1
|
Murillo-Ortiz BO, García-Corrales K, Martínez-Garza S, Romero-Vázquez MJ, Agustín-Godínez E, Escareño-Gómez A, Silva-Guerrero DG, Mendoza-Ramírez S, Murguia-Perez M. Association of hTERT expression, Her2Neu, estrogen receptors, progesterone receptors, with telomere length before and at the end of treatment in breast cancer patients. Front Med (Lausanne) 2024; 11:1450147. [PMID: 39188883 PMCID: PMC11345256 DOI: 10.3389/fmed.2024.1450147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Background Breast cancer shows significant clinical, morphologic, and molecular variation. Telomeres are nucleoprotein complexes composed of hexanucleotide repeat DNA sequence, TTAGGG, and numerous telomere-associated proteins. The maintenance of telomere length is carried out by a ribonucleoprotein called telomerase, which consists of two main components: a catalytic subunit called hTERT (human telomerase reverse transcriptase) and an RNA template called hTR (human telomerase RNA). The importance of evaluating hTERT expression lies in its potential therapeutic application, being an attractive target due to its almost non-existent expression in normal somatic cells. It is also expected that the anti-neoplastic effect would appear earlier in neoplastic cells with shorter telomeres. Additionally, a significant relationship has been observed between Her2-Neu overexpression and Her2-Neu positivity, which could suggest new combined therapies.The aim of this study was to detect the expression of hTERT, estrogen receptor (ER), progesterone receptor (PR), and HER2-Neu in neoplastic breast tissue embedded in paraffin before treatment and to investigate the relationship between them and with baseline and post-treatment telomere length, as well as with various clinicopathological parameters. Materials and methods A cross-sectional-correlational, 21 women diagnosed with breast cancer at the Oncology Service of the High Specialty Medical Unit No. 1 of Bajio of the Mexican Institute of Social Security. The study complies with the Helsinki Declaration and was approved by the Institutional Ethical Committee of the Mexican Institute of Social Security (R-2019-1001-127). A peripheral blood sample was obtained before oncological treatment and at the end of oncological treatment for the measurement of telomere length by extracting DNA from leukocytes, was performed by the quantitative polymerase chain reaction (PCR) method described by Cawthon. Tumor samples were collected from each patient at the oncology department for immunohistochemical determination of biomarker expression (ER, PR, Her2/neu) and hTERT. Results Of the 21 cases included in the study, the median age was 57.57 years. Eighteen cases were classified as invasive ductal carcinoma NOS (85.71%), 10 were histologic grade 2 (47.61%), 16 cases were hormone receptor positive (76.19%), 7 were Her2Neu positive (33.33%), and only 2 cases were triple negative (9.52%). Positive hTERT expression was detected in 11 cases (52.38%) and was negative in the remaining cases. A significant association was identified between hTERT-positive cases and Her2-Neu positive cases (p = 0.04). Baseline and post-treatment telomere lengths showed a significant difference using the non-parametric Wilcoxon t-test (p = 0.002). In hTERT-positive cases, there was significant telomere shortening at the end of oncological treatment (6.14 ± 1.54 vs. 4.75 ± 1.96 Kb, p = 0.007). Conclusion Positive hTERT immunostaining cases were associated with poor prognostic factors, such as Her2-Neu overexpression and post-treatment telomere shortening. In the future, hTERT immunostaining could be used to select patients for therapies with antagonistic effects on hTERT, as well as in the selection of more appropriate chemotherapy regimens for patients who express it.
Collapse
Affiliation(s)
- Blanca Olivia Murillo-Ortiz
- Unidad de Investigación en Epidemiología Clínica, OOAD Guanajuato, Instituto Mexicano del Seguro Social, León, Mexico
| | - Kenia García-Corrales
- Servicio de Anatomía Patológica, Hospital General de Zona No. 33, Instituto Mexicano del Seguro Social, Bahía de Banderas, Mexico
| | - Sandra Martínez-Garza
- Unidad de Investigación en Epidemiología Clínica, OOAD Guanajuato, Instituto Mexicano del Seguro Social, León, Mexico
| | - Marcos Javier Romero-Vázquez
- Unidad de Investigación en Epidemiología Clínica, OOAD Guanajuato, Instituto Mexicano del Seguro Social, León, Mexico
| | - Eduardo Agustín-Godínez
- Laboratorio de Anatomía Patológica e Inmunohistoquímica Especializada DIME, Hospital Médica Campestre, León, Mexico
| | - Andrea Escareño-Gómez
- Departamento de Patología Quirúrgica, UMAE Hospital de Especialidades No. 1, Centro Médico Nacional Bajío, Instituto Mexicano del Seguro Social, León, Mexico
| | | | | | - Mario Murguia-Perez
- Laboratorio de Anatomía Patológica e Inmunohistoquímica Especializada DIME, Hospital Médica Campestre, León, Mexico
- Departamento de Patología Quirúrgica, UMAE Hospital de Especialidades No. 1, Centro Médico Nacional Bajío, Instituto Mexicano del Seguro Social, León, Mexico
| |
Collapse
|
2
|
Porrazzo A, Cassandri M, D'Alessandro A, Morciano P, Rota R, Marampon F, Cenci G. DNA repair in tumor radioresistance: insights from fruit flies genetics. Cell Oncol (Dordr) 2024; 47:717-732. [PMID: 38095764 DOI: 10.1007/s13402-023-00906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Radiation therapy (RT) is a key anti-cancer treatment that involves using ionizing radiation to kill tumor cells. However, this therapy can lead to short- and long-term adverse effects due to radiation exposure of surrounding normal tissue. The type of DNA damage inflicted by radiation therapy determines its effectiveness. High levels of genotoxic damage can lead to cell cycle arrest, senescence, and cell death, but many tumors can cope with this damage by activating protective mechanisms. Intrinsic and acquired radioresistance are major causes of tumor recurrence, and understanding these mechanisms is crucial for cancer therapy. The mechanisms behind radioresistance involve processes like hypoxia response, cell proliferation, DNA repair, apoptosis inhibition, and autophagy. CONCLUSION Here we briefly review the role of genetic and epigenetic factors involved in the modulation of DNA repair and DNA damage response that promote radioresistance. In addition, leveraging our recent results on the effects of low dose rate (LDR) of ionizing radiation on Drosophila melanogaster we discuss how this model organism can be instrumental in the identification of conserved factors involved in the tumor resistance to RT.
Collapse
Affiliation(s)
- Antonella Porrazzo
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, 00161, Rome, Italy
| | - Matteo Cassandri
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, 00161, Rome, Italy
| | - Andrea D'Alessandro
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, 00185, Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161, Rome, Italy
| | - Patrizia Morciano
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente, Università Degli Studi dell'Aquila, 67100, L'Aquila, Italy
- Laboratori Nazionali del Gran Sasso (LNGS), INFN, Assergi, 67100, L'Aquila, Italy
| | - Rossella Rota
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Francesco Marampon
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, 00161, Rome, Italy
| | - Giovanni Cenci
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, 00185, Rome, Italy.
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161, Rome, Italy.
| |
Collapse
|
3
|
Moris VC, Bruneau L, Berthe J, Heuskin AC, Penninckx S, Ritter S, Weber U, Durante M, Danchin EGJ, Hespeels B, Doninck KV. Ionizing radiation responses appear incidental to desiccation responses in the bdelloid rotifer Adineta vaga. BMC Biol 2024; 22:11. [PMID: 38273318 PMCID: PMC10809525 DOI: 10.1186/s12915-023-01807-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The remarkable resistance to ionizing radiation found in anhydrobiotic organisms, such as some bacteria, tardigrades, and bdelloid rotifers has been hypothesized to be incidental to their desiccation resistance. Both stresses produce reactive oxygen species and cause damage to DNA and other macromolecules. However, this hypothesis has only been investigated in a few species. RESULTS In this study, we analyzed the transcriptomic response of the bdelloid rotifer Adineta vaga to desiccation and to low- (X-rays) and high- (Fe) LET radiation to highlight the molecular and genetic mechanisms triggered by both stresses. We identified numerous genes encoding antioxidants, but also chaperones, that are constitutively highly expressed, which may contribute to the protection of proteins against oxidative stress during desiccation and ionizing radiation. We also detected a transcriptomic response common to desiccation and ionizing radiation with the over-expression of genes mainly involved in DNA repair and protein modifications but also genes with unknown functions that were bdelloid-specific. A distinct transcriptomic response specific to rehydration was also found, with the over-expression of genes mainly encoding Late Embryogenesis Abundant proteins, specific heat shock proteins, and glucose repressive proteins. CONCLUSIONS These results suggest that the extreme resistance of bdelloid rotifers to radiation might indeed be a consequence of their capacity to resist complete desiccation. This study paves the way to functional genetic experiments on A. vaga targeting promising candidate proteins playing central roles in radiation and desiccation resistance.
Collapse
Affiliation(s)
- Victoria C Moris
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium.
- Laboratory of Molecular Biology & Evolution (MBE), Department of Biology, Université Libre de Bruxelles, 1000, Brussels, Belgium.
| | - Lucie Bruneau
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Jérémy Berthe
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Anne-Catherine Heuskin
- Namur Research Institute for Life Sciences (NARILIS), Laboratory of Analysis By Nuclear Reactions (LARN), University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Sébastien Penninckx
- Medical Physics Department, Institut Jules Bordet - Université Libre de Bruxelles, 90 Rue Meylemeersch, 1070, Brussels, Belgium
| | - Sylvia Ritter
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Uli Weber
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Etienne G J Danchin
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 06903, Sophia Antipolis, France
| | - Boris Hespeels
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Karine Van Doninck
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
- Laboratory of Molecular Biology & Evolution (MBE), Department of Biology, Université Libre de Bruxelles, 1000, Brussels, Belgium
| |
Collapse
|
4
|
Chen R, Zou J, Kang R, Tang D. The Redox Protein High-Mobility Group Box 1 in Cell Death and Cancer. Antioxid Redox Signal 2023; 39:569-590. [PMID: 36999916 DOI: 10.1089/ars.2023.0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Significance: As a redox-sensitive protein, high-mobility group box 1 (HMGB1) is implicated in regulating stress responses to oxidative damage and cell death, which are closely related to the pathology of inflammatory diseases, including cancer. Recent Advances: HMGB1 is a nonhistone nuclear protein that acts as a deoxyribonucleic acid chaperone to control chromosomal structure and function. HMGB1 can also be released into the extracellular space and function as a damage-associated molecular pattern protein during cell death, including during apoptosis, necrosis, necroptosis, pyroptosis, ferroptosis, alkaliptosis, and cuproptosis. Once released, HMGB1 binds to membrane receptors to shape immune and metabolic responses. In addition to subcellular localization, the function and activity of HMGB1 also depend on its redox state and protein posttranslational modifications. Abnormal HMGB1 plays a dual role in tumorigenesis and anticancer therapy (e.g., chemotherapy, radiation therapy, and immunotherapy) depending on the tumor types and stages. Critical Issues: A comprehensive understanding of the role of HMGB1 in cellular redox homeostasis is important for deciphering normal cellular functions and pathological manifestations. In this review, we discuss compartmental-defined roles of HMGB1 in regulating cell death and cancer. Understanding these advances may help us develop potential HMGB1-targeting drugs or approaches to treat oxidative stress-related diseases or pathological conditions. Future Directions: Further studies are required to dissect the mechanism by which HMGB1 maintains redox homeostasis under different stress conditions. A multidisciplinary effort is also required to evaluate the potential applications of precisely targeting the HMGB1 pathway in human health and disease. Antioxid. Redox Signal. 39, 569-590.
