1
|
Zhu X, Li Z, Chen L, Li L, Ouyang M, Zhou H, Xiao K, Lin L, Chu PK, Zhou C, Xun C, Yang L, Huang W, Ding X. Exosomes delivering miR-129-5p combined with sorafenib ameliorate hepatocellular carcinoma progression via the KCTD1/HIF-1α/VEGF pathway. Cell Oncol (Dordr) 2025:10.1007/s13402-025-01044-x. [PMID: 40227531 DOI: 10.1007/s13402-025-01044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Potassium channel tetramerization domain-containing 1 (KCTD1) plays a critical role in transcriptional regulation and adipogenesis, but its significance in hepatocellular cancer (HCC) has not been reported. METHODS Immunohistochemistry, Western blotting and quantitative real-time PCR analysis were performed to assess the expression of KCTD1 and related genes in HCC cells. MTT assays, colony formation, cell migration, invasion and the in-vivo mouse models were utilized to evaluate the function of KCTD1 in HCC progression. Co-immunoprecipitation, chromatin immunoprecipitation and luciferase reporter assays were conducted to elucidate the molecular mechanisms of KCTD1 in HCC. RESULTS KCTD1 expression was increased in human HCC tissues and closely associated with advanced tumor stages. KCTD1 overexpression enhanced growth, migration, and invasion of Huh7 and HepG2 cells both in vitro and in vivo, while KCTD1 knockdown reversed these effects in MHCC97H cells. Mechanistically, KCTD1 interacted with hypoxia-inducible factor 1 alpha (HIF-1α) and enhanced HIF-1α protein stability with the inhibited prolyl-hydroxylases (PHD)/Von Hippel-Lindau (VHL) pathway, consequently activating the Vascular Endothelial Growth Factor (VEGF)/VEGFR2 pathway in HCC cells. Sorafenib and KCTD1 knockdown synergistically inhibited intrahepatic tumor growth following in situ injection of MHCC97H cells. miR-129-5p downregulated KCTD1 by binding to KCTD1 3'UTR. Finally, 45 µg exosomes from miR-129-5p-overexpressing MHCC97H cells combined with 25 mg/kg sorafenib to decrease HCC tumor size. CONCLUSIONS These results suggested that KCTD1 protects HIF-1α from degradation and activates the VEGF signaling cascade to enhance HCC progression. Therefore, KCTD1 may serve as a novel target of HCC and pave the way for an efficient combined therapy in advanced HCC.
Collapse
Affiliation(s)
- Xinyu Zhu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Lushan Road No. 14, Changsha, 410081, China
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Zhiwei Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Lushan Road No. 14, Changsha, 410081, China
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Li Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Lushan Road No. 14, Changsha, 410081, China
| | - Limin Li
- College of Engineering and Design, Hunan Normal University, Taozihu Road No. 68, Changsha, 410081, China.
| | - Mi Ouyang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Lushan Road No. 14, Changsha, 410081, China
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Hao Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Lushan Road No. 14, Changsha, 410081, China
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Kai Xiao
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Ling Lin
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Chang Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Lushan Road No. 14, Changsha, 410081, China
| | - Chengfeng Xun
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Lushan Road No. 14, Changsha, 410081, China
| | - Liu Yang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Lushan Road No. 14, Changsha, 410081, China
| | - Wenhuan Huang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Lushan Road No. 14, Changsha, 410081, China
| | - Xiaofeng Ding
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Lushan Road No. 14, Changsha, 410081, China.
