 23:563. [PMID: 37573343 PMCID: PMC10423427 DOI: 10.1186/s12903-023-03259-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 07/27/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Ameloblastic carcinoma and metastasising ameloblastoma are rare epithelial odontogenic tumours with aggressive features. Distinguishing between these two lesions is often clinically difficult but necessary to predict tumour behaviour or to plan future therapy. Here, we provide a brief review of the literature available on these two types of lesions and present a new case report of a young man with an ameloblastoma displaying metastatic features. We also use this case to illustrate the similarities and differences between these two types of tumours and the difficulties of their differential diagnosis. CASE PRESENTATION Our histopathological analyses uncovered a metastasising tumour with features of ameloblastic carcinoma, which developed from the ameloblastoma. We profiled the gene expression of Wnt pathway members in ameloblastoma sample of this patient, because multiple molecules of this pathway are involved in the establishing of cell polarity, cell migration or for epithelial-mesenchymal transition during tumour metastasis to evaluate features of tumor behaviour. Indeed, we found upregulation of several cell migration-related genes in our patient. Moreover, we uncovered somatic mutation BRAF p.V600E with known pathological role in cancerogenesis and germline heterozygous FANCA p.S858R mutation, whose interpretation in this context has not been discussed yet. CONCLUSIONS In conclusion, we have uncovered a unique case of ameloblastic carcinoma associated with an alteration of Wnt signalling and the presence of BRAF mutation. Development of harmful state of our patient might be also supported by the germline mutation in one FANCA allele, however this has to be confirmed by further analyses.
Collapse
Affiliation(s)
- Pavel Hurník
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Institute of Clinical and Molecular Pathology and Medical Genetics, Faculty Hospital and Medical Faculty Ostrava, Ostrava, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Barbora Moldovan Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Pathological Morphology and Parasitology, University of Veterinary Sciences, Brno, Czech Republic
| | - Tereza Ševčíková
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Eva Hrubá
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Iveta Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Anatomy, Histology and Embryology, University of Veterinary Sciences, Brno, Czech Republic
| | - Josef Škarda
- Institute of Clinical and Molecular Pathology and Medical Genetics, Faculty Hospital and Medical Faculty Ostrava, Ostrava, Czech Republic
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - Martin Havel
- Department of Nuclear Medicine, University Hospital Ostrava, Ostrava, Czech Republic
| | - Oldřich Res
- Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czech Republic
| | - Jakub Cvek
- Department of Oncology, Faculty of Medicine and University Hospital Ostrava, Ostrava, Czech Republic
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.
| | - Jan Štembírek
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.
- Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
6
|
Joshi P, Waghmare S. Molecular signaling in cancer stem cells of tongue squamous cell carcinoma: Therapeutic implications and challenges. World J Stem Cells 2023; 15:438-452. [PMID: 37342225 PMCID: PMC10277967 DOI: 10.4252/wjsc.v15.i5.438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/21/2023] [Accepted: 04/07/2023] [Indexed: 05/26/2023] Open
Abstract
Head and neck squamous cell carcinoma is the seventh most common cancer worldwide with high mortality rates. Amongst oral cavity cancers, tongue carcinoma is a very common and aggressive oral cavity carcinoma. Despite the implementation of a multimodality treatment regime including surgical intervention, chemo-radiation as well as targeted therapy, tongue carcinoma shows a poor overall 5-year survival pattern, which is attributed to therapy resistance and recurrence of the disease. The presence of a rare population, i.e., cancer stem cells (CSCs) within the tumor, are involved in therapy resistance, recurrence, and distant metastasis that results in poor survival patterns. Therapeutic agents targeting CSCs have been in clinical trials, although they are unable to reach into therapy stage which is due to their failure in trials. A more detailed understanding of the CSCs is essential for identifying efficient targets. Molecular signaling pathways, which are differentially regulated in the CSCs, are one of the promising targets to manipulate the CSCs that would provide an improved outcome. In this review, we summarize the current understanding of molecular signaling associated with the maintenance and regulation of CSCs in tongue squamous cell carcinoma in order to emphasize the need of the hour to get a deeper understanding to unravel novel targets.
Collapse
Affiliation(s)
- Priyanka Joshi
- Stem Cell Biology Group, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai 410210, India
| | - Sanjeev Waghmare
- Stem Cell Biology Group, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai 410210, India
| |
Collapse
|
7
|
Silva de Araujo BE, Markgraf M, de Santana Almeida Araujo IK, Velleuer E, Dietrich R, Pomjanski N, Schramm M. A New Multi-Color FISH Assay for Brush Biopsy-Based Detection of Chromosomal Aneuploidy in Oral (Pre)Cancer in Patients with Fanconi Anemia. Cancers (Basel) 2022; 14:cancers14143468. [PMID: 35884529 PMCID: PMC9319768 DOI: 10.3390/cancers14143468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Fanconi anemia (FA) is a rare inherited DNA instability disorder with a remarkably elevated risk of oral squamous cell carcinoma. These cancers can be detected with oral brush biopsy-based cytology even at early stages. This study aims to determine the diagnostic accuracy of a new multi-color fluorescent in situ hybridization (FISH) assay consisting of probes for CCND1, TERC, MYC and centromere of chromosome 6, as well as a 9p21 FISH assay consisting of probes for CDKN2A and centromere of chromosome 9 for the detection of oral (pre) malignant lesions in FA. METHODS (I) Cutoffs for the dichotomization of positive or negative multi-color FISH results are determined and (II) retrospectively validated by using archived oral brush biopsy specimens from individuals with Fanconi anemia. In addition, the specimens for cutoff determination were re-hybridized with the 9p21 FISH assay. RESULTS A cutoff of six or more chromosomal aneuploid cells for a positive FISH result was determined in the cutoff study on 160 biopsy specimens. The validating of this cutoff on 152 specimens showed at best a sensitivity of 87% and a specificity of 82.9%. CONCLUSION Multi-color FISH is a sufficient tool to detect chromosomal aneuploidy in oral (pre) malignant lesions of individuals with Fanconi anemia. However, some false positive results may hamper the application as an adjuvant method to oral brush biopsy-based cytology in an oral cancer surveillance program.