Collapse
Affiliation(s)
- Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis; Central South University, Changsha, China
- Department of Infectious Diseases; Xiangya Hospital, Central South University, Changsha, China
| | - Ju Zou
- Hunan Key Laboratory of Viral Hepatitis; Central South University, Changsha, China
- Department of Infectious Diseases; Xiangya Hospital, Central South University, Changsha, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
5
|
Wu Q, Sharma D. Autophagy and Breast Cancer: Connected in Growth, Progression, and Therapy. Cells 2023; 12:1156. [PMID: 37190065 PMCID: PMC10136604 DOI: 10.3390/cells12081156] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Despite an increase in the incidence of breast cancer worldwide, overall prognosis has been consistently improving owing to the development of multiple targeted therapies and novel combination regimens including endocrine therapies, aromatase inhibitors, Her2-targeted therapies, and cdk4/6 inhibitors. Immunotherapy is also being actively examined for some breast cancer subtypes. This overall positive outlook is marred by the development of resistance or reduced efficacy of the drug combinations, but the underlying mechanisms are somewhat unclear. It is interesting to note that cancer cells quickly adapt and evade most therapies by activating autophagy, a catabolic process designed to recycle damaged cellular components and provide energy. In this review, we discuss the role of autophagy and autophagy-associated proteins in breast cancer growth, drug sensitivity, tumor dormancy, stemness, and recurrence. We further explore how autophagy intersects and reduces the efficacy of endocrine therapies, targeted therapies, radiotherapy, chemotherapies as well as immunotherapy via modulating various intermediate proteins, miRs, and lncRNAs. Lastly, the potential application of autophagy inhibitors and bioactive molecules to improve the anticancer effects of drugs by circumventing the cytoprotective autophagy is discussed.
Collapse
Affiliation(s)
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287-0013, USA
| |
Collapse
|
6
|
Interactions of HMGB Proteins with the Genome and the Impact on Disease. Biomolecules 2021; 11:biom11101451. [PMID: 34680084 PMCID: PMC8533419 DOI: 10.3390/biom11101451] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023] Open
Abstract
High Mobility Group Box (HMGB) proteins are small architectural DNA binding proteins that regulate multiple genomic processes such as DNA damage repair, nucleosome sliding, telomere homeostasis, and transcription. In doing so they control both normal cellular functions and impact a myriad of disease states, including cancers and autoimmune diseases. HMGB proteins bind to DNA and nucleosomes to modulate the local chromatin environment, which facilitates the binding of regulatory protein factors to the genome and modulates higher order chromosomal organization. Numerous studies over the years have characterized the structure and function of interactions between HMGB proteins and DNA, both biochemically and inside cells, providing valuable mechanistic insight as well as evidence these interactions influence pathological processes. This review highlights recent studies supporting the roles of HMGB1 and HMGB2 in global organization of the genome, as well as roles in transcriptional regulation and telomere maintenance via interactions with G-quadruplex structures. Moreover, emerging models for how HMGB proteins function as RNA binding proteins are presented. Nuclear HMGB proteins have broad regulatory potential to impact numerous aspects of cellular metabolism in normal and disease states.
Collapse
|
7
|
Yi C, Zhang X, Li H, Chen G, Zeng B, Li Y, Wang C, He Y, Chen X, Huang Z, Yu D. EPHB4 Regulates the Proliferation and Metastasis of Oral Squamous Cell Carcinoma through the HMGB1/NF-κB Signalling Pathway. J Cancer 2021; 12:5999-6011. [PMID: 34539874 PMCID: PMC8425198 DOI: 10.7150/jca.59331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/08/2021] [Indexed: 11/05/2022] Open
Abstract
Background: Malignant proliferation and cervical lymphatic metastasis restrict the prognosis of oral squamous cell carcinoma (OSCC). Erythropoietin-producing human hepatocellular B4 (EPHB4) regulates a series of tumour functions involving tumourigenesis, cancer cell attachment and metastasis. However, the mechanism of EphB4 regulating the malignant progression of OSCC has not been fully elucidated. Methods: EPHB4 expression was analysed in 65 OSCC samples and adjacent noncancerous tissues through immunohistochemistry (IHC). siRNA and overexpression plasmids were transfected into OSCC cells to modify EPHB4 expression, and then, regulatory functions were explored in vitro and in vivo. Co-immunoprecipitation (Co-IP) and mass spectrometry were applied to detect proteins interacting with EPHB4. Subsequently, protein stability assays and NF-κB pathway inhibition assays were used to verify the regulation of EPHB4, high-mobility group box 1 (HMGB1) and nuclear factor-κB (NF-κB) activation. Results: EPHB4 was found to be highly expressed in OSCC tissues, which was related to tumour stage and lymphatic metastasis and resulted in a poor prognosis. Cellular experiments and mouse tongue xenograft models further confirmed that high EPHB4 expression promoted the proliferation and metastasis of OSCC tumours. Mechanistically, co-IP and mass spectrometry studies indicated that EPHB4 could bind to HMGB1 and maintain HMGB1 stability. Downregulation of HMGB1 inhibited the proliferation and metastasis of OSCC cells and inhibited NF-κB phosphorylation activation but did not affect EPHB4 expression. Conclusion: This study revealed the mechanism by which EPHB4 promotes the proliferation and metastasis of OSCC by activating the HMGB1-mediated NF-κB signalling pathway, which can be exploited as a novel marker or therapeutic target to control metastasis and improve the survival rate of OSCC.
Collapse
Affiliation(s)
- Chen Yi
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University. Guangzhou, Guangdong, China, 510055
- Guangdong Provincial Key Laboratory of Stomatology. Guangzhou, Guangdong, China, 510055
| | - Xiliu Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University. Guangzhou, Guangdong, China, 510055
- Guangdong Provincial Key Laboratory of Stomatology. Guangzhou, Guangdong, China, 510055
| | - Hongyu Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University. Guangzhou, Guangdong, China, 510055
- Guangdong Provincial Key Laboratory of Stomatology. Guangzhou, Guangdong, China, 510055
| | - Guanhui Chen
- Department of Stomatology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen. Guangdong, China, 518107
| | - Binghui Zeng
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University. Guangzhou, Guangdong, China, 510055
- Guangdong Provincial Key Laboratory of Stomatology. Guangzhou, Guangdong, China, 510055
| | - Yiming Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University. Guangzhou, Guangdong, China, 510055
- Guangdong Provincial Key Laboratory of Stomatology. Guangzhou, Guangdong, China, 510055
| | - Chao Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University. Guangzhou, Guangdong, China, 510055
- Guangdong Provincial Key Laboratory of Stomatology. Guangzhou, Guangdong, China, 510055
| | - Yi He
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University. Guangzhou, Guangdong, China, 510055
- Guangdong Provincial Key Laboratory of Stomatology. Guangzhou, Guangdong, China, 510055
| | - Xun Chen
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University. Guangzhou, Guangdong, China, 510055
- Guangdong Provincial Key Laboratory of Stomatology. Guangzhou, Guangdong, China, 510055
| | - Zixian Huang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China, 510120
| | - Dongsheng Yu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University. Guangzhou, Guangdong, China, 510055
- Guangdong Provincial Key Laboratory of Stomatology. Guangzhou, Guangdong, China, 510055
| |
Collapse
|
8
|
Han G, Ling R, Sun C, Wang X, Zhou Y, Yu L, Liu S. HMGB1 knockdown increases the radiosensitivity of esophageal squamous cell carcinoma by regulating the expression of molecules involved in DNA repair. Oncol Lett 2021; 22:503. [PMID: 33986864 PMCID: PMC8114541 DOI: 10.3892/ol.2021.12764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/26/2021] [Indexed: 01/01/2023] Open
Abstract
Radiotherapy is an effective therapeutic strategy in esophageal squamous cell carcinoma (ESCC). However, acquired radioresistance of cancer cells leads to radiotherapy failure. The present study aimed to investigate the mechanisms of the effect of high mobility group box 1 (HMGB1) on the radiation sensitivity of ESCC. Small interfering RNA (si) transfection was used to generate three groups of TE-1 cells (TE-1, negative control and TE-1+siHMGB1), and the protein expression levels of HMGB1 in TE-1 cells were detected by western blotting. These groups of TE-1 cells were irradiated with different doses (0, 2, 4, 6 and 8 Gy) of X-rays after transfection. Subsequently, the viability of TE-1 cells was detected using an MTT assay, and the survival fraction of TE-1 cells was observed using a colony formation assay. The apoptotic rate, reactive oxygen species (ROS) content and levels of phosphorylated (p)-histone H2AX at S139 (p-γH2AX) of the cells were detected by flow cytometry. The alterations in mRNA expression levels of nicotinamide adenine nucleotide phosphate oxidase (NOX)1 and NOX5 were detected by reverse transcription-quantitative PCR, while the changes in protein levels of caspase-3, poly(ADP-ribose) polymerase, p-p38, p-ERK1/2 and p-JNK were detected by western blotting. The results revealed that HMGB1 knockdown significantly decreased cell viability, and the apoptosis rate of TE-1 cells transfected with siHMGB1 combined with radiation treatment was increased compared with that in cells with either siHMGB1 transfection or radiation treatment alone. HMGB1 knockdown increased nicotinamide adenine nucleotide phosphate oxidase-mediated ROS production and induced DNA damage via the MAPK signaling pathway, which may promote apoptosis and radiosensitivity after radiation in TE-1 cells. In conclusion, targeting HMGB1 may represent a promising strategy to increase the efficacy of radiation therapy for ESCC.
Collapse
Affiliation(s)
- Guohu Han
- Department of Oncology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, Jiangsu 214500, P.R. China
| | - Rui Ling
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Changchun Sun
- Department of Oncology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, Jiangsu 214500, P.R. China
| | - Xuefeng Wang
- Department of Central Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yuepeng Zhou
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Lijiang Yu
- Department of Oncology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, Jiangsu 214500, P.R. China
| | - Shenzha Liu
- Department of Oncology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, Jiangsu 214500, P.R. China
| |
Collapse
|
9
|
Xia Q, Tao P, Xu J. Association of Polymorphism rs1045411 in the HMGB1 Gene with Cancer Risk: Evidence from a Meta-analysis. Int J Med Sci 2021; 18:1348-1355. [PMID: 33628090 PMCID: PMC7893572 DOI: 10.7150/ijms.52181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/04/2021] [Indexed: 11/19/2022] Open
Abstract
The high-mobility group box protein 1 (HMGB1) rs1045411 polymorphism has been demonstrated to be associated with cancer risk in some studies. However, the results regarding this topic are inconsistent. A meta-analysis was applied to elucidate the association between the HMGB1 rs1045411 polymorphism and cancer risk. Ten relevant studies were subjected to our analysis, and pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. In total, of 3,918 cases and 5,296 controls were included in this study. The pooled ORs were calculated using a random-effects or fixed-effects model according to the heterogeneity. The pooled results revealed that TT genotype was significantly related to increased cancer risk in the comparisons of TT vs. CC+TC (OR=1.35; 95% CI: 1.09-1.67; p=0.005). Though no statistical significance was achieved between HMGB1 rs1045411 polymorphism and cancer risk in other four genetic models (T vs. C: OR=1.08, 95% CI 0.90-1.30; TC vs. CC: OR=1.01, 95% CI 0.82-1.24; CC vs. TC+TT: OR=0.95, 95% CI 0.77-1.18; TT vs. CC: OR=1.42; 95% CI 0.98-2.05), a trend of increased risk could be drawn. In the subgroup analysis by type of malignancy and ethnicity, no obvious difference was found in the tumour risk regarding the HMGB1 rs1045411 polymorphism amongst the cancer types except for breast cancer (OR=1.94; 95% CI: 1.05-3.59; p=0.03) and hepatocellular carcinoma (OR=1.82; 95% CI: 1.15-2.88; p=0.01), while rs1045411 polymorphism was positively associated with risks of cancer amongst Hans (OR=1.37; 95% CI: 1.11-1.69; p=0.004) rather than Caucasians (OR=0.89; 95% CI: 0.26-3.02; p=0.01). These results suggest that the HMGB1 rs1045411 polymorphism might be associated with increased cancer risk.