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013, China.
| |
Collapse
|
2
|
Huang G, Ouyang M, Xiao K, Zhou H, Zhong Z, Long S, Li Z, Zhang Y, Li L, Xiang S, Ding X. AP-2α decreases TMZ resistance of recurrent GBM by downregulating MGMT expression and improving DNA damage. Life Sci 2024; 357:123111. [PMID: 39369843 DOI: 10.1016/j.lfs.2024.123111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
AIMS The incidence of recurrent gliomas is high, exerting low survival rates and poor prognoses. Transcription factor AP-2α has been reported to regulate the progression of primary glioblastoma (GBM). However, the function of AP-2α in recurrent gliomas is largely unclear. METHODS The expression of AP-2α and O6-methylguanine DNA-methyltransferase (MGMT) was detected in recurrent glioma tissues and cell lines by Western blots, the regulation mechanisms between AP-2α/MGMT promoter and RA/AP-2α promoter were studied by luciferase reporter assays, EMSA, and chIP assays. The effects of AP-2α and TMZ/RA treatment on cell viability in vitro and in vivo were investigated by MTT assays, γH2AX staining, comet assays and intracranial injection. KEY FINDINGS AP-2α expression negatively correlates with the expression of MGMT in glioma samples. AP-2α could directly bind with the promoter of the MGMT gene, suppresses transcriptional levels of MGMT and downregulate MGMT expression in TMZ-resistant U87MG-R and T98G cells, but TMZ treatment decreases AP-2α expression and increases MGMT expression. The extended TMZ treatment and increased TMZ concentrations reversed these effects. Moreover, AP-2α overexpression combines with TMZ to decrease cell viability, concurrently with improved DNA damage marker γH2AX. Furthermore, retinoic acid (RA) activates RAR/RXR heterodimers, which bind to RA-responsive elements (RAREs) of the AP-2α promoter, and activates AP-2α expression in recurrent glioma cells. Finally, in intracranial relapsed glioma mouse model, both RA and TMZ could retard tumor development and prolong the mouse survival. SIGNIFICANCE AP-2α activation by gene overexpression or RA treatment reveals the suppressive effects on glioma relapse, providing a novel therapeutic strategy against malignant refractory gliomas.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Middle Aged
- Antineoplastic Agents, Alkylating/pharmacology
- Brain Neoplasms/drug therapy
- Brain Neoplasms/genetics
- Brain Neoplasms/pathology
- Brain Neoplasms/metabolism
- Cell Line, Tumor
- DNA Damage/drug effects
- DNA Modification Methylases/metabolism
- DNA Modification Methylases/genetics
- DNA Repair Enzymes/genetics
- DNA Repair Enzymes/metabolism
- Down-Regulation/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Glioblastoma/drug therapy
- Glioblastoma/genetics
- Glioblastoma/pathology
- Glioblastoma/metabolism
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/metabolism
- Promoter Regions, Genetic
- Temozolomide/pharmacology
- Transcription Factor AP-2/genetics
- Transcription Factor AP-2/metabolism
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Guixiang Huang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Mi Ouyang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Kai Xiao
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Hao Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Zhe Zhong
- Department of Neurosurgery, Hunan Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, Hunan 410013, China
| | - Shengwen Long
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Zhiwei Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Yiru Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Limin Li
- College of Engineering and Design, Hunan Normal University, Changsha 410081, China.
| | - Shuanglin Xiang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China.
| | - Xiaofeng Ding
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
3
|
Wang C, Zhao Z, Zhao Y, Zhao J, Xia L, Xia Q. Macroscopic inhibition of DNA damage repair pathways by targeting AP-2α with LEI110 eradicates hepatocellular carcinoma. Commun Biol 2024; 7:342. [PMID: 38503825 PMCID: PMC10951303 DOI: 10.1038/s42003-024-05939-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
DNA damage repair (DDR) genes are known to be closely associated with the progression of Hepatocellular carcinoma (HCC). Here we report a unique cluster of "deletion-up" genes in HCC, which are accordantly overexpressed in HCC patients and predict the unfavorable prognosis. Binding motif analysis and further validation with ChIP-qPCR unveil that the AP-2α directly modulate the transcription of critical DNA repair genes including TOP2A, NUDT1, POLD1, and PARP1, which facilitates the sanitation of oxidized DNA lesions. Structural analysis and the following validation identify LEI110 as a potent AP-2α inhibitor. Together, we demonstrate that LEI110 stabilizes AP-2α and sensitizes HCC cells toward DNA-damaging reagents. Altogether, we identify AP-2α as a crucial transcription modulator in HCC and propose small-molecule inhibitors targeting AP-2α are a promising novel class of anticancer agents. Our study provides insights into the concept of macroscopic inhibition of DNA damage repair-related genes in cancer treatment.