Collapse
Affiliation(s)
- Bruno Eduardo Silva de Araujo
- Department of Cytopathology, Heinrich Heine University, 40225 Düsseldorf, Germany; (M.M.); (I.K.d.S.A.A.); (E.V.); (N.P.); (M.S.)
- Correspondence:
| | - Mona Markgraf
- Department of Cytopathology, Heinrich Heine University, 40225 Düsseldorf, Germany; (M.M.); (I.K.d.S.A.A.); (E.V.); (N.P.); (M.S.)
| | | | - Eunike Velleuer
- Department of Cytopathology, Heinrich Heine University, 40225 Düsseldorf, Germany; (M.M.); (I.K.d.S.A.A.); (E.V.); (N.P.); (M.S.)
- Centre for Child and Adolescent Health, HELIOS Klinikum, 47805 Krefeld, Germany
| | - Ralf Dietrich
- German Fanconi Anemia Support Group, 59427 Unna, Germany;
| | - Natalia Pomjanski
- Department of Cytopathology, Heinrich Heine University, 40225 Düsseldorf, Germany; (M.M.); (I.K.d.S.A.A.); (E.V.); (N.P.); (M.S.)
| | - Martin Schramm
- Department of Cytopathology, Heinrich Heine University, 40225 Düsseldorf, Germany; (M.M.); (I.K.d.S.A.A.); (E.V.); (N.P.); (M.S.)
| |
Collapse
|
8
|
Beyond the Double-Strand Breaks: The Role of DNA Repair Proteins in Cancer Stem-Cell Regulation. Cancers (Basel) 2021; 13:cancers13194818. [PMID: 34638302 PMCID: PMC8508278 DOI: 10.3390/cancers13194818] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancer stem cells (CSCs) are a tumor cell population maintaining tumor growth and promoting tumor relapse if not wholly eradicated during treatment. CSCs are often equipped with molecular mechanisms making them resistant to conventional anti-cancer therapies whose curative potential depends on DNA damage-induced cell death. An elevated expression of some key DNA repair proteins is one of such defense mechanisms. However, new research reveals that the role of critical DNA repair proteins is extending far beyond the DNA repair mechanisms. This review discusses the diverse biological functions of DNA repair proteins in CSC maintenance and the adaptation to replication and oxidative stress, anti-cancer immune response, epigenetic reprogramming, and intracellular signaling mechanisms. It also provides an overview of their potential therapeutic targeting. Abstract Cancer stem cells (CSCs) are pluripotent and highly tumorigenic cells that can re-populate a tumor and cause relapses even after initially successful therapy. As with tissue stem cells, CSCs possess enhanced DNA repair mechanisms. An active DNA damage response alleviates the increased oxidative and replicative stress and leads to therapy resistance. On the other hand, mutations in DNA repair genes cause genomic instability, therefore driving tumor evolution and developing highly aggressive CSC phenotypes. However, the role of DNA repair proteins in CSCs extends beyond the level of DNA damage. In recent years, more and more studies have reported the unexpected role of DNA repair proteins in the regulation of transcription, CSC signaling pathways, intracellular levels of reactive oxygen species (ROS), and epithelial–mesenchymal transition (EMT). Moreover, DNA damage signaling plays an essential role in the immune response towards tumor cells. Due to its high importance for the CSC phenotype and treatment resistance, the DNA damage response is a promising target for individualized therapies. Furthermore, understanding the dependence of CSC on DNA repair pathways can be therapeutically exploited to induce synthetic lethality and sensitize CSCs to anti-cancer therapies. This review discusses the different roles of DNA repair proteins in CSC maintenance and their potential as therapeutic targets.
Collapse
|
9
|
Deng X, Tchieu J, Higginson DS, Hsu KS, Feldman R, Studer L, Shaham S, Powell SN, Fuks Z, Kolesnick R. Disabling the Fanconi Anemia Pathway in Stem Cells Leads to Radioresistance and Genomic Instability. Cancer Res 2021; 81:3706-3716. [PMID: 33941615 DOI: 10.1158/0008-5472.can-20-3309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/15/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
Fanconi anemia is an inherited genome instability syndrome characterized by interstrand cross-link hypersensitivity, congenital defects, bone marrow failure, and cancer predisposition. Although DNA repair mediated by Fanconi anemia genes has been extensively studied, how inactivation of these genes leads to specific cellular phenotypic consequences associated with Fanconi anemia is not well understood. Here we report that Fanconi anemia stem cells in the C. elegans germline and in murine embryos display marked nonhomologous end joining (NHEJ)-dependent radiation resistance, leading to survival of progeny cells carrying genetic lesions. In contrast, DNA cross-linking does not induce generational genomic instability in Fanconi anemia stem cells, as widely accepted, but rather drives NHEJ-dependent apoptosis in both species. These findings suggest that Fanconi anemia is a stem cell disease reflecting inappropriate NHEJ, which is mutagenic and carcinogenic as a result of DNA misrepair, while marrow failure represents hematopoietic stem cell apoptosis. SIGNIFICANCE: This study finds that Fanconi anemia stem cells preferentially activate error-prone NHEJ-dependent DNA repair to survive irradiation, thereby conferring generational genomic instability that is instrumental in carcinogenesis.