Collapse
Affiliation(s)
- Quansong Xia
- Department of Clinical Laboratory, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| | - Pengzuo Tao
- Department of Clinical Laboratory, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| | - Juan Xu
- Department of Internal Medicine, The People's Hospital of Guandu District, Kunming 650200, China
| |
Collapse
|
10
|
Li Z, Zhang Y, Sui S, Hua Y, Zhao A, Tian X, Wang R, Guo W, Yu W, Zou K, Deng W, He L, Zou L. Targeting HMGB3/hTERT axis for radioresistance in cervical cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:243. [PMID: 33187536 PMCID: PMC7664109 DOI: 10.1186/s13046-020-01737-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Radiotherapy is regarded as a milestone for the cure of cervical cancer. However, clinical outcome heavily be hindered by radioresistance. So, exploring the underlying mechanism of radioresistance, and find potential target, well deserve fully emphasis. METHODS In this study, we developed two novel radiation resistance cervical cancer cell lines, which could mimic clinical radioresistance. In order to find new potential targets, RNA-Seq, database analysis, streptavidin-agarose and LC/MS were used. Pull-down, luciferase and rescue assays were conducted to explore the regulatory mechanisms. To further evaluate the correlation between therapeutic responses and HMGB3/hTERT expression, 172 cervical cancer patients were recruited. RESULTS Knockdown of HMGB3 significantly inhibit the DNA damage repair and induced more γH2AX foci, leading to enhanced chemo- and radio-sensitivity in vitro and in vivo, whereas HMGB3 overexpression has the opposite effects. HMGB3 promotes cell growth and radioresistance by transcriptionally up-regulating hTERT via the specifical binding of HMGB3 at the hTERT promoter region from - 902 to - 321. HMGB3 knockdown-mediated radiosensitization could be reversed by the overexpressed hTERT in both cervical cancer cell lines and xenograft tumor mouse model. Furthermore, clinical data from 172 cervical cancer patients proved that there was a positive correlation between HMGB3 and hTERT expression, and high expression of HMGB3/hTERT predicted poor response to radiotherapy, worse TNM stages and shorter survival time. CONCLUSION Here, we have identified HMGB3/hTERT signaling axis as a new target for cervical cancer radioresistance. Our results provide new insights into the mechanism of cervical cancer radioresistance and indicate that targeting the HMGB3/hTERT signaling axis may benefit cervical cancer patients.
Collapse
Affiliation(s)
- Zongjuan Li
- The Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yang Zhang
- Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Silei Sui
- The Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yijun Hua
- SunYat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Anshi Zhao
- SunYat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Xiaoyuan Tian
- The Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Ruonan Wang
- The Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wei Guo
- The Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wendan Yu
- The Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Kun Zou
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wuguo Deng
- SunYat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| | - Liru He
- SunYat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| | - Lijuan Zou
- The Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| |
Collapse
|
11
|
Liao Y, Liu S, Fu S, Wu J. HMGB1 in Radiotherapy: A Two Headed Signal Regulating Tumor Radiosensitivity and Immunity. Onco Targets Ther 2020; 13:6859-6871. [PMID: 32764978 PMCID: PMC7369309 DOI: 10.2147/ott.s253772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy (RT) is a mainstay of cancer treatment. Recent studies have shown that RT not only directly induces cell death but also has late and sustained immune effects. High mobility group box 1 (HMGB1) is a nuclear protein released during RT, with location-dependent functions. It is essential for normal cellular function but also regulates the proliferation and migration of tumor cells by binding to high-affinity receptors. In this review, we summarize recent evidence on the functions of HMGB1 in RT according to the position, intracellular HMGB1 and extracellular HMGB1. Intracellular HMGB1 induces radiation tolerance in tumor cells by promoting DNA damage repair and autophagy. Extracellular HMGB1 plays a more intricate role in radiation-related immune responses, wherein it not only stimulates the anti-tumor immune response by facilitating the recognition of dying tumor cells but is also involved in maintaining immunosuppression. Factors that potentially affect the role of HMGB1 in RT-induced cytotoxicity have also been discussed in the context of possible therapeutic applications, which helps to develop effective and targeted radio-sensitization therapies.
Collapse
Affiliation(s)
- Yin Liao
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Shuya Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| |
Collapse
|
12
|
Yin H, Wang X, Zhang X, Zeng Y, Xu Q, Wang W, Zhou F, Zhou Y. UBE2T promotes radiation resistance in non-small cell lung cancer via inducing epithelial-mesenchymal transition and the ubiquitination-mediated FOXO1 degradation. Cancer Lett 2020; 494:121-131. [PMID: 32590022 DOI: 10.1016/j.canlet.2020.06.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/18/2022]
Abstract
Radiation resistance affects survival in non-small-cell lung cancer (NSCLC) patients. Further exploration of mechanisms and targets is urgently needed. Using bioinformatic analyses, we found that UBE2T is associated with survival, tumor size, lymph node metastasis and distant metastasis. Then, real-time PCR and immunohistochemistry were performed to explore the differentially expressed genes between normal and NSCLC tissues. Furthermore, we used colony formation, EdU incorporation, scratch, transwell assays, flow cytometry, immunofluorescence and western blot to assess the role of UBE2T in vitro and in vivo. RNA-Seq and coimmunoprecipitation were used to explore the mechanism. The results showed that UBE2T promotes proliferation, migration, invasion, and radiation resistance in vitro and in vivo by accelerating the G2/M transition and inhibiting apoptosis. Mechanistically, UBE2T promotes epithelial-mesenchymal transition (EMT) via ubiquitination-mediated FOXO1 degradation and Wnt/β-catenin signaling pathway activation. Moreover, FOXO1 reversed radiation resistance and EMT. Therefore, UBE2T may be a potential target for enhancing radiotherapy sensitivity and serve as a biomarker to predict prognosis.
Collapse
Affiliation(s)
- Hang Yin
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, China; Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Xiaoyuan Wang
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Xue Zhang
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, China
| | - Yangyang Zeng
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, China
| | - Qingyong Xu
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Wenbo Wang
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, China.
| | - Fuxiang Zhou
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, China
| | - Yunfeng Zhou
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, China.
| |
Collapse
|
13
|
Liang L, Fu J, Wang S, Cen H, Zhang L, Mandukhail SR, Du L, Wu Q, Zhang P, Yu X. MiR-142-3p enhances chemosensitivity of breast cancer cells and inhibits autophagy by targeting HMGB1. Acta Pharm Sin B 2020; 10:1036-1046. [PMID: 32642410 PMCID: PMC7332808 DOI: 10.1016/j.apsb.2019.11.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/03/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
MiR-142-3p has been reported to act as a tumor suppressor in breast cancer. However, the regulatory effect of miR-142-3p on drug resistance of breast cancer cells and its underlying mechanism remain unknown. Here, we found that miR-142-3p was significantly downregulated in the doxorubicin (DOX)-resistant MCF-7 cell line (MCF-7/DOX). MiR-142-3p overexpression increased DOX sensitivity and enhanced DOX-induced apoptosis in breast cancer cells. High-mobility group box 1 (HMGB1) is a direct functional target of miR-142-3p in breast cancer cells and miR-142-3p negatively regulated HMGB1 expression. Moreover, overexpression of HMGB1 dramatically reversed the promotion of apoptosis and inhibition of autophagy mediated by miR-142-3p up-regulation. In conclusion, miR-142-3p overexpression may inhibit autophagy and promote the drug sensitivity of breast cancer cells to DOX by targeting HMGB1. The miR-142-3p/HMGB1 axis might be a novel target to regulate the drug resistance of breast cancer patients.
Collapse
|
14
|
Mukherjee A, Vasquez KM. Targeting Chromosomal Architectural HMGB Proteins Could Be the Next Frontier in Cancer Therapy. Cancer Res 2020; 80:2075-2082. [PMID: 32152151 DOI: 10.1158/0008-5472.can-19-3066] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/24/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Abstract
Chromatin-associated architectural proteins are part of a fundamental support system for cellular DNA-dependent processes and can maintain/modulate the efficiency of DNA replication, transcription, and DNA repair. Interestingly, prognostic outcomes of many cancer types have been linked with the expression levels of several of these architectural proteins. The high mobility group box (HMGB) architectural protein family has been well studied in this regard. The differential expression levels of HMGB proteins and/or mRNAs and their implications in cancer etiology and prognosis present the potential of novel targets that can be explored to increase the efficacy of existing cancer therapies. HMGB1, the most studied member of the HMGB protein family, has pleiotropic roles in cells including an association with nucleotide excision repair, base excision repair, mismatch repair, and DNA double-strand break repair. Moreover, the HMGB proteins have been identified in regulating DNA damage responses and cell survival following treatment with DNA-damaging agents and, as such, may play roles in modulating the efficacy of chemotherapeutic drugs by modulating DNA repair pathways. Here, we discuss the functions of HMGB proteins in DNA damage processing and their potential roles in cancer etiology, prognosis, and therapeutics.
Collapse
Affiliation(s)
- Anirban Mukherjee
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas.
| |
Collapse
|
15
|
Role of Metastasis-Related Genes in Cisplatin Chemoresistance in Gastric Cancer. Int J Mol Sci 2019; 21:ijms21010254. [PMID: 31905926 PMCID: PMC6981396 DOI: 10.3390/ijms21010254] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
The role of metastasis-related genes in cisplatin (CDDP) chemoresistance in gastric cancer is poorly understood. Here, we examined the expression of four metastasis-related genes (namely, c-met, HMGB1, RegIV, PCDHB9) in 39 cases of gastric cancer treated with neoadjuvant therapy with CDDP or CDDP+5-fluorouracil and evaluated its association with CDDP responsiveness. Comparison of CDDP-sensitive cases with CDDP-resistant cases, the expression of c-met, HMGB1, and PCDHB9 was correlated with CDDP resistance. Among them, the expression of HMGB1 showed the most significant correlation with CDDP resistance in multivariate analysis. Treatment of TMK-1 and MKN74 human gastric cancer cell lines with ethyl pyruvate (EP) or tanshinone IIA (TAN), which are reported to inhibit HMGB1 signaling, showed a 4–5-fold increase in inhibition by CDDP. Treatment with EP or TAN also suppressed the expression of TLR4 and MyD88 in the HMGB1 signal transduction pathway and suppressed the activity of NFκB in both cell lines. These results suggest that the expression of these cancer metastasis-related genes is also related to anticancer drug resistance and that suppression of HMGB1 may be particularly useful for CDDP sensitization.