Collapse
Affiliation(s)
- Chenchen Wang
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China.
- Shanghai Institute of Transplantation, Shanghai, China.
| | - Zhenjun Zhao
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Yudong Zhao
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Jie Zhao
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
4
|
Pal A, Gonzalez-Malerva L, Eaton S, Xu C, Zhang Y, Grief D, Sakala L, Nwekwo L, Zeng J, Christensen G, Gupta C, Streitwieser E, Singharoy A, Park JG, LaBaer J. Multidimensional quantitative phenotypic and molecular analysis reveals neomorphic behaviors of p53 missense mutants. NPJ Breast Cancer 2023; 9:78. [PMID: 37773066 PMCID: PMC10541912 DOI: 10.1038/s41523-023-00582-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
Mutations in the TP53 tumor suppressor gene occur in >80% of the triple-negative or basal-like breast cancer. To test whether neomorphic functions of specific TP53 missense mutations contribute to phenotypic heterogeneity, we characterized phenotypes of non-transformed MCF10A-derived cell lines expressing the ten most common missense mutant p53 proteins and observed a wide spectrum of phenotypic changes in cell survival, resistance to apoptosis and anoikis, cell migration, invasion and 3D mammosphere architecture. The p53 mutants R248W, R273C, R248Q, and Y220C are the most aggressive while G245S and Y234C are the least, which correlates with survival rates of basal-like breast cancer patients. Interestingly, a crucial amino acid difference at one position-R273C vs. R273H-has drastic changes on cellular phenotype. RNA-Seq and ChIP-Seq analyses show distinct DNA binding properties of different p53 mutants, yielding heterogeneous transcriptomics profiles, and MD simulation provided structural basis of differential DNA binding of different p53 mutants. Integrative statistical and machine-learning-based pathway analysis on gene expression profiles with phenotype vectors across the mutant cell lines identifies quantitative association of multiple pathways including the Hippo/YAP/TAZ pathway with phenotypic aggressiveness. Further, comparative analyses of large transcriptomics datasets on breast cancer cell lines and tumors suggest that dysregulation of the Hippo/YAP/TAZ pathway plays a key role in driving the cellular phenotypes towards basal-like in the presence of more aggressive p53 mutants. Overall, our study describes distinct gain-of-function impacts on protein functions, transcriptional profiles, and cellular behaviors of different p53 missense mutants, which contribute to clinical phenotypic heterogeneity of triple-negative breast tumors.
Collapse
Affiliation(s)
- Anasuya Pal
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Laura Gonzalez-Malerva
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Seron Eaton
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Chenxi Xu
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Yining Zhang
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Dustin Grief
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Lydia Sakala
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Lilian Nwekwo
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Jia Zeng
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Grant Christensen
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Chitrak Gupta
- The Biodesign Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Ellen Streitwieser
- The Biodesign Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Abhishek Singharoy
- The Biodesign Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Jin G Park
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
| | - Joshua LaBaer
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
5
|
Shi CJ, Lv MY, Deng LQ, Zeng WQ, Fu WM, Zhang JF. Linc-ROR drive adriamycin resistance by targeting AP-2α/Wnt/β-catenin axis in hepatocellular carcinoma. Cell Biol Toxicol 2023; 39:1735-1752. [PMID: 36576707 DOI: 10.1007/s10565-022-09777-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/11/2022] [Indexed: 12/29/2022]
Abstract
Adriamycin is widely used as a chemotherapeutic strategy for advanced hepatocellular carcinoma (HCC). However, the clinical response was disappointing because of the acquired drug resistance with long-term usage. Revealing the underlying mechanism could provide promising therapeutics for the drug-resistant patients. The recently identified linc-ROR (long intergenic non-protein-coding RNA, regulator of reprogramming) has been found to be an oncogene in various cancers, and it also demonstrated to mediate drug resistance and metastasis. We thereby wonder whether this lincRNA could mediate adriamycin chemoresistance in HCC. In this study, linc-ROR was found to be upregulated in adriamycin-resistant HCC cells. And its overexpression accelerated epithelial-mesenchymal transition (EMT) program and adriamycin resistance. Conversely, its silence suppressed EMT and made HCC cells sensitize to adriamycin in vitro and in vivo. Further investigation revealed that linc-ROR physically interacted with AP-2α, mediated its stability by a post-translational modification manner, and sequentially activated Wnt/β-catenin pathway. Furthermore, linc-ROR expression was positively associated with β-catenin expression in human clinical specimens. Taken together, linc-ROR promoted tumorigenesis and adriamycin resistance in HCC via a linc-ROR/AP-2α/Wnt/β-catenin axis, which could be developed as a potential therapeutic target for the adriamycin-resistant patients.