Collapse
Affiliation(s)
- Xinzhu Deng
- Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason Tchieu
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel S Higginson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kuo-Shun Hsu
- Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Regina Feldman
- Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lorenz Studer
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shai Shaham
- The Rockefeller University, New York, New York
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zvi Fuks
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard Kolesnick
- Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
10
|
Abad E, Samino S, Grodzicki RL, Pagano G, Trifuoggi M, Graifer D, Potesil D, Zdrahal Z, Yanes O, Lyakhovich A. Identification of metabolic changes leading to cancer susceptibility in Fanconi anemia cells. Cancer Lett 2020; 503:185-196. [PMID: 33316348 DOI: 10.1016/j.canlet.2020.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/19/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
Fanconi anemia (FA) is a chromosomal instability disorder of bone marrow associated with aplastic anemia, congenital abnormalities and a high risk of malignancies. The identification of more than two dozen FA genes has revealed a plethora of interacting proteins that are mainly involved in repair of DNA interstrand crosslinks (ICLs). Other important findings associated with FA are inflammation, oxidative stress response, mitochondrial dysfunction and mitophagy. In this work, we performed quantitative proteomic and metabolomic analyses on defective FA cells and identified a number of metabolic abnormalities associated with cancer. In particular, an increased de novo purine biosynthesis, a high concentration of fumarate, and an accumulation of purinosomal clusters were found. This was in parallel with decreased OXPHOS and altered glycolysis. On the whole, our results indicate an association between the need for nitrogenous bases upon impaired DDR in FA cells with a subsequent increase in purine metabolism and a potential role in oncogenesis.
Collapse
Affiliation(s)
- Etna Abad
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | - Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy
| | | | - David Potesil
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zbynek Zdrahal
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Oscar Yanes
- Universitat Rovira i Virgili, Department of Electronic Engineering, IISPV, Tarragona 43007, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Alex Lyakhovich
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, 630117, Russia; Vall D'Hebron Institut de Recerca, 08035, Barcelona, Spain.
| |
Collapse
|
11
|
Huang T, Song X, Xu D, Tiek D, Goenka A, Wu B, Sastry N, Hu B, Cheng SY. Stem cell programs in cancer initiation, progression, and therapy resistance. Am J Cancer Res 2020; 10:8721-8743. [PMID: 32754274 PMCID: PMC7392012 DOI: 10.7150/thno.41648] [Citation(s) in RCA: 278] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past few decades, substantial evidence has convincingly revealed the existence of cancer stem cells (CSCs) as a minor subpopulation in cancers, contributing to an aberrantly high degree of cellular heterogeneity within the tumor. CSCs are functionally defined by their abilities of self-renewal and differentiation, often in response to cues from their microenvironment. Biological phenotypes of CSCs are regulated by the integrated transcriptional, post-transcriptional, metabolic, and epigenetic regulatory networks. CSCs contribute to tumor progression, therapeutic resistance, and disease recurrence through their sustained proliferation, invasion into normal tissue, promotion of angiogenesis, evasion of the immune system, and resistance to conventional anticancer therapies. Therefore, elucidation of the molecular mechanisms that drive cancer stem cell maintenance, plasticity, and therapeutic resistance will enhance our ability to improve the effectiveness of targeted therapies for CSCs. In this review, we highlight the key features and mechanisms that regulate CSC function in tumor initiation, progression, and therapy resistance. We discuss factors for CSC therapeutic resistance, such as quiescence, induction of epithelial-to-mesenchymal transition (EMT), and resistance to DNA damage-induced cell death. We evaluate therapeutic approaches for eliminating therapy-resistant CSC subpopulations, including anticancer drugs that target key CSC signaling pathways and cell surface markers, viral therapies, the awakening of quiescent CSCs, and immunotherapy. We also assess the impact of new technologies, such as single-cell sequencing and CRISPR-Cas9 screening, on the investigation of the biological properties of CSCs. Moreover, challenges remain to be addressed in the coming years, including experimental approaches for investigating CSCs and obstacles in therapeutic targeting of CSCs.
Collapse
|
12
|
Touil D, Bouhouch R, Chebil RB, Oualha L, Douki N. Gingival Bleeding in a Child with Fanconi Anemia: A Case Report and Literature Review. Case Rep Dent 2020; 2020:3161053. [PMID: 32231808 PMCID: PMC7085353 DOI: 10.1155/2020/3161053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/13/2020] [Accepted: 02/17/2020] [Indexed: 11/18/2022] Open
Abstract
Fanconi anemia (FA) is a rare autosomal recessive disorder characterized by multiple congenital abnormalities, bone marrow failure, and higher susceptibility to malignancies, especially to head and neck carcinomas. Only few reports about the oral manifestations of FA are available. The main reported oral conditions associated with FA are microdontia and advanced periodontitis. The aim of this paper was to report a case of a 10-year-old patient with FA presenting severe spontaneous gingival bleeding, as well as to discuss the role of the dentist in the management and treatment of this condition.