Collapse
|
16
|
Amato J, Cerofolini L, Brancaccio D, Giuntini S, Iaccarino N, Zizza P, Iachettini S, Biroccio A, Novellino E, Rosato A, Fragai M, Luchinat C, Randazzo A, Pagano B. Insights into telomeric G-quadruplex DNA recognition by HMGB1 protein. Nucleic Acids Res 2019; 47:9950-9966. [PMID: 31504744 PMCID: PMC6765150 DOI: 10.1093/nar/gkz727] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/02/2019] [Accepted: 08/15/2019] [Indexed: 01/21/2023] Open
Abstract
HMGB1 is a ubiquitous non-histone protein, which biological effects depend on its expression and subcellular location. Inside the nucleus, HMGB1 is engaged in many DNA events such as DNA repair, transcription and telomere maintenance. HMGB1 has been reported to bind preferentially to bent DNA as well as to noncanonical DNA structures like 4-way junctions and, more recently, to G-quadruplexes. These are four-stranded conformations of nucleic acids involved in important cellular processes, including telomere maintenance. In this frame, G-quadruplex recognition by specific proteins represents a key event to modulate physiological or pathological pathways. Herein, to get insights into the telomeric G-quadruplex DNA recognition by HMGB1, we performed detailed biophysical studies complemented with biological analyses. The obtained results provided information about the molecular determinants for the interaction and showed that the structural variability of human telomeric G-quadruplex DNA may have significant implications in HMGB1 recognition. The biological data identified HMGB1 as a telomere-associated protein in both telomerase-positive and -negative tumor cells and showed that HMGB1 gene silencing in such cells induces telomere DNA damage foci. Altogether, these findings provide a deeper understanding of telomeric G-quadruplex recognition by HMGB1 and suggest that this protein could actually represent a new target for cancer therapy.
Collapse
Affiliation(s)
- Jussara Amato
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence, via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM), University of Florence, via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Pasquale Zizza
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy
| | - Sara Iachettini
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy
| | - Annamaria Biroccio
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Antonio Rosato
- Magnetic Resonance Center (CERM), University of Florence, via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
17
|
Characterization of HMGB1/2 Interactome in Prostate Cancer by Yeast Two Hybrid Approach: Potential Pathobiological Implications. Cancers (Basel) 2019; 11:cancers11111729. [PMID: 31694235 PMCID: PMC6895793 DOI: 10.3390/cancers11111729] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/02/2019] [Indexed: 02/06/2023] Open
Abstract
High mobility group box B (HMGB) proteins are pivotal in the development of cancer. Although the proteomics of prostate cancer (PCa) cells has been reported, the involvement of HMGB proteins and their interactome in PCa is an unexplored field of considerable interest. We describe herein the results of the first HMGB1/HMGB2 interactome approach to PCa. Libraries constructed from the PCa cell line, PC-3, and from patients’ PCa primary tumor have been screened by the yeast 2-hybrid approach (Y2H) using HMGB1 and HMGB2 baits. Functional significance of this PCa HMGB interactome has been validated through expression and prognosis data available on public databases. Copy number alterations (CNA) affecting these newly described HMGB interactome components are more frequent in the most aggressive forms of PCa: those of neuroendocrine origin or castration-resistant PCa. Concordantly, adenocarcinoma PCa samples showing CNA in these genes are also associated with the worse prognosis. These findings open the way to their potential use as discriminatory biomarkers between high and low risk patients. Gene expression of a selected set of these interactome components has been analyzed by qPCR after HMGB1 and HMGB2 silencing. The data show that HMGB1 and HMGB2 control the expression of several of their interactome partners, which might contribute to the orchestrated action of these proteins in PCa
Collapse
|
18
|
Kučírek M, Bagherpoor AJ, Jaroš J, Hampl A, Štros M. HMGB2 is a negative regulator of telomerase activity in human embryonic stem and progenitor cells. FASEB J 2019; 33:14307-14324. [PMID: 31661640 DOI: 10.1096/fj.201901465rrr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
High-mobility group box (HMGB)1 and HMGB2 proteins are the subject of intensive research because of their involvement in DNA replication, repair, transcription, differentiation, proliferation, cell signaling, inflammation, and tumor migration. Using inducible, stably transfected human embryonic stem cells (hESCs) capable of the short hairpin RNA-mediated knockdown (KD) of HMGB1 and HMGB2, we provide evidence that deregulation of HMGB1 or HMGB2 expression in hESCs and their differentiated derivatives (neuroectodermal cells) results in distinct modulation of telomere homeostasis. Whereas HMGB1 enhances telomerase activity, HMGB2 acts as a negative regulator of telomerase activity in the cell. Stimulation of telomerase activity in the HMGB2-deficient cells may be related to activation of the PI3K/protein kinase B/ glycogen synthase kinase-3β/β-catenin signaling pathways by HMGB1, augmented TERT/telomerase RNA subunit transcription, and possibly also because of changes in telomeric repeat-containing RNA (TERRA) and TERRA-polyA+ transcription. The impact of HMGB1/2 KD on telomerase transcriptional regulation observed in neuroectodermal cells is partially masked in hESCs by their pluripotent state. Our findings on differential roles of HMGB1 and HMGB2 proteins in regulation of telomerase activity may suggest another possible outcome of HMGB1 targeting in cells, which is currently a promising approach aiming at increasing the anticancer activity of cytotoxic agents.-Kučírek, M., Bagherpoor, A. J., Jaroš, J., Hampl, A., Štros, M. HMGB2 is a negative regulator of telomerase activity in human embryonic stem and progenitor cells.
Collapse
Affiliation(s)
- Martin Kučírek
- Laboratory of Analysis of Chromosomal Proteins, Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Alireza J Bagherpoor
- Laboratory of Analysis of Chromosomal Proteins, Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Josef Jaroš
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Cell and Tissue Regeneration, International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Aleš Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Cell and Tissue Regeneration, International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Michal Štros
- Laboratory of Analysis of Chromosomal Proteins, Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
19
|
Zhu J, Chen S, Yang B, Mao W, Yang X, Cai J. Molecular mechanisms of lncRNAs in regulating cancer cell radiosensitivity. Biosci Rep 2019; 39:BSR20190590. [PMID: 31391206 PMCID: PMC6712435 DOI: 10.1042/bsr20190590] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022] Open
Abstract
Radiotherapy is one of the main modalities of cancer treatment. However, tumor recurrence following radiotherapy occurs in many cancer patients. A key to solving this problem is the optimization of radiosensitivity. In recent years, long non-coding RNAs (lncRNAs), which affect the occurrence and development of tumors through a variety of mechanisms, have become a popular research topic. LncRNAs have been found to influence radiosensitivity by regulating various mechanisms, including DNA damage repair, cell cycle arrest, apoptosis, cancer stem cells regulation, epithelial-mesenchymal transition, and autophagy. LncRNAs are expected to become a potential therapeutic target for radiotherapy in the future. This article reviews recent advances in the role and mechanism of lncRNAs in tumor radiosensitivity.
Collapse
Affiliation(s)
- Jiamin Zhu
- Department of Oncology, the Affiliated Jiangyin Hospital of Southeast University Medical College, 163 Shoushan Road, Jiangyin 214400, P.R. China
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong 226321, China
| | - Shusen Chen
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong 226321, China
| | - Baixia Yang
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong 226321, China
| | - Weidong Mao
- Department of Oncology, the Affiliated Jiangyin Hospital of Southeast University Medical College, 163 Shoushan Road, Jiangyin 214400, P.R. China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jing Cai
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong 226321, China
| |
Collapse
|
20
|
Caccuri F, Sommariva M, Marsico S, Giordano F, Zani A, Giacomini A, Fraefel C, Balsari A, Caruso A. Inhibition of DNA Repair Mechanisms and Induction of Apoptosis in Triple Negative Breast Cancer Cells Expressing the Human Herpesvirus 6 U94. Cancers (Basel) 2019; 11:cancers11071006. [PMID: 31323788 PMCID: PMC6679437 DOI: 10.3390/cancers11071006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/01/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for 15–20% of all breast cancers. In spite of initial good response to chemotherapy, the prognosis of TNBC remains poor and no effective specific targeted therapy is readily available. Recently, we demonstrated the ability of U94, the latency gene of human herpes virus 6 (HHV-6), to interfere with proliferation and with crucial steps of the metastatic cascade by using MDA-MB 231 TNBC breast cancer cell line. U94 expression was also associated with a partial mesenchymal-to-epithelial transition (MET) of cells, which displayed a less aggressive phenotype. In this study, we show the ability of U94 to exert its anticancer activity on three different TNBC cell lines by inhibiting DNA damage repair genes, cell cycle and eventually leading to cell death following activation of the intrinsic apoptotic pathway. Interestingly, we found that U94 acted synergistically with DNA-damaging drugs. Overall, we provide evidence that U94 is able to combat tumor cells with different mechanisms, thus attesting for the great potential of this molecule as a multi-target drug in cancer therapy.
Collapse
Affiliation(s)
- Francesca Caccuri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan 20133, Italy
| | - Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza 87036, Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza 87036, Italy
| | - Alberto Zani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Cornel Fraefel
- Institute of Virology, University of Zurich, Zurich 8057, Switzerland
| | - Andrea Balsari
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan 20133, Italy
| | - Arnaldo Caruso
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy.
| |
Collapse
|
21
|
Di X, He G, Chen H, Zhu C, Qin Q, Yan J, Zhang X, Sun X. High-mobility group box 1 protein modulated proliferation and radioresistance in esophageal squamous cell carcinoma. J Gastroenterol Hepatol 2019; 34:728-735. [PMID: 29968320 DOI: 10.1111/jgh.14371] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/14/2018] [Accepted: 06/23/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIM The high-mobility group box 1 (HMGB1) protein plays an important role in a lot of biological behaviors, including DNA damage repair, gene transcription, cell replication, and cell death, and its expression is higher in many solid tumors tissues than in their adjacent normal tissues, and it is always involved in tumor proliferation, metastasis, therapeutic tolerance, and poor prognosis. However, HMGB1 in proliferation and radioresistance of esophageal squamous cell carcinoma (ESCC) remains poorly understood. In this study, the effect of HMGB1 on proliferation, cell death, DNA damage repair and radioresistance, and its underlying mechanism was investigated in human ESCC. METHODS The immunohistochemistry scores of tumor and adjacent normal tissues in ESCC tissue microarray were analyzed. Stable HMGB1 knockdown cell lines were constructed using Kyse150 and Kyse450 cells. Cell viability, radioresistance, apoptosis, autophagy, and DNA damage were determined using CCK-8, 5-ethynyl-2'-deoxyuridine, clonogenic survival assay, immunofluorescence, flow cytometry, and western blot assays. RESULTS Differential analyses showed that the expression of HMGB1 in esophageal cancer tissue was significantly higher than that in adjacent normal tissues. The downregulation of HMGB1 could effectively inhibit proliferation, increase radiosensitivity, impair DNA damage repair abilities, reduce autophagy, and increase apoptosis rates in ESCC cells after irradiation. CONCLUSIONS HMGB1 is expected to be a potential target for ESCC therapy and radiosensitization.