Collapse
Affiliation(s)
- Chuan-Jian Shi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Min-Yi Lv
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pharmacy, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, 518028, People's Republic of China
| | - Li-Qiang Deng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Wei-Qiang Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Wei-Ming Fu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Jin-Fang Zhang
- Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518000, People's Republic of China.
| |
Collapse
|
6
|
Zhang Z, Wu W, Jiao H, Chen Y, Ji X, Cao J, Yin F, Yin W. Squalene epoxidase promotes hepatocellular carcinoma development by activating STRAP transcription and TGF-β/SMAD signalling. Br J Pharmacol 2022; 180:1562-1581. [PMID: 36581319 DOI: 10.1111/bph.16024] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 08/20/2022] [Accepted: 09/11/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Squalene epoxidase (SQLE) is a key enzyme involved in cholesterol biosynthesis, but growing evidence also reveals that SQLE is abnormally expressed in some types of malignant tumours, even though the underlying mechanism remains poorly understood. EXPERIMENTAL APPROACH Bioinformatics analysis and RNA sequencing were applied to detect differentially expressed genes in clinical hepatocellular carcinoma (HCC). MTT, colony formation, AnnexinV-FITC/PI, EdU, wound healing, transwell, western blot, qRT-PCR, IHC, F-actin, RNA-sequencing, dual-luciferase reporters, and H&E staining were used to investigate the pharmacological effects and possible mechanisms of SQLE. KEY RESULTS SQLE expression was specifically elevated in HCC, correlating with poor clinical outcomes. SQLE significantly promoted HCC growth, epithelial-mesenchymal transition, and metastasis both in vitro and in vivo. RNA sequencing and functional experiments revealed that the protumourigenic effect of SQLE on HCC was closely related to the activation of TGF-β/SMAD signalling, but the stimulatory effect of SQLE on TGF-β/SMAD signalling and HCC development is critically dependent on STRAP. SQLE expression is well correlated with STRAP in HCC, and further, to amplify TGF-β/SMAD signalling, SQLE even transcriptionally increased STRAP gene expression mediated by AP-2α. Finally, as a chemical inhibitor of SQLE, NB-598 markedly inhibited HCC cell growth and tumour development. CONCLUSIONS AND IMPLICATIONS Taken together, SQLE serves as a novel oncogene in HCC development by activating TGF-β/SMAD signalling. Targeting SQLE could be useful in drug development and therapy for HCC.