Collapse
Affiliation(s)
- Dorsaf Touil
- University of Monastir, Dental Faculty of Monastir, Research Laboratory LR12ES11, Tunisia
| | - Rahma Bouhouch
- University of Monastir, Dental Faculty of Monastir, Research Laboratory LR12ES11, Tunisia
| | - Raoua Belkacem Chebil
- University of Monastir, Dental Faculty of Monastir, Research Laboratory LR12ES11, Tunisia
| | - Lamia Oualha
- University of Monastir, Dental Faculty of Monastir, Research Laboratory LR12ES11, Tunisia
| | - Nabiha Douki
- University of Monastir, Dental Faculty of Monastir, Research Laboratory LR12ES11, Tunisia
| |
Collapse
|
13
|
Kadletz L, Kenner L, Wiebringhaus R, Jank B, Mayer C, Gurnhofer E, Konrad S, Heiduschka G. Evaluation of the cancer stem cell marker DCLK1 in patients with lymph node metastases of head and neck cancer. Pathol Res Pract 2019; 215:152698. [PMID: 31706685 DOI: 10.1016/j.prp.2019.152698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Lymph node metastases are frequently detected in head and neck squamous cell carcinoma (HNSCC) patients. Little is known about biomarkers expressed in lymph node metastases or their influence on clinical outcome. Doublecortin-like kinase 1 (DCLK1) is one marker that might be associated with outcome, owing to its correlation with stem cell-like characteristics. METHODS We assessed the expression of DCLK1 in 74 postoperatively irradiated patients in histologically confirmed HNSCC lymph node metastases. Statistical analysis of the association with DCLK1 on clinical outcomes was performed. RESULTS DCLK1 was expressed in 63.5% of our patient cohort. DCLK1(+) HNSCC patients, compared with those without DCLK1 expression, showed a significantly poorer time to recurrence. Moreover, we observed a significantly poorer time to recurrence in HPV(-) HNSCC patients, and significantly shorter overall and disease-free survival rates in HPV(-) oropharyngeal cancer patients, compared with HPV(+) patients with these cancers. HPV(+) patients showed no significant differences in survival time according to DCLK1 expression. However, recurrent disease occurred in only DCLK1(+) patients. Mulitivariate analysis showed that DCLK1 expression in lymph node metastases is an independent marker for recurrence. CONCLUSION DCLK1 expression might be associated with poorer clinical outcomes in HNSCC patients, specifically in HPV(-) move patients. However, larger studies are required to verify our results.
Collapse
Affiliation(s)
- Lorenz Kadletz
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria.
| | - Lukas Kenner
- Institute of Pathology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria; Department of Experimental Pathology and Laboratory Animal Pathology, University of Veterinary Medicine, Vienna, Austria.
| | | | - Bernhard Jank
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Christina Mayer
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Stefan Konrad
- Department of Radiotherapy and -Oncology, Medical University of Vienna, Vienna, Austria
| | - Gregor Heiduschka
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Schulz A, Meyer F, Dubrovska A, Borgmann K. Cancer Stem Cells and Radioresistance: DNA Repair and Beyond. Cancers (Basel) 2019; 11:cancers11060862. [PMID: 31234336 PMCID: PMC6627210 DOI: 10.3390/cancers11060862] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
The current preclinical and clinical findings demonstrate that, in addition to the conventional clinical and pathological indicators that have a prognostic value in radiation oncology, the number of cancer stem cells (CSCs) and their inherent radioresistance are important parameters for local control after radiotherapy. In this review, we discuss the molecular mechanisms of CSC radioresistance attributable to DNA repair mechanisms and the development of CSC-targeted therapies for tumor radiosensitization. We also discuss the current challenges in preclinical and translational CSC research including the high inter- and intratumoral heterogeneity, plasticity of CSCs, and microenvironment-stimulated tumor cell reprogramming.
Collapse
Affiliation(s)
- Alexander Schulz
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Felix Meyer
- Laboratory of Radiobiology & Experimental Radiooncology, Department of Radiotherapy and Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany.