Collapse
Affiliation(s)
- Xiaoke Di
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guofeng He
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Caiqiang Zhu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qin Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingjing Yan
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaowen Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Ma H, Zheng S, Zhang X, Gong T, Lv X, Fu S, Zhang S, Yin X, Hao J, Shan C, Huang S. High mobility group box 1 promotes radioresistance in esophageal squamous cell carcinoma cell lines by modulating autophagy. Cell Death Dis 2019; 10:136. [PMID: 30755598 PMCID: PMC6372718 DOI: 10.1038/s41419-019-1355-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 12/19/2018] [Accepted: 01/11/2019] [Indexed: 12/17/2022]
Abstract
Resistance to radiotherapy results in relapse and treatment failure in locally advanced esophageal squamous cell carcinoma (ESCC). High mobility group box 1 (HMGB1) is reported to be associated with the radioresistance in bladder and breast cancer. However, the role of HMGB1 in the radiotherapy response in ESCC has not been fully elucidated. Here, we investigated the role of HMGB1 to radioresistance in ESCC clinical samples and cell lines. We found that HMGB1 expression was associated with tumor recurrence after postoperative radiotherapy in locally advanced ESCC patients. HMGB1 knockdown in ESCC cells resulted in increased radiosensitivity both in vitro and in vivo. Autophagy level was found depressed in HMGB1 inhibition cells and activation of autophagy brought back cell’s radioresistance. Our results demonstrate that HMGB1 activate autophagy and consequently promote radioresistance. HMGB1 may be used as a predictor of poor response to radiotherapy in ESCC patients. Our finding also highlights the importance of the utility of HMGB1 in ESCC radiosensitization.
Collapse
Affiliation(s)
- Hongbing Ma
- Department of Radiation Oncology, Second Affiliated Hospital, Xi'an Jiaotong University, 710004, Xi'an, China
| | - Shuyu Zheng
- Department of Radiation Oncology, Second Affiliated Hospital, Xi'an Jiaotong University, 710004, Xi'an, China.,Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, FI-00014, Helsinki, Finland
| | - Xiaozhi Zhang
- Department of Radiation Oncology, First Affiliated Hospital, Xi'an Jiaotong University, 710061, Xi'an, China
| | - Tuotuo Gong
- Department of Radiation Oncology, First Affiliated Hospital, Xi'an Jiaotong University, 710061, Xi'an, China
| | - Xin Lv
- Department of Respiratory and Clinical Care Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, 710004, Xi'an, China
| | - Shenbo Fu
- Department of Radiation Oncology, First Affiliated Hospital, Xi'an Jiaotong University, 710061, Xi'an, China
| | - Shuqun Zhang
- Department of Oncology, Second Affiliated Hospital, Xi'an Jiaotong University, 710004, Xi'an, China
| | - Xiaoran Yin
- Department of Oncology, Second Affiliated Hospital, Xi'an Jiaotong University, 710004, Xi'an, China
| | - Jingcan Hao
- Department of Cancer Center, First Affiliated Hospital, Xi'an Jiaotong University, 710061, Xi'an, China
| | - Changyou Shan
- Department of Oncology, Second Affiliated Hospital, Xi'an Jiaotong University, 710004, Xi'an, China
| | - Shan Huang
- Department of Radiation Oncology, Second Affiliated Hospital, Xi'an Jiaotong University, 710004, Xi'an, China.
| |
Collapse
|
23
|
Yadav SS, Kumar M, Varshney A, Yadava PK. KLF4 sensitizes the colon cancer cell HCT-15 to cisplatin by altering the expression of HMGB1 and hTERT. Life Sci 2019; 220:169-176. [PMID: 30716337 DOI: 10.1016/j.lfs.2019.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/19/2019] [Accepted: 02/01/2019] [Indexed: 12/17/2022]
Abstract
AIMS Insensitivity of cancer cells to therapeutic drugs is the most daunting challenge in cancer treatment. The mechanism of developing chemo-resistance is only partly understood to date. In continuation of some earlier reports, we hypothesize that KLF4, a key transcription factors that also has a crucial role in maintaining the stemness in cancer cells, may offer a basis for chemo-resistance. MAIN METHODS Sensitivity of cells to cisplatin was analyzed by cell proliferation, colony formation, and cell growth assay. Cell cycle analysis and immunophenotyping were used to measure cell cycle arrest and level of reactive oxygen species respectively. Immunoblotting was used to analyze the change in expression hTERT and HMGB1 involved in KLF4 mediated cisplatin resistance. KEY FINDINGS We found that KLF4 expression sensitizes cancer cell to cisplatin cytotoxicity. Further, KLF4 promotes the cisplatin-mediated G2/M cell cycle arrest while KLF4 knocked down induces cisplatin-mediated S-phase arrest compared to control. Decreased level of reactive oxygen species (ROS) in cisplatin-treated and KLF4 knocked down HCT-15 cells compared to vector control, accounting for increased cell survival. Immuno-blotting showed that KLF4 positively regulates expression of the survival proteins hTERT and HMGB1 while in presence of cisplatin, expression of HMGB1 and hTERT is negatively regulated by KLF4. SIGNIFICANCE This study suggests the involvement of KLF4-HMGB1/hTERT signaling in offering the basis for chemo-resistance in colon cancer cells and KLF4 overexpression as a probable strategy for sensitizing drug-resistant cancer cells to chemotherapy. The present study opens up new avenues for cancer research and therapeutics.
Collapse
Affiliation(s)
| | - Manoj Kumar
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Akhil Varshney
- Centre for Advanced Vision Science, University of Virginia, 415 Lane Road, Charlottesville, VA 22908, USA
| | - Pramod Kumar Yadava
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
24
|
Liu B, Qi X, Zhang X, Gao D, Fang K, Guo Z, Li L. Med19 is involved in chemoresistance by mediating autophagy through HMGB1 in breast cancer. J Cell Biochem 2019; 120:507-518. [PMID: 30161287 DOI: 10.1002/jcb.27406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 07/11/2018] [Indexed: 12/19/2022]
Abstract
Adriamycin (ADM)-based regimens are the most effective chemotherapeutic treatments for breast cancer. However, intrinsic and acquired chemoresistance is a major therapeutic problem. Our goal was to clarify the role of mediator complex subunit 19 (Med19) in chemotherapy resistance and to elucidate the related molecular mechanisms. In this study, ADM-resistant human cells (MCF-7/ADM) and tissues exhibited increased Med19 expression and autophagy levels relative to the corresponding control groups. Additionally, MCF-7/ADM cells showed changes in two selective markers of autophagy. There was a dose-dependent increase in the light chain 3 (LC3)-II/LC3-I ratio and a decrease in sequestosome 1 (P62/SQSTMl) expression. Furthermore, lentivirus-mediated Med19 inhibition significantly attenuated the LC3-II/LC3-I ratio, autophagy-related gene 3 (Atg3) and autophagy-related gene 5 (Atg5) expression, P62 degradation, and red fluorescent protein-LC3 dot formation after treatment with ADM or rapamycin, an autophagy activator. Furthermore, the antiproliferative effects of ADM, cisplatin (DDP), and taxol (TAX) were significantly enhanced after suppressing Med19 expression. Notably, the effects of Med19 on autophagy were mediated through the high-mobility group box-1 (HMGB1) pathway. Our findings suggest that Med19 suppression increased ADM chemosensitivity by downregulating autophagy through the inhibition of HMGB1 signaling in human breast cancer cells. Thus, the regulatory mechanisms of Med19 in autophagy should be investigated to reduce tumor resistance to chemotherapy.
Collapse
Affiliation(s)
- Beibei Liu
- Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaowei Qi
- Department of Pathology, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiufen Zhang
- Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Danfeng Gao
- Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Kai Fang
- Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zijian Guo
- Department of Oncological Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Lihua Li
- Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
25
|
Abstract
High-mobility group box 1 (HMGB1) is one of the most abundant proteins in eukaryotes and the best characterized damage-associated molecular pattern (DAMP). The biological activities of HMGB1 depend on its subcellular location, context and post-translational modifications. Inside the nucleus, HMGB1 is engaged in many DNA events such as DNA repair, transcription regulation and genome stability; in the cytoplasm, its main function is to regulate the autophagic flux while in the extracellular environment, it possesses more complicated functions and it is involved in a large variety of different processes such as inflammation, migration, invasion, proliferation, differentiation and tissue regeneration. Due to this pleiotropy, the role of HMGB1 has been vastly investigated in various pathological diseases and a large number of studies have explored its function in cardiovascular pathologies. However, in this contest, the precise mechanism of action of HMGB1 and its therapeutic potential are still very controversial since is debated whether HMGB1 is involved in tissue damage or plays a role in tissue repair and regeneration. The main focus of this review is to provide an overview of the effects of HMGB1 in different ischemic heart diseases and to discuss its functions in these pathological conditions.
Collapse
|
26
|
Polito F, Cucinotta M, Abbritti RV, Brogna A, Pergolizzi S, Tomasello C, Barresi V, Angileri FF, Di Giorgio R, Conti A, La Torre D, Germanò A, Aguennouz M. Silencing of telomere-binding protein adrenocortical dysplasia (ACD) homolog enhances radiosensitivity in glioblastoma cells. Transl Res 2018; 202:99-108. [PMID: 30080989 DOI: 10.1016/j.trsl.2018.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/23/2018] [Accepted: 07/10/2018] [Indexed: 11/30/2022]
Abstract
Adrenocortical dysplasia (ACD) is a shelterin protein involved in the maintenance of telomere length and in cancer radioresistance. This study investigated the expression profile of ACD in human gliomas and its role in radioresistance of glioma cells. The expression of ACD was analyzed in 62 different grades of glioma tissues and correlated with prognosis. A radioresistant cell line was generated from U87MG cells. For mechanistic studies, ACD was inhibited by small interfering RNA-targeting ACD and the effect on cell radioresistance, telomerase activity, cyclinD1, caspase-3, hTERT, and BIRC1 was evaluated. Clonogenic assay was performed after irradiation, to investigate the effect of ACD silencing on radiation sensitivity. ACD expression appeared strongly upregulated in higher grade gliomas, and its expression was significantly correlated to grading and poor prognosis. In glioma cell lines, ACD expression pattern was similar to those observed in glioma tissues. In irradiated cells, ACD expression was increased in an ionizing radiation dose-dependent manner. A higher expression of ACD was observed in the radioresistant clones than parental cells. Silencing of ACD led to the enhanced radiation sensitivity, decreased telomerase activity and cyclin D1 expression, reduced expression of BIRC1, and finally to the upregulation of caspase-3. This study represents the first report, which demonstrated the expression pattern of ACD in gliomas and its prognostic value. Our results suggested that ACD is involved in glioblastoma radioresistance, likely through the modulation of telomerase activity, proliferation, and apoptosis. ACD might represent a potential molecular biomarker and a novel therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Francesca Polito
- Department of Biomedical, Dental Sciences and of Morphological and Functional Images, University of Messina, Italy
| | - Maria Cucinotta
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - Rosaria V Abbritti
- Department of Biomedical, Dental Sciences and of Morphological and Functional Images, University of Messina, Italy
| | - Anna Brogna
- Department of Biomedical, Dental Sciences and of Morphological and Functional Images, University of Messina, Italy
| | - Stefano Pergolizzi
- Department of Biomedical, Dental Sciences and of Morphological and Functional Images, University of Messina, Italy
| | - Chiara Tomasello
- Department of Biomedical, Dental Sciences and of Morphological and Functional Images, University of Messina, Italy
| | | | - Flavio F Angileri
- Department of Biomedical, Dental Sciences and of Morphological and Functional Images, University of Messina, Italy
| | | | - Alfredo Conti
- Department of Biomedical, Dental Sciences and of Morphological and Functional Images, University of Messina, Italy
| | - Domenico La Torre
- Department of Biomedical, Dental Sciences and of Morphological and Functional Images, University of Messina, Italy
| | - Antonino Germanò
- Department of Biomedical, Dental Sciences and of Morphological and Functional Images, University of Messina, Italy
| | - M'hammed Aguennouz
- Department of Clinical and Experimental Medicine, University of Messina, Italy.
| |
Collapse
|
27
|
Assani G, Xiong Y, Zhou F, Zhou Y. Effect of therapies-mediated modulation of telomere and/or telomerase on cancer cells radiosensitivity. Oncotarget 2018; 9:35008-35025. [PMID: 30405890 PMCID: PMC6201854 DOI: 10.18632/oncotarget.26150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/31/2018] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the leading causes of death in the world. Many strategies of cancer treatment such as radiotherapy which plays a key role in cancer treatment are developed and used nowadays. However, the side effects post-cancer radiotherapy and cancer radioresistance are two major causes of the limitation of cancer radiotherapy effectiveness in the cancer patients. Moreover, reduction of the limitation of cancer radiotherapy effectiveness by reducing the side effects post-cancer radiotherapy and cancer radioresistance is the aim of several radiotherapy-oncologic teams. Otherwise, Telomere and telomerase are two cells components which play an important role in cancer initiation, cancer progression and cancer therapy resistance such as radiotherapy resistance. For resolving the problems of the limitation of cancer radiotherapy effectiveness especially the cancer radio-resistance problems, the radio-gene-therapy strategy which is the use of gene-therapy via modulation of gene expression combined with radiotherapy was developed and used as a new strategy to treat the patients with cancer. In this review, we summarized the information concerning the implication of telomere and telomerase modulation in cancer radiosensitivity.