Collapse
Affiliation(s)
- Zhirui Zhang
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Wei Wu
- Organ Transplantation Center, Southern District, the First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, China
| | - Hao Jiao
- Department of Pharmacy, Fuyang People's Hospital, Fuyang, China
| | - Yuzhong Chen
- Department of Surgical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaojun Ji
- Department of Innovation, Nanjing Chia Tai Tianqing Pharmaceutical Co., Ltd, Nanjing, China
| | - Jing Cao
- Department of Pharmacy, Women's Hospital of Nanjing Medical University/Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Fangzhou Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wu Yin
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Si C, Zhou X, Deng J, Ye S, Kong L, Zhang B, Wang W. Role of ferroptosis in gastrointestinal tumors: From mechanisms to therapies. Cell Biol Int 2022; 46:997-1008. [PMID: 35476364 DOI: 10.1002/cbin.11804] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/16/2022] [Accepted: 03/24/2022] [Indexed: 01/01/2023]
Abstract
Ferroptosis is an iron-dependent nonapoptotic regulated cell death, which is mainly caused by an abnormal increase in lipid oxygen free radicals and an imbalance in redox homeostasis. Recently, ferroptosis has been shown to have implications in various gastrointestinal cancers, such as gastric carcinoma, hepatocellular carcinoma, and pancreatic cancer. This review summarises the latest research on ferroptosis, its mechanism of action, and its role in the progression of different gastrointestinal tumors to provide more information regarding the prevention and treatment of these tumors.
Collapse
Affiliation(s)
- Chenli Si
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Xiang Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Deng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shijie Ye
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Lingming Kong
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Baofu Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Weiming Wang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
8
|
Chen G, Wang Y, Zhao X, Xie XZ, Zhao JG, Deng T, Chen ZY, Chen HB, Tong YF, Yang Z, Ding XW, Guo PY, Yu HT, Wu LJ, Zhang SN, Zhu QD, Li JJ, Shan YF, Yu FX, Yu ZP, Xia JL. A positive feedback loop between Periostin and TGFβ1 induces and maintains the stemness of hepatocellular carcinoma cells via AP-2α activation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:218. [PMID: 34193219 PMCID: PMC8243733 DOI: 10.1186/s13046-021-02011-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/09/2021] [Indexed: 02/02/2023]
Abstract
Background Liver cancer stem cells (LCSCs) play key roles in the metastasis, recurrence, and chemotherapeutic resistance of hepatocellular carcinoma (HCC). Our previous research showed that the POSTN gene is closely related to the malignant progression and poor prognosis of HCC. This study aimed to elucidate the role of POSTN in generating LCSCs and maintaining their stemness as well as the underlying mechanisms. Methods Human HCC tissues and matched adjacent normal tissues were obtained from 110 patients. Immunohistochemistry, western blotting (WB), and RT-PCR were performed to detect the expression of POSTN and stemness factors. The roles of transforming growth factor (TGF)-β1 and AP-2α in the POSTN-induced stemness transformation of HCC cells were explored in vitro and in vivo using LCSCs obtained by CD133+ cell sorting. Results The high expression of POSTN was correlated with the expression of various stemness factors, particularly CD133, in our HCC patient cohort and in TCGA and ICGC datasets. Knockdown of POSTN expression decreased the abilities of HCC cell lines to form tumours in xenograft mouse models. Knockdown of POSTN expression also suppressed cell viability and clone formation, invasion, and sphere formation abilities in vitro. Knockdown of AP-2α attenuated the generation of CD133+ LCSCs and their malignant behaviours, indicating that AP-2α was a critical factor that mediated the POSTN-induced stemness transformation and maintenance of HCC cells. The role of AP-2α was verified by using a specific αvβ3 antagonist, cilengitide, in vitro and in vivo. Activation of POSTN could release TGFβ1 from the extracellular matrix and initiated POSTN/TGFβ1 positive feedback signalling. Furthermore, we found that the combined use of cilengitide and lenvatinib suppressed the growth of HCC cells with high POSTN expression more effectively than the use of lenvatinib alone in the patient-derived xenograft (PDX) mouse model. Conclusions The POSTN/TGFβ1 positive feedback pathway regulates the expression of stemness factors and the malignant progression of HCC cells by regulating the transcriptional activation of AP-2α. This pathway may serve as a new target for targeted gene therapy in HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02011-8.