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Kerstin Borgmann
- Laboratory of Radiobiology & Experimental Radiooncology, Department of Radiotherapy and Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|
15
|
Herheliuk T, Perepelytsina O, Ostapchenko L, Sydorenko M. Effect of Interferon α-2b on Multicellular Tumor Spheroids of MCF-7 Cell Line Enriched with Cancer Stem Cells. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2019. [DOI: 10.20535/ibb.2019.3.1.157388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
16
|
New Insights and Perspectives in Fanconi Anemia Research. Trends Mol Med 2019; 25:167-170. [DOI: 10.1016/j.molmed.2019.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
|
17
|
Götz C, Bissinger O, Nobis C, Wolff KD, Drecoll E, Kolk A. ALDH1 as a prognostic marker for lymph node metastasis in OSCC. Biomed Rep 2018; 9:284-290. [PMID: 30233780 PMCID: PMC6142035 DOI: 10.3892/br.2018.1131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/05/2018] [Indexed: 12/13/2022] Open
Abstract
Long-term survival in cases of head and neck squamous cell carcinoma, particularly oral squamous cell carcinoma (OSCC), remains a rare achievement in the field of clinical oncology. In recent years, the theory of cancer stem cells (CSCs) has emerged and been used to offer explanations for tumour recurrence and metastasis. The present aim was to investigate the role of aldehyde dehydrogenase 1 (ALDH1) as a CSC-marker for OSCC and to determine the role of p16ink4a, which is also a surrogate marker of human papilloma virus (HPV), in the expression of ALDH1. The study cohort comprised of 186 surgically-treated cases of OSCC. The primaries were located in the oral cavity. The expression of the CSC marker (CSCM) ALDH1 was evaluated via immunohistochemistry (IHC) of a tissue microarray. HPV detection was performed by polymerase chain reaction and an HPV Array kit. Furthermore, the IHC expression of p16ink4a was also analysed. Risk regression models as the Kruskal Wallis test was used to assess the association of CSCM and p16ink4a expression with tumour size and lymph node metastasis, and cox proportional hazards were analysed. Additionally, coexpression of the markers ALDH1 and p16ink4a was analysed with regard to associations with tumour classification. Overall, high expression of ALDH1 in lymph nodes was significantly associated with Union for International Cancer Control (UICC) stage IV (P=0.044) and T4 stage cancer (P=0.03). p16ink4a positivity, in cases of HPV negativity, was associated with worse survival rate compared with that of the total cohort (P=0.048). Collectively the data indicate that ALDH1 expression may be suitable for detection of unfavourable prognosis in OSCC patients, based in part on its apparent role as a marker of metastasis. HPV status was not statistically predictive of patient outcome or CSCM expression; however, p16ink4a remains a potential marker in HNSCC Further in vitro studies with ALDH1 and p16ink4a should be performed to evaluate the expression of ALDH1 and HPV in cell culture and to clarify the role of ALDH1 as a marker for increased invasiveness of OSCC cells.
Collapse
Affiliation(s)
- Carolin Götz
- Department of Oral and Maxillofacial Surgery, Technical University of Munich, D-81675 Munich, Germany
| | - Oliver Bissinger
- Department of Oral and Maxillofacial Surgery, Technical University of Munich, D-81675 Munich, Germany
| | - Christopher Nobis
- Department of Oral and Maxillofacial Surgery, Technical University of Munich, D-81675 Munich, Germany
| | - Klaus Dietrich Wolff
- Department of Oral and Maxillofacial Surgery, Technical University of Munich, D-81675 Munich, Germany
| | - Enken Drecoll
- Institute of Pathology, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany
| | - Andreas Kolk
- Department of Oral and Maxillofacial Surgery, Technical University of Munich, D-81675 Munich, Germany
| |
Collapse
|
18
|
Reid P, Wilson P, Li Y, Marcu LG, Staudacher AH, Brown MP, Bezak E. In vitro investigation of head and neck cancer stem cell proportions and their changes following X-ray irradiation as a function of HPV status. PLoS One 2017; 12:e0186186. [PMID: 29028842 PMCID: PMC5640219 DOI: 10.1371/journal.pone.0186186] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/27/2017] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Some head and neck squamous cell carcinomas (HNSCC) have a distinct aetiology, which depends on the presence of oncogenic human papilloma virus (HPV). Also, HNSCC contains cancer stem cells (CSCs) that have greater radioresistance and capacity to change replication dynamics in response to irradiation compared to non-clonogenic cells. Since there is limited data on CSCs in HNSCC as a function of HPV status, better understanding of their radiobiology may enable improved treatment outcome. METHODS Baseline and post-irradiation changes in CSC proportions were investigated by flow cytometry in a HPV-negative (UM-SCC-1) and a HPV-positive (UM-SCC-47) HNSCC cell line, using fluorescent staining with CD44/ALDH markers. CSC proportions in both irradiated and unirradiated cultures were compared for the two cell lines at various times post-irradiation. To assess repopulation of CSCs, untreated cultures were depleted of CD44+/ALDH+ cells and re-cultured for 3 weeks before flow cytometry analysis. RESULTS CSC proportions in untreated cell lines were 0.57% (UM-SCC-1) and 2.87% (UM-SCC-47). Untreated cell lines depleted of CD44+/ALDH+ repopulated this phenotype to a mean of 0.15% (UM-SCC-1) and 6.76% (UM-SCC-47). All UM-SCC-47 generations showed elevated CSC proportions after irradiation, with the most significant increase at 2 days post-irradiation. The highest elevation in UM-SCC-1 CSCs was observed at 1 day post-irradiation in the 2nd generation and at 3 days after irradiation in the 3rd generation. When measured after 10 days, only the 3rd generation of UM-SCC-1 showed elevated CSCs. CONCLUSIONS CSC proportions in both cell lines were elevated after exposure and varied with time post irradiation. UM-SCC-47 displayed significant plasticity in repopulating the CSC phenotype in depleted cultures, which was not seen in UM-SCC-1.