Collapse
Affiliation(s)
- Ganiou Assani
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biology Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yudi Xiong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biology Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biology Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yunfeng Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biology Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
28
|
No association between HMGB1 polymorphisms and cancer risk: evidence from a meta-analysis. Biosci Rep 2018; 38:BSR20180658. [PMID: 30049847 PMCID: PMC6123066 DOI: 10.1042/bsr20180658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/05/2018] [Accepted: 07/18/2018] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to determine whether High mobility group box 1 (HMGB1) polymorphism was associated with cancer susceptibility. PubMed, Embase, and ISI Web of Science were extensively searched without language restriction. Data were extracted using a standardized data collection sheet after two reviewers scanned studies independently. The association between HMGB1 polymorphism and cancer risks was indicated as odds ratio (OR) along with its related 95% confidence interval (95%CI). Meta-analysis was conducted via RevMan 5.3 software. A total of ten studies comprising 4530 cases and 5167 controls were included in our study. Meta-analysis revealed no statistical association between rs1045411, rs1360485, rs1412125, or rs2249825 polymorphisms in HMGB1 gene and risk of cancer, either did subgroup analysis of rs1045411 stratified by cancer types and ethnic groups. Our results revealed no statistical association between current four polymorphism loci and cancer risks, suggesting that the attempt of applying HMGB1 variants as a therapeutic target or a prognosis predictor might still require a second thought. However, HMGB1 is deemed to play pleiotropic roles in cancers, we strongly call for large-scale studies with high evidence level to uncover the exact relationship between HMGB1 gene variants and cancer progression.
Collapse
|
29
|
Razmi M, Rabbani-Chadegani A, Hashemi-Niasari F, Ghadam P. Lithium chloride attenuates mitomycin C induced necrotic cell death in MDA-MB-231 breast cancer cells via HMGB1 and Bax signaling. J Trace Elem Med Biol 2018; 48:87-96. [PMID: 29773200 DOI: 10.1016/j.jtemb.2018.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/19/2018] [Accepted: 03/12/2018] [Indexed: 12/14/2022]
Abstract
The clinical use of potent anticancer drug mitomycin C (MMC) has limited due to side effects and resistance of cancer cells. The aim of this study was to investigate whether lithium chloride (LiCl), as a mood stabilizer, can affect the sensitivity of MDA-MB-231 breast cancer cells to mitomycin C. The cells were exposed to various concentrations of mitomycin C alone and combined with LiCl and the viability determined by trypan blue and MTT assays. Proteins were analyzed by western blot and mRNA expression of HMGB1 MMP9 and Bcl-2 were analyzed by RT-PCR. Flow cytometry was used to determine the cell cycle arrest and percent of apoptotic and necrotic cells. Concentration of Bax assessed by ELISA. Exposure of the cells to mitomycin C revealed IC50 value of 20 μM, whereas pretreatment of the cells with LiCl induced synergistic cytotoxicity and IC50 value declined to 5 μM. LiCl combined with mitomycin C significantly down-regulated HMGB1, MMP9 and Bcl-2 gene expression but significantly increased the level of Bax protein. In addition, the content of HMGB1 in the nuclei decreased and pretreatment with LiCl reduced the content of HMGB1 release induced by MMC. LiCl increased mitomycin C-induced cell shrinkage and PARP fragmentation suggesting induction of apoptosis in these cells. LiCl prevented mitomycin C-induced necrosis and changed the cell death arrest at G2/M-phase. Taking all together, it is suggested that LiCl efficiently enhances mitomycin C-induced apoptosis and HMGB1, Bax and Bcl-2 expression may play a major role in this process, the findings that provide a new therapeutic strategy for LiCl in combination with mitomycin C.
Collapse
Affiliation(s)
- Mahdieh Razmi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Azra Rabbani-Chadegani
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Fatemeh Hashemi-Niasari
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Parinaz Ghadam
- Department of Biotechnology, Faculty of Biological Science, University of Alzahra, Tehran, Iran
| |
Collapse
|
30
|
Khan A, Wani MY, Al-Bogami AS, Subramanian K, Kandhavelu J, Ruff P, Penny C. Anticancer Activity of Novel Gabexate Mesilate Mimetics in Colorectal Cancer Cells. ChemistrySelect 2018. [DOI: 10.1002/slct.201800629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amber Khan
- Department of Internal Medicine; Faculty of Health Sciences; University of the Witwatersrand; 7 York Road, Parktown Johannesburg 2193 South Africa
| | - Mohmmad Younus Wani
- Chemistry Department; Faculty of Science; University of Jeddah, P.O. Box 80327; Jeddah 21589 Kingdom of Saudi Arabia
| | - Abdullah Saad Al-Bogami
- Chemistry Department; Faculty of Science; University of Jeddah, P.O. Box 80327; Jeddah 21589 Kingdom of Saudi Arabia
| | - Kumar Subramanian
- Department of Internal Medicine; Faculty of Health Sciences; University of the Witwatersrand; 7 York Road, Parktown Johannesburg 2193 South Africa
| | - Jeyalakshmi Kandhavelu
- Department of Internal Medicine; Faculty of Health Sciences; University of the Witwatersrand; 7 York Road, Parktown Johannesburg 2193 South Africa
| | - Paul Ruff
- Department of Internal Medicine; Faculty of Health Sciences; University of the Witwatersrand; 7 York Road, Parktown Johannesburg 2193 South Africa
| | - Clement Penny
- Department of Internal Medicine; Faculty of Health Sciences; University of the Witwatersrand; 7 York Road, Parktown Johannesburg 2193 South Africa
| |
Collapse
|
31
|
Zhou ZR, Yang ZZ, Yu XL, Guo XM. Highlights on molecular targets for radiosensitization of breast cancer cells: Current research status and prospects. Cancer Med 2018; 7:3110-3117. [PMID: 29856131 PMCID: PMC6051209 DOI: 10.1002/cam4.1588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022] Open
Abstract
In the past, searching for effective radiotherapy sensitization molecular targets and improving the radiation sensitivity of malignant tumors was the hot topic for the oncologists, but with little achievements. We will summarize the research results about breast cancer irradiation sensitization molecular targets over the past two decades; we mainly focus on the following aspects: DNA damage repair and radiation sensitization, cell cycle regulation and radiation sensitization, cell autophagy regulation and radiation sensitization, and radiation sensitivity prediction and breast cancer radiotherapy scheme making. And based on this summary, we will put forward some of our viewpoints.
Collapse
Affiliation(s)
- Zhi-Rui Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhao-Zhi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Li Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Mao Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Zhang J, Shao S, Han D, Xu Y, Jiao D, Wu J, Yang F, Ge Y, Shi S, Li Y, Wen W, Qin W. High mobility group box 1 promotes the epithelial-to-mesenchymal transition in prostate cancer PC3 cells via the RAGE/NF-κB signaling pathway. Int J Oncol 2018; 53:659-671. [PMID: 29845254 PMCID: PMC6017266 DOI: 10.3892/ijo.2018.4420] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/17/2018] [Indexed: 12/21/2022] Open
Abstract
High mobility group box 1 (HMGB1), a critical damage-associated molecular pattern molecule, has been implicated in several inflammatory diseases and cancer types. The overexpression of HMGB1 protein occurs in prostate cancer, and is closely associated with the proliferation and aggressiveness of tumor cells. However, the underlying mechanisms of HMGB1-induced tumor metastasis in prostate cancer remain unclear. In the present study, it was demonstrated that the expression of HMGB1 was high in prostate cancer samples, particularly in the metastatic tissues. Furthermore, recombinant HMGB1 (rHMGB1) enhanced the invasive and metastatic capabilities of the prostate cancer cells. Molecular phenotype alterations of epithelial-to-mesenchymal transition (EMT) and elevated expression levels of matrix metalloproteinase (MMP)-1, -3 and -10 were observed. In addition, advanced glycosylation end-product specific receptor (RAGE) and its downstream molecule nuclear factor (NF)-κB pathway were activated during rHMGB1-induced metastasis. Silencing RAGE or NF-κB reversed the upregulation of MMP and EMT marker expression levels, thus reducing the migration and invasiveness of tumor cells. Taken together, these results suggest that highly expressed HMGB1 drives EMT and the overexpression of MMP-1, -3, -10 via the RAGE/NF-κB signaling pathways, which facilitates the metastasis of prostate cancer and may be a potential therapeutic target for metastatic prostate cancer.
Collapse
Affiliation(s)
- Jingliang Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yuerong Xu
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Dian Jiao
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jieheng Wu
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fa Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yufeng Ge
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shengjia Shi
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yu Li
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Weihong Wen
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
33
|
Wnt signaling induces radioresistance through upregulating HMGB1 in esophageal squamous cell carcinoma. Cell Death Dis 2018; 9:433. [PMID: 29567990 PMCID: PMC5864958 DOI: 10.1038/s41419-018-0466-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/07/2018] [Indexed: 12/14/2022]
Abstract
Although many articles have uncovered that Wnt signaling is involved in radioresistance, the mechanism is rarely reported. Here we generated two radioresistant cells rECA109 and rKyse150 from parental esophageal cancer cells ECA109 and Kyse150. We then found that Wnt signaling activity was higher in radioresistant cells and was further activated upon ionizing radiation (IR) exposure. In addition, radioresistant cells acquired epithelial-to-mesenchymal transition (EMT) properties and stem quality. Wnt signaling was then found to be involved in radioresistance by promoting DNA damage repair. In our present study, high-mobility group box 1 protein (HMGB1), a chromatin-associated protein, was firstly found to be transactivated by Wnt signaling and mediate Wnt-induced radioresistance. The role of HMGB1 in the regulation of DNA damage repair with the activation of DNA damage checkpoint response in response to IR was the main cause of HMGB1-induced radioresistance.