Collapse
Affiliation(s)
- Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China. .,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China. .,Liver Cancer Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China.
| | - Yi Wang
- Division of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325005, China
| | - Xin Zhao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xiao-Zai Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Jun-Gang Zhao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Tuo Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Zi-Yan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Han-Bin Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Yi-Fan Tong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Zhen Yang
- Department of Infectious Diseases, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, China
| | - Xi-Wei Ding
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Peng-Yi Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Hai-Tao Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Li-Jun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Si-Na Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Qian-Dong Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Jun-Jian Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Yun-Feng Shan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Fu-Xiang Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Zheng-Ping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Jing-Lin Xia
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China. .,Liver Cancer Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China. .,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Ohkawa Y, Zhang P, Momota H, Kato A, Hashimoto N, Ohmi Y, Bhuiyan RH, Farhana Y, Natsume A, Wakabayashi T, Furukawa K, Furukawa K. Lack of GD3 synthase (St8sia1) attenuates malignant properties of gliomas in genetically engineered mouse model. Cancer Sci 2021; 112:3756-3768. [PMID: 34145699 PMCID: PMC8409297 DOI: 10.1111/cas.15032] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/12/2023] Open
Abstract
High expression of gangliosides GD3 and GD2 is observed in human gliomas. The functions of GD3 and GD2 in malignant properties have been reported in glioma cells in vitro, but those functions have not yet been investigated in vivo. In this study, we showed that deficiency of GD3 synthase (GD3S, St8sia1) attenuated glioma progression and clinical and pathological features in a platelet-derived growth factor B-driven murine glioma model. Lack of GD3S resulted in the prolonged lifespan of glioma-bearing mice and low-grade pathology in generated gliomas. Correspondingly, they showed reduced phosphorylation levels of Akt, Erks, and Src family kinases in glioma tissues. A DNA microarray study revealed marked alteration in the expression of various genes, particularly in MMP family genes, in GD3S-deficient gliomas. Re-expression of GD3S restored expression of MMP9 in primary-cultured glioma cells. We also identified a transcription factor, Ap2α, expressed in parallel with GD3S expression, and showed that Ap2α was critical for the induction of MMP9 by transfection of its cDNA and luciferase reporter genes, and a ChIP assay. These findings suggest that GD3S enhances the progression of gliomas by enhancement of the Ap2α-MMP9 axis. This is the first report to describe the tumor-enhancing functions of GD3S in vivo.
Collapse
Affiliation(s)
- Yuki Ohkawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan.,Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Pu Zhang
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan.,Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Momota
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Surgical Neuro-Oncology, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Akira Kato
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Noboru Hashimoto
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuhsuke Ohmi
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Robiul H Bhuiyan
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Yesmin Farhana
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan.,Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Natsume
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshihiko Wakabayashi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan.,Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
10
|
Kołat D, Kałuzińska Ż, Bednarek AK, Płuciennik E. WWOX Loses the Ability to Regulate Oncogenic AP-2γ and Synergizes with Tumor Suppressor AP-2α in High-Grade Bladder Cancer. Cancers (Basel) 2021; 13:2957. [PMID: 34204827 PMCID: PMC8231628 DOI: 10.3390/cancers13122957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
The cytogenic locus of the WWOX gene overlaps with the second most active fragile site, FRA16D, which is present at a higher frequency in bladder cancer (BLCA) patients with smoking habit, a known risk factor of this tumor. Recently, we demonstrated the relevance of the role of WWOX in grade 2 BLCA in collaboration with two AP-2 transcription factors whose molecular actions supported or opposed pro-cancerous events, suggesting a distinct character. As further research is needed on higher grades, the aim of the present study was to examine WWOX-AP-2 functionality in grade 3 and 4 BLCA using equivalent in vitro methodology with additional transcriptome profiling of cellular variants. WWOX and AP-2α demonstrated similar anti-cancer functionality in most biological processes with subtle differences in MMP-2/9 regulation; this contradicted that of AP-2γ, whose actions potentiated cancer progression. Simultaneous overexpression of WWOX and AP-2α/AP-2γ revealed that single discrepancies appear in WWOX-AP-2α collaboration but only at the highest BLCA grade; WWOX-AP-2α collaboration was considered anti-cancer. However, WWOX only appeared to have residual activity against oncogenic AP-2γ in grade 3 and 4: variants with either AP-2γ overexpression alone or combined WWOX and AP-2γ overexpression demonstrated similar pro-tumoral behavior. Transcriptome profiling with further gene ontology certified biological processes investigated in vitro and indicated groups of genes consisting of AP-2 targets and molecules worth investigation as biomarkers. In conclusion, tumor suppressor synergism between WWOX and AP-2α is unimpaired in high-grade BLCA compared to intermediate grade, yet the ability of WWOX to guide oncogenic AP-2γ is almost completely lost.