Collapse
Affiliation(s)
- Paul Reid
- School of Health Sciences, University of South Australia, Adelaide, Australia
- Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
- * E-mail:
| | - Puthenparampil Wilson
- School of Engineering, University of South Australia, Adelaide, Australia
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide, Australia
| | - Yanrui Li
- Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Loredana G. Marcu
- School of Health Sciences, University of South Australia, Adelaide, Australia
- Faculty of Science, University of Oradea, Oradea, Romania
| | - Alexander H. Staudacher
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, and University of South Australia, Adelaide, Australia
- School of Medicine, University of Adelaide, Adelaide, Australia
| | - Michael P. Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, and University of South Australia, Adelaide, Australia
- School of Medicine, University of Adelaide, Adelaide, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Eva Bezak
- School of Health Sciences, University of South Australia, Adelaide, Australia
- Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
- School of Physical Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
19
|
Ma H, Jin S, Yang W, Tian Z, Liu S, Wang Y, Zhou G, Zhao M, Gvetadze S, Zhang Z, Hu J. Interferon-α Promotes the Expression of Cancer Stem Cell Markers in Oral Squamous Cell Carcinoma. J Cancer 2017; 8:2384-2393. [PMID: 28819442 PMCID: PMC5560157 DOI: 10.7150/jca.19486] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/01/2017] [Indexed: 12/23/2022] Open
Abstract
Objectives: IFNα can stimulate an antitumor immune response and has a direct inhibition on cancer cells. This study is to test whether IFNα can activate dormant cancer stem cell (CSC) in oral squamous cell carcinoma (OSCC) to facilitate their elimination by chemotherapy. Materials and methods: Nude mouse transplantation tumor model was established and administrated with IFNα and saline. The influence on CD44 and ALDH1A1 expression under IFNα treatment was detected by in vivo experiments. Flow cytometry, western blot, and immunofluorescence were used to detect the expression of CD44 and ALDH1A1 after INFa treatment in OSCC cell lines. Tumorsphere formation assay was conducted under incubation with IFNα for 2 weeks. Chromatin immunoprecipitation (ChIP) assays was used to examine the IFNα-induced transcriptional regulation of CD44 and ALDH1A1 expression. That IFNα-primed enhanced killing effect of chemotherapy was evaluated by MTT and western blot. Results: IFNα transcriptionally activated the expression of CD44 and ALDH1A1 expression both in vivo and in vitro. IFNα-primed enhanced the cytotoxic inhibition effect of CDDP, erlotinib and nimotuzumab on OSCC cells. Conclusion: These results suggest that IFNα could be administrated to patients prior to chemotherapeutic drugs, which will facilitate the killing of cancer stem cells in OSCC.
Collapse
Affiliation(s)
- Hailong Ma
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Shufang Jin
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wenyi Yang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Zhuowei Tian
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Shuli Liu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yang Wang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Ge Zhou
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Mei Zhao
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shalva Gvetadze
- Central Research Institute of Dentistry and Maxillofacial Surgery, Congenital Maxillofacial Defects and Deformations, Timura Frunze 16, Moscow 119034, Russia
| | - Zhiyuan Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Jingzhou Hu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| |
Collapse
|
20
|
Reid PA, Wilson P, Li Y, Marcu LG, Bezak E. Current understanding of cancer stem cells: Review of their radiobiology and role in head and neck cancers. Head Neck 2017. [DOI: 10.1002/hed.24848] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Paul Ambrose Reid
- International Centre for Allied Health Evidence and Sansom Institute for Health Research; University of South Australia; Adelaide Australia
| | - Puthenparampil Wilson
- School of Engineering; University of South Australia; Adelaide Australia
- Department of Medical Physics; Royal Adelaide Hospital; Adelaide Australia
| | - Yanrui Li
- International Centre for Allied Health Evidence and Sansom Institute for Health Research; University of South Australia; Adelaide Australia
| | - Loredana Gabriela Marcu
- School of Physical Sciences; University of Adelaide; Adelaide Australia
- Faculty of Science; University of Oradea; Oradea Romania
| | - Eva Bezak
- International Centre for Allied Health Evidence and Sansom Institute for Health Research; University of South Australia; Adelaide Australia
- School of Physical Sciences; University of Adelaide; Adelaide Australia
| |
Collapse
|
21
|
Forster JC, Douglass MJJ, Harriss-Phillips WM, Bezak E. Development of an in silico stochastic 4D model of tumor growth with angiogenesis. Med Phys 2017; 44:1563-1576. [PMID: 28129434 DOI: 10.1002/mp.12130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/10/2016] [Accepted: 01/18/2017] [Indexed: 11/09/2022] Open
Abstract
PURPOSE A stochastic computer model of tumour growth with spatial and temporal components that includes tumour angiogenesis was developed. In the current work it was used to simulate head and neck tumour growth. The model also provides the foundation for a 4D cellular radiotherapy simulation tool. METHODS The model, developed in Matlab, contains cell positions randomised in 3D space without overlap. Blood vessels are represented by strings of blood vessel units which branch outwards to achieve the desired tumour relative vascular volume. Hypoxic cells have an increased cell cycle time and become quiescent at oxygen tensions less than 1 mmHg. Necrotic cells are resorbed. A hierarchy of stem cells, transit cells and differentiated cells is considered along with differentiated cell loss. Model parameters include the relative vascular volume (2-10%), blood oxygenation (20-100 mmHg), distance from vessels to the onset of necrosis (80-300 μm) and probability for stem cells to undergo symmetric division (2%). Simulations were performed to observe the effects of hypoxia on tumour growth rate for head and neck cancers. Simulations were run on a supercomputer with eligible parts running in parallel on 12 cores. RESULTS Using biologically plausible model parameters for head and neck cancers, the tumour volume doubling time varied from 45 ± 5 days (n = 3) for well oxygenated tumours to 87 ± 5 days (n = 3) for severely hypoxic tumours. CONCLUSIONS The main achievements of the current model were randomised cell positions and the connected vasculature structure between the cells. These developments will also be beneficial when irradiating the simulated tumours using Monte Carlo track structure methods.