Collapse
|
34
|
Gao X, Wang W, Yang H, Wu L, He Z, Zhou S, Zhao H, Fu Z, Zhou F, Zhou Y. UBE2D3 gene overexpression increases radiosensitivity of EC109 esophageal cancer cells in vitro and in vivo. Oncotarget 2018; 7:32543-53. [PMID: 27105523 PMCID: PMC5078032 DOI: 10.18632/oncotarget.8869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/31/2016] [Indexed: 12/17/2022] Open
Abstract
Ubiquitin-conjugating enzyme E2D3 (UBE2D3), a key component in ubiquitin (Ub) proteasome system, plays a crucial role in tumorigenesis. We previously found that it is bound to hTERT, and UBE2D3 could attenuate radiosensitivity of human breast cancer cells. Here we investigated a contributing role of UBE2D3 in radiosensitivity of esophageal squamous carcinoma. We demonstrated that the overexpression of UBE2D3 in esophageal squamous carcinoma cells (EC109) resulted in prolonged G1 phase and shortened G2/M phase after irradiation. UBE2D3 overexpression also decreased length of telomere and activity of telomerase. In addition, the overexpression of UBE2D3 increased mRNA expression but decreased protein levels of hTERT in both vitro and vivo systems. Compared with untreated cells, the treatment of UBE2D3 overexpressing cells with the specific proteasome inhibitor (MG132) could up-regulate hTERT. MG132 treatment of UBE2D3 overexpressed cells caused a clear and dramatic increase in the amount of ubiquitinated hTERT species. These findings indicate that UBE2D3 enhances radiosensitivity of EC109 cells by degradating hTERT through the ubiquitin proteolysis pathway.
Collapse
Affiliation(s)
- Xiaojia Gao
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenbo Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Yang
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lin Wu
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhongshi He
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuliang Zhou
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hong Zhao
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhenming Fu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yunfeng Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
35
|
Pavlopoulou A, Bagos PG, Koutsandrea V, Georgakilas AG. Molecular determinants of radiosensitivity in normal and tumor tissue: A bioinformatic approach. Cancer Lett 2017; 403:37-47. [DOI: 10.1016/j.canlet.2017.05.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 12/13/2022]
|
36
|
He SJ, Cheng J, Feng X, Yu Y, Tian L, Huang Q. The dual role and therapeutic potential of high-mobility group box 1 in cancer. Oncotarget 2017; 8:64534-64550. [PMID: 28969092 PMCID: PMC5610024 DOI: 10.18632/oncotarget.17885] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/24/2017] [Indexed: 12/31/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is an abundant protein in most eukaryocytes. It can bind to several receptors such as advanced glycation end products (RAGE) and Toll-like receptors (TLRs), in direct or indirect way. The biological effects of HMGB1 depend on its expression and subcellular location. Inside the nucleus, HMGB1 is engaged in many DNA events such as DNA repair, transcription, telomere maintenance, and genome stability. While outside the nucleus, it possesses more complicated functions, including regulating cell proliferation, autophagy, inflammation and immunity. During tumor development, HMGB1 has been characterized as both a pro- and anti-tumoral protein by either promoting or suppressing tumor growth, proliferation, angiogenesis, invasion and metastasis. However, the current knowledge concerning the positive and negative effects of HMGB1 on tumor development is not explicit. Here, we evaluate the role of HMGB1 in tumor development and attempt to reconcile the dual effects of HMGB1 in carcinogenesis. Furthermore, we would like to present current strategies targeting against HMGB1, its receptor or release, which have shown potentially therapeutic value in cancer intervention.
Collapse
Affiliation(s)
- Si-Jia He
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Cheng
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Feng
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Yu
- Oncology Department, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ling Tian
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Huang
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Amornsupak K, Jamjuntra P, Warnnissorn M, O-Charoenrat P, Sa-Nguanraksa D, Thuwajit P, Eccles SA, Thuwajit C. High ASMA + Fibroblasts and Low Cytoplasmic HMGB1 + Breast Cancer Cells Predict Poor Prognosis. Clin Breast Cancer 2017; 17:441-452.e2. [PMID: 28533055 DOI: 10.1016/j.clbc.2017.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The influence of cancer-associated fibroblasts (CAFs) and high mobility group box 1 (HMGB1) has been recognized in several cancers, although their roles in breast cancer are unclear. The present study aimed to determine the levels and prognostic significance of α-smooth muscle actin-positive (ASMA+) CAFs, plus HMGB1 and receptor for advanced glycation end products (RAGE) in cancer cells. MATERIALS AND METHODS A total of 127 breast samples, including 96 malignant and 31 benign, were examined for ASMA, HMGB1, and RAGE by immunohistochemistry. The χ2 test and Fisher's exact test were used to test the association of each protein with clinicopathologic parameters. The Kaplan-Meier method or log-rank test and Cox regression were used for survival analysis. RESULTS ASMA+ fibroblast infiltration was significantly increased in the tumor stroma compared with that in benign breast tissue. The levels of cytoplasmic HMGB1 and RAGE were significantly greater in the breast cancer tissue than in the benign breast tissues. High ASMA expression correlated significantly with large tumor size, clinical stage III-IV, and angiolymphatic and perinodal invasion. In contrast, increased cytoplasmic HMGB1 correlated significantly with small tumor size, pT stage, early clinical stage, luminal subtype (but not triple-negative subtype), and estrogen receptor and progesterone receptor expression. The levels of ASMA (hazard ratio, 14.162; P = .010) and tumor cytoplasmic HMGB1 (hazard ratio, 0.221; P = .005) could serve as independent prognostic markers for metastatic relapse in breast cancer patients. The ASMA-high/HMGB1-low profile provided the most reliable prediction of metastatic relapse. CONCLUSION We present for the first time, to the best of our knowledge, the potential clinical implications of the combined assessment of ASMA+ fibroblasts and cytoplasmic HMGB1 in breast cancer.
Collapse
Affiliation(s)
- Kamolporn Amornsupak
- Department of Immunology, Graduate Program in Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pranisa Jamjuntra
- Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Malee Warnnissorn
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pornchai O-Charoenrat
- Division of Head, Neck and Breast Surgery, Department of Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Doonyapat Sa-Nguanraksa
- Division of Head, Neck and Breast Surgery, Department of Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suzanne A Eccles
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Sutton, United Kingdom
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
38
|
Jiang H, Hu X, Zhang H, Li W. Down-regulation of LncRNA TUG1 enhances radiosensitivity in bladder cancer via suppressing HMGB1 expression. Radiat Oncol 2017; 12:65. [PMID: 28376901 PMCID: PMC5381027 DOI: 10.1186/s13014-017-0802-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/26/2017] [Indexed: 02/07/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have been reported to regulate the sensitivity of different cancer cells to chemoradiotherapy. Aberrant expression of lncRNA Taurine-upregulated gene 1 (TUG1) has been found to be involved in the development of bladder cancer, however, its function and underlying mechanism in the radioresistance of bladder cancer remains unclear. Methods Quantitative real-time PCR (qRT-PCR) was conducted to measure the expression of TUG1 and HMGB1 mRNA in bladder cancer tissues and cell lines. HMGB1 protein levels were tested by western blot assays. Different doses of X-ray were used for radiation treatment of bladder cancer cells. Colony survival and cell viability were detected by clonogenic assay and CCK-8 Kit, respectively. Cell apoptosis was determined by flow cytometry. A xenograft mouse model was constructed to observe the effect of TUG1 on tumor growth in vivo. Results The levels of TUG1 and HMGB1 were remarkably increased in bladder cancer tissues and cell lines. Radiation treatment markedly elevated the expression of TUG1 and HMGB1. TUG1 knockdown inhibited cell proliferation, promoted cell apoptosis and decreased colony survival in SW780 and BIU87 cells under radiation. Moreover, TUG1 depletion suppressed the HMGB1 mRNA and protein levels. Furthermore, overexpression of HMGB1 reversed TUG1 knockdown-induced effect in bladder cancer cells. Radiation treatment dramatically reduced the tumor volume and weight in xenograft model, and this effect was more obvious when combined with TUG1 silencing. Conclusion LncRNA TUG1 knockdown enhances radiosensitivity of bladder cancer by suppressing HMGB1 expression. TUG1 acts as a potential regulator of radioresistance of bladder cancer, and it may represent a promising therapeutic target for bladder cancer patients.
Collapse
Affiliation(s)
- Huijuan Jiang
- Department of Radiotherapy, Huaihe Hospital of Henan University, No.1 Baobei Road, Gulou District, Kaifeng, 475000, China.
| | - Xigang Hu
- Department of Radiotherapy, Huaihe Hospital of Henan University, No.1 Baobei Road, Gulou District, Kaifeng, 475000, China
| | - Hongzhi Zhang
- Department of Radiotherapy, Huaihe Hospital of Henan University, No.1 Baobei Road, Gulou District, Kaifeng, 475000, China
| | - Wenbo Li
- Department of Radiotherapy, Huaihe Hospital of Henan University, No.1 Baobei Road, Gulou District, Kaifeng, 475000, China
| |
Collapse
|
39
|
Intracellular HMGB1 as a novel tumor suppressor of pancreatic cancer. Cell Res 2017; 27:916-932. [PMID: 28374746 PMCID: PMC5518983 DOI: 10.1038/cr.2017.51] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/11/2017] [Accepted: 02/28/2017] [Indexed: 02/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) driven by oncogenic K-Ras remains among the most lethal human cancers despite recent advances in modern medicine. The pathogenesis of PDAC is partly attributable to intrinsic chromosome instability and extrinsic inflammation activation. However, the molecular link between these two events in pancreatic tumorigenesis has not yet been fully established. Here, we show that intracellular high mobility group box 1 (HMGB1) remarkably suppresses oncogenic K-Ras-driven pancreatic tumorigenesis by inhibiting chromosome instability-mediated pro-inflammatory nucleosome release. Conditional genetic ablation of either single or both alleles of HMGB1 in the pancreas renders mice extremely sensitive to oncogenic K-Ras-driven initiation of precursor lesions at birth, including pancreatic intraepithelial neoplasms, intraductal papillary mucinous neoplasms, and mucinous cystic neoplasms. Loss of HMGB1 in the pancreas is associated with oxidative DNA damage and chromosomal instability characterized by chromosome rearrangements and telomere abnormalities. These lead to inflammatory nucleosome release and propagate K-Ras-driven pancreatic tumorigenesis. Extracellular nucleosomes promote interleukin 6 (IL-6) secretion by infiltrating macrophages/neutrophils and enhance oncogenic K-Ras signaling activation in pancreatic lesions. Neutralizing antibodies to IL-6 or histone H3 or knockout of the receptor for advanced glycation end products all limit K-Ras signaling activation, prevent cancer development and metastasis/invasion, and prolong animal survival in Pdx1-Cre;K-RasG12D/+;Hmgb1−/− mice. Pharmacological inhibition of HMGB1 loss by glycyrrhizin limits oncogenic K-Ras-driven tumorigenesis in mice under inflammatory conditions. Diminished nuclear and total cellular expression of HMGB1 in PDAC patients correlates with poor overall survival, supporting intracellular HMGB1 as a novel tumor suppressor with prognostic and therapeutic relevance in PDAC.