Collapse
Affiliation(s)
- Damian Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland; (Ż.K.); (A.K.B.); (E.P.)
| | | | | | | |
Collapse
|
11
|
Kołat D, Kałuzińska Ż, Bednarek AK, Płuciennik E. Fragile Gene WWOX Guides TFAP2A/ TFAP2C-Dependent Actions Against Tumor Progression in Grade II Bladder Cancer. Front Oncol 2021; 11:621060. [PMID: 33718178 PMCID: PMC7947623 DOI: 10.3389/fonc.2021.621060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/18/2021] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION The presence of common fragile sites is associated with no-accidental chromosomal instability which occurs prior to carcinogenesis. The WWOX gene spans the second most active fragile site: FRA16D. Chromosomal breakage at this site is more common in bladder cancer patients who are tobacco smokers which suggests the importance of WWOX gene loss regarding bladder carcinogenesis. Tryptophan domains of WWOX are known to recognize motifs of other proteins such as AP-2α and AP-2γ allowing protein-protein interactions. While the roles of both AP-2 transcription factors are important for bladder carcinogenesis, their nature is different. Based on the literature, AP-2γ appears to be oncogenic, whereas AP-2α mainly exhibits tumor suppressor character. Presumably, the interaction between WWOX and both transcription factors regulates thousands of genes, hence the aim of the present study was to determine WWOX, AP-2α, and AP-2γ function in modulating biological processes of bladder cancer. METHODS RT-112 cell line (grade II bladder cancer) was subjected to two stable lentiviral transductions. Overall, this resulted in six variants to investigate distinct WWOX, AP-2α, or AP-2γ function as well as WWOX in collaboration with a particular transcription factor. Cellular models were examined with immunocytochemical staining and in terms of differences in biological processes using assays investigating cell viability, proliferation, apoptosis, adhesion, clonogenicity, migration, activity of metalloproteinases and 3D culture growth. RESULTS WWOX overexpression increased apoptosis but decreased cell viability, migration and large spatial colonies. AP-2α overexpression decreased tumor cell viability, migratory potential, matrix metalloproteinase-2 activity and clonogenicity. AP-2γ overexpression decreased matrix metalloproteinase-2 activity but increased wound healing, adhesion, clonogenicity and spatial colony formation. WWOX and AP-2α overexpression induced apoptosis but decreased cell viability, adhesion, matrix metalloproteinase-2 activity, overall number of cultured colonies and migration rate. WWOX and AP-2γ overexpression decreased tumor cell viability, proliferation potential, adhesion, clonogenicity and the ability to create spatial structures, but also increased apoptosis or migration rate. CONCLUSION Co-overexpression of WWOX with AP-2α or WWOX with AP-2γ resulted in a net anti-tumor effect. However, considering this research findings and the difference between AP-2α and AP-2γ, we suggest that this similarity is due to a divergent behavior of WWOX.
Collapse
Affiliation(s)
- Damian Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, Łódź, Poland
| | | | | | | |
Collapse
|
12
|
Cui J, Gong M, Fang S, Hu C, Wang Y, Zhang J, Tang N, He Y. All-trans retinoic acid reverses malignant biological behavior of hepatocarcinoma cells by regulating miR-200 family members. Genes Dis 2020; 8:509-520. [PMID: 34179313 PMCID: PMC8209308 DOI: 10.1016/j.gendis.2019.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/10/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023] Open
Abstract
As a potential chemo-therapeutic agent, all-trans retinoic acid (ATRA) can significantly reverse epithelial-mesenchymal transition (EMT