Collapse
Affiliation(s)
- Jake C Forster
- Department of Physics, University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia.,Department of Medical Physics, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia
| | - Michael J J Douglass
- Department of Physics, University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia.,Department of Medical Physics, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia
| | - Wendy M Harriss-Phillips
- Department of Physics, University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia.,Department of Medical Physics, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia
| | - Eva Bezak
- Department of Physics, University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia.,Sansom Institute for Health Research and School of Health Sciences, Division of Health Sciences, University of South Australia, Adelaide, South Australia, 5001, Australia
| |
Collapse
|
22
|
Biron VL, Kostiuk M, Isaac A, Puttagunta L, O'Connell DA, Harris J, Côté DWJ, Seikaly H. Detection of human papillomavirus type 16 in oropharyngeal squamous cell carcinoma using droplet digital polymerase chain reaction. Cancer 2016; 122:1544-51. [PMID: 26989832 DOI: 10.1002/cncr.29976] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/01/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND The incidence of oropharyngeal squamous cell carcinoma caused by oncogenic HPV (HPV-OPSCC) is rising worldwide. HPV-OPSCC is commonly diagnosed by RT-qPCR of HPV-16 E6 and E7 oncoproteins or by cyclin-dependent kinase inhibitor 2A, multiple tumor suppressor 1 (p16) immunohistochemistry (IHC). Droplet digital PCR (ddPCR) has been recently reported as ultra-sensitive and highly precise method of nucleic acid quantification for biomarker analysis. We aimed to validate this method for the detection of HPV-16 E6 and E7 in HPV-OPSCC. METHODS Participants were recruited from January 2015-November 2015 at initial presentation to the University of Alberta Head and Neck Oncology Clinic. RNA was extracted, purified and quantified from prospectively collected participant tissues, and ddPCR was performed with fluorescent probes detecting HPV-16 E6 and E7. Results from ddPCR were compared with p16 IHC performed by clinical pathology as standard of care. RESULTS Head and neck tissues were prospectively obtained from 68 participants including 29 patients with OPSCC, 29 patients with non-OPSCC and 10 patients without carcinoma. 79.2% of patients with OPSCC were p16 positive. The sensitivity and specificity of ddPCR HPV E6/E7 compared with p16 IHC in OPSCC was 91.3 and 100%, respectively. The amount of target RNA used was ≤1 ng, 20-50 times lower than reported by other for RT-qPCR HPV E6/E7. CONCLUSIONS The ddPCR of HPV E6/E7 is a novel and highly specific method of detecting HPV-16 in OPSCC. Cancer 2016;122:1544-51. © 2016 American Cancer Society.
Collapse
Affiliation(s)
- Vincent L Biron
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery University of Alberta, Edmonton, Alberta, Canada
| | - Morris Kostiuk
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery University of Alberta, Edmonton, Alberta, Canada
| | - Andre Isaac
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery University of Alberta, Edmonton, Alberta, Canada
| | - Lakshmi Puttagunta
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel A O'Connell
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery University of Alberta, Edmonton, Alberta, Canada
| | - Jeffrey Harris
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery University of Alberta, Edmonton, Alberta, Canada
| | - David W J Côté
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery University of Alberta, Edmonton, Alberta, Canada
| | - Hadi Seikaly
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
Romick-Rosendale LE, Hoskins EE, Privette Vinnedge LM, Foglesong GD, Brusadelli MG, Potter SS, Komurov K, Brugmann SA, Lambert PF, Kimple RJ, Virts EL, Hanenberg H, Gillison ML, Wells SI. Defects in the Fanconi Anemia Pathway in Head and Neck Cancer Cells Stimulate Tumor Cell Invasion through DNA-PK and Rac1 Signaling. Clin Cancer Res 2015; 22:2062-73. [PMID: 26603260 DOI: 10.1158/1078-0432.ccr-15-2209] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/10/2015] [Indexed: 01/12/2023]
Abstract
PURPOSE Head and neck squamous cell carcinoma (HNSCC) remains a devastating disease, and Fanconi anemia (FA) gene mutations and transcriptional repression are common. Invasive tumor behavior is associated with poor outcome, but relevant pathways triggering invasion are poorly understood. There is a significant need to improve our understanding of genetic pathways and molecular mechanisms driving advanced tumor phenotypes, to develop tailored therapies. Here we sought to investigate the phenotypic and molecular consequences of FA pathway loss in HNSCC cells. EXPERIMENTAL DESIGN Using sporadic HNSCC cell lines with and without FA gene knockdown, we sought to characterize the phenotypic and molecular consequences of FA deficiency. FA pathway inactivation was confirmed by the detection of classic hallmarks of FA following exposure to DNA cross-linkers. Cells were subjected to RNA sequencing with qRT-PCR validation, followed by cellular adhesion and invasion assays in the presence and absence of DNA-dependent protein kinase (DNA-PK) and Rac1 inhibitors. RESULTS We demonstrate that FA loss in HNSCC cells leads to cytoskeletal reorganization and invasive tumor cell behavior in the absence of proliferative gains. We further demonstrate that cellular invasion following FA loss is mediated, at least in part, through NHEJ-associated DNA-PK and downstream Rac1 GTPase activity. CONCLUSIONS These findings demonstrate that FA loss stimulates HNSCC cell motility and invasion, and implicate a targetable DNA-PK/Rac1 signaling axis in advanced tumor phenotypes.