Collapse
|
40
|
Bagherpoor AJ, Dolezalova D, Barta T, Kučírek M, Sani SA, Ešner M, Kunova Bosakova M, Vinarský V, Peskova L, Hampl A, Štros M. Properties of Human Embryonic Stem Cells and Their Differentiated Derivatives Depend on Nonhistone DNA-Binding HMGB1 and HMGB2 Proteins. Stem Cells Dev 2016; 26:328-340. [PMID: 27863459 DOI: 10.1089/scd.2016.0274] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
HMGB1 and HMGB2 proteins have been implicated in numerous cellular processes, including proliferation, differentiation, apoptosis, and tumor growth. It is unknown whether they are involved in regulating the typical functions of pluripotent human embryonic stem cells (hESCs) and/or those of the differentiated derivatives of hESCs. Using inducible, stably transfected hESCs capable of shRNA-mediated knockdown of HMGB1 and HMGB2, we provide evidence that downregulation of HMGB1 and/or HMGB2 in undifferentiated hESCs does not affect the stemness of cells and induces only minor changes to the proliferation rate, cell-cycle profile, and apoptosis. After differentiation is induced, however, the downregulation of those proteins has important effects on proliferation, apoptosis, telomerase activity, and the efficiency of differentiation toward the neuroectodermal lineage. Furthermore, those processes are affected only when one, but not both, of the two proteins is downregulated; the knockdown of both HMGB1 and HMGB2 results in a normal phenotype. Those results advance our knowledge of regulation of hESC and human neuroectodermal cell differentiation and illustrate the distinct roles of HMGB1 and HMGB2 during early human development.
Collapse
Affiliation(s)
- Alireza Jian Bagherpoor
- 1 Laboratory of Analysis of Chromosomal Proteins, Institute of Biophysics , Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Dasa Dolezalova
- 2 Department of Histology and Embryology, Masaryk University , Brno, Czech Republic
| | - Tomas Barta
- 2 Department of Histology and Embryology, Masaryk University , Brno, Czech Republic .,3 International Clinical Research Center, St. Anne's University Hospital , Brno, Czech Republic
| | - Martin Kučírek
- 1 Laboratory of Analysis of Chromosomal Proteins, Institute of Biophysics , Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Soodabeh Abbasi Sani
- 1 Laboratory of Analysis of Chromosomal Proteins, Institute of Biophysics , Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Milan Ešner
- 2 Department of Histology and Embryology, Masaryk University , Brno, Czech Republic
| | | | - Vladimír Vinarský
- 3 International Clinical Research Center, St. Anne's University Hospital , Brno, Czech Republic
| | - Lucie Peskova
- 2 Department of Histology and Embryology, Masaryk University , Brno, Czech Republic
| | - Aleš Hampl
- 2 Department of Histology and Embryology, Masaryk University , Brno, Czech Republic .,3 International Clinical Research Center, St. Anne's University Hospital , Brno, Czech Republic
| | - Michal Štros
- 1 Laboratory of Analysis of Chromosomal Proteins, Institute of Biophysics , Academy of Sciences of the Czech Republic, Brno, Czech Republic
| |
Collapse
|
41
|
The Expression and Clinical Outcome of pCHK2-Thr68 and pCDC25C-Ser216 in Breast Cancer. Int J Mol Sci 2016; 17:ijms17111803. [PMID: 27801830 PMCID: PMC5133804 DOI: 10.3390/ijms17111803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/23/2016] [Accepted: 10/12/2016] [Indexed: 02/08/2023] Open
Abstract
Checkpoint kinase 2 (CHK2) and cell division cycle 25C (CDC25C) are two proteins involved in the DNA damage response pathway, playing essential roles in maintaining genome integrity. As one of the major hallmarks of abnormal cellular division, genomic instability occurs in most cancers. In this study, we identified the functional expression of pCHK2-Thr68 and pCDC25C-Ser216 in breast cancer, as well as its association with breast cancer survival. Tissue microarray analysis using immunohistochemistry was constructed to identify the expression of pCHK2-Thr68 and pCDC25C-Ser216 in 292 female breast cancer patients. The relationship among protein expression, clinicopathological factors (e.g., human epidermal growth factor receptor 2 (HER 2), tumor size, tumor-node-metastasis (TNM) classification), and overall survival of the breast cancer tissues were analyzed using Pearson’s χ-square (χ2) test, Fisher’s exact test, multivariate logistic regression and Kaplan–Meier survival analysis. Significantly higher expressions of pCHK2-Thr68 and pCDC25C-Ser216 were observed in the nucleus of the breast cancer cells compared to the paracancerous tissue (pCHK2-Thr68, 20.38% vs. 0%; pCDC25C-Ser216, 82.26% vs. 24.24%). The expression of pCHK2-Thr68 and pCDC25C-Ser216 in breast cancer showed a positive linear correlation (p = 0.026). High expression of pCHK2-Thr68 was associated with decreased patient survival (p = 0.001), but was not an independent prognostic factor. Our results suggest that pCHK2-Thr68 and pCDC25C-Ser216 play important roles in breast cancer and may be potential treatment targets.
Collapse
|
42
|
Structural aspects of the interaction of anticancer drug Actinomycin-D to the GC rich region of hmgb1 gene. Int J Biol Macromol 2016; 87:433-42. [DOI: 10.1016/j.ijbiomac.2016.02.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/18/2022]
|
43
|
Sohun M, Shen H. The implication and potential applications of high-mobility group box 1 protein in breast cancer. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:217. [PMID: 27386491 PMCID: PMC4916368 DOI: 10.21037/atm.2016.05.36] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/14/2016] [Indexed: 01/09/2023]
Abstract
High-mobility group box 1 protein (HMGB1) is a highly conserved, non-histone and ubiquitous chromosomal protein found enriched in active chromatin forming part of the high mobility group family of proteins and is encoded by the HMGB1 gene (13q12) in human beings. It has various intranuclear and extracellular functions. It plays an important role in the pathogenesis of many diseases including cancer. In 2012, there was approximately 1.67 million new breast cancer cases diagnosed which makes it the second most frequent cancer in the world after lung cancer (25% of all cancers) and the commonest cancer among women. Both pre-clinical and clinical studies have suggested that HMGB1 might be a useful target in the management of breast cancer. This review summarises the structure and functions of HMGB1 and its dual role in carcinogenesis both as a pro-tumorigenic and anti-tumorigenic factor. It also sums up evidence from in vitro and in vivo studies using breast cancer cell lines and samples which demonstrate its influence in radiotherapy, chemotherapy and hormonal therapy in breast cancer. It may have particular importance in HER2 positive and metastatic breast cancer. It might pave the way for new breast cancer treatments through development of novel drugs, use of microRNAs (miRNAs), targeting breast cancer stem cells (CSCs) and breast cancer immunotherapy. It may also play a role in determining breast cancer prognosis. Thus HMGB1 may open up novel avenues in breast cancer management.
Collapse
Affiliation(s)
- Moonindranath Sohun
- Department of Oncology, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212013, China
| | - Huiling Shen
- Department of Oncology, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
44
|
Yue L, Zhang Q, He L, Zhang M, Dong J, Zhao D, Ma H, Pan H, Zheng L. Genetic predisposition of six well-defined polymorphisms in HMGB1/RAGE pathway to breast cancer in a large Han Chinese population. J Cell Mol Med 2016; 20:1966-73. [PMID: 27241711 PMCID: PMC5020633 DOI: 10.1111/jcmm.12888] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022] Open
Abstract
Breast cancer constitutes an enormous burden in China. A strong familial clustering of breast cancer suggests a genetic component in its carcinogenesis. To examine the genetic predisposition of high mobility group box‐1/receptor for advanced glycation end products (HMGB1/RAGE) pathway to breast cancer, we genotyped six well‐defined polymorphisms in this pathway among 524 breast cancer patients and 518 cancer‐free controls from Heilongjiang province, China. There were no deviations from Hardy–Weinberg equilibrium for all polymorphisms. In single‐locus analysis, the frequency of rs1800624 polymorphism mutant A allele in RAGE gene was significantly higher in patients than in controls (24.52% versus 19.50%, P = 0.006), with the carriers of rs1800624‐A allele being 1.51 times more likely to develop breast cancer relative to those with rs1800624‐GG genotype after adjustment (95% confidence interval or CI: 1.17–1.94, P = 0.001). In HMGB1 gene, haplotype analysis did not reveal any significance, while in RAGE gene, haplotypes C‐T‐A and C‐A‐G (alleles in order of rs1800625, rs18006024, rs2070600) were significantly associated with an increased risk of breast cancer (adjusted OR = 2.72 and 10.35; 95% CI: 1.20–6.18 and 1.58–67.80; P = 0.017 and 0.015 respectively). In further genetic score analysis, per unit and quartile increments of unfavourable alleles were significantly associated with an increased risk of breast cancer after adjustment (odds ratio or OR = 1.20 and 1.26; 95% CI: 1.09–1.32 and 1.12–1.42; P < 0.001 and <0.001 respectively). Our findings altogether demonstrate a significant association between RAGE gene rs1800624 polymorphism and breast cancer risk, and more importantly a cumulative impact of multiple risk associated polymorphisms in HMGB1/RAGE pathway on breast carcinogenesis.
Collapse
Affiliation(s)
- Liling Yue
- Department of Biogenetics, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Qibing Zhang
- Department of General Surgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Lan He
- Department of Mathematics, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Minglong Zhang
- Department of Biogenetics, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Jing Dong
- Department of Biogenetics, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Dalong Zhao
- Clinical Laboratory, Qiqihar Jianhua Hospital, Qiqihar, Heilongjiang, China
| | - Hongxing Ma
- Clinical Laboratory, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Hongming Pan
- Department of Biochemistry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Lihong Zheng
- Department of Biogenetics, Qiqihar Medical University, Qiqihar, Heilongjiang, China.
| |
Collapse
|
45
|
Luo J, Chen J, He L. mir-129-5p Attenuates Irradiation-Induced Autophagy and Decreases Radioresistance of Breast Cancer Cells by Targeting HMGB1. Med Sci Monit 2015; 21:4122-9. [PMID: 26720492 PMCID: PMC4700864 DOI: 10.12659/msm.896661] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND This study aimed to determine the role of miR-129-5p in irradiation-induced autophagy in breast cancer cells and to investigate its downstream regulation in autophagy-related radiosensitivity. MATERIAL AND METHODS Relative miR-129-5p expression in breast cancer cell lines MCF-7, MDA-MB-231, BT474, and BT549, and in 1 non-tumorigenic breast epithelial cell line, MCF-10A, was compared. The effect of miR-129-5p on irradiation-induced autophagy and radiosensitivity of the cancer cells was explored. The regulative effect of miR-129-5p on HMGB1 and the functional role of this axis in autophagy and radiosensitivity were also studied. RESULTS Ectopic expression of miR-129-5p sensitized MDA-MD-231 cells to irradiation, while knockdown of miR-129-5p reduced radiosensitivity of MCF-7 cells. MiR-129-5p overexpression inhibited irradiation-induced autophagy. HMGB1 is a direct functional target of miR-129-5p in breast cancer cells. MiR-129-5p may suppress autophagy and decrease radioresistance of breast cancer cells by targeting HMGB1. CONCLUSIONS The miR-129-5p/HMGB1 axis can regulate irradiation-induced autophagy in breast cancer and might be an important pathway in regulating radiosensitivity of breast cancer cells.
Collapse
Affiliation(s)
- Jing Luo
- Department of Breast Surgery, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Clinical Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China (mainland)
| | - Jie Chen
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Li He
- Department of Breast Surgery, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital (East), School of Clinical Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China (mainland)
| |
Collapse
|