Collapse
Affiliation(s)
| | - Elizabeth E Hoskins
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lisa M Privette Vinnedge
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Grant D Foglesong
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Marion G Brusadelli
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kakajan Komurov
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Samantha A Brugmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Elizabeth L Virts
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Helmut Hanenberg
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana. Department of Otorhinolaryngology, Heinrich Heine University, Duesseldorf, Germany. Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Maura L Gillison
- Internal Medicine-Hematology & Oncology, Comprehensive Cancer Center, The Ohio State, University College of Medicine, Columbus, Ohio
| | - Susanne I Wells
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
24
|
Rodriguez-Torres M, Allan AL. Aldehyde dehydrogenase as a marker and functional mediator of metastasis in solid tumors. Clin Exp Metastasis 2015; 33:97-113. [PMID: 26445849 PMCID: PMC4740561 DOI: 10.1007/s10585-015-9755-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 10/01/2015] [Indexed: 12/16/2022]
Abstract
There is accumulating evidence indicating that aldehyde dehydrogenase (ALDH) activity selects for cancer cells with increased aggressiveness, capacity for sustained proliferation, and plasticity in primary tumors. However, emerging data also suggests an important mechanistic role for the ALDH family of isoenzymes in the metastatic activity of tumor cells. Recent studies indicate that ALDH correlates with either increased or decreased metastatic capacity in a cellular context-dependent manner. Importantly, it appears that different ALDH isoforms support increased metastatic capacity in different tumor types. This review assesses the potential of ALDH as biological marker and mechanistic mediator of metastasis in solid tumors. In many malignancies, most notably in breast cancer, ALDH activity and expression appears to be a promising marker and potential therapeutic target for treating metastasis in the clinical setting.
Collapse
Affiliation(s)
- Mauricio Rodriguez-Torres
- London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Alison L Allan
- London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada. .,Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada. .,Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada. .,Lawson Health Research Institute, London, ON, Canada. .,London Regional Cancer Program, Room A4-132, 790 Commissioners Road East, London, ON, N6A 4L6, Canada.
| |
Collapse
|
25
|
Lan J, Huang B, Liu R, Ju X, Zhou Y, Jiang J, Liang W, Shen Y, Li F, Pang L. Expression of cancer stem cell markers and their correlation with pathogenesis in vascular tumors. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:12621-12633. [PMID: 26722452 PMCID: PMC4680397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/24/2015] [Indexed: 06/05/2023]
Abstract
Vascular tumor, which belongs to a kind of complicated lesion in soft tissue tumor, is derived from mesenchymal tissue. Although many studies have been focused on the pathogenesis of vascular tumors in human, the specific mechanism of the vascular tumors was currently unclear. Previous studies have reported an association of cancer stem cells with the development of tumor in many solid tumors. Thus the purpose of this study was to explore whether different expression level of cancer stem cell markers including CD29, CD44, CD133, nestin and ALDH1 in vascular tumor may help to elucidate the possible pathogenesis of vascular tumor. In present study, tissues of 9 cases of hemangioma, 22 cases of hemangiosarcoma, 3 cases of Kaposi's sarcoma, and 5 cases of hemangioendothelioma were immunostained for CD29, CD44, CD133, nestin and ALDH1. Of the 39 vascular tumor cases included in the current study, CD29, CD133 and nestin were positive in most vascular tumor cases. Although CD44 and ALDH1 were observed in vascular tumor cases, the percentage of cells staining for the two markers was less than 2% in all cases of vascular tumor. Capillary hemangiomas exhibited significantly higher expression rate of CD29 and nestin compared with malignant vascular tumors and hemangioendotheliomas (P<0.05, Fisher's exact test), while CD44, CD133 and ALDH1 exhibited no statistically significant difference between these two groups. Pearson correlation analysis exhibited that CD29 expression and nestin expression in vascular tumor were no statistically significant relationship (C=0.288, P=0.063>0.05). Our findings confirmed that the five cancer stem cells markers, including CD29, CD44, CD133, nestin and ALDH1, exhibited different expression levels in vascular tumors and demonstrated that immunohistochemical analysis for cancer stem cells markers may provide useful information for studying the pathogenesis of vascular tumors.
Collapse
Affiliation(s)
- Jiaojiao Lan
- Department of Pathology, Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of MedicineShihezi, Xinjiang, China
| | - Bing Huang
- Department of Thoracic and Cardiovascular Surgery, First Affiliated Hospital to Shihezi University School of MedicineShihezi 832008, Xinjiang, China
| | - Ruixue Liu
- Department of Pathology, Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of MedicineShihezi, Xinjiang, China
| | - Xinxin Ju
- Department of Pathology, Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of MedicineShihezi, Xinjiang, China
| | - Yang Zhou
- Department of Pathology, Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of MedicineShihezi, Xinjiang, China
| | - Jinfang Jiang
- Department of Pathology, Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of MedicineShihezi, Xinjiang, China
| | - Weihua Liang
- Department of Pathology, Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of MedicineShihezi, Xinjiang, China
| | - Yaoyuan Shen
- Department of Pathology, Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of MedicineShihezi, Xinjiang, China
| | - Feng Li
- Department of Pathology, Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of MedicineShihezi, Xinjiang, China
| | - Lijuan Pang
- Department of Pathology, Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of MedicineShihezi, Xinjiang, China
| |
Collapse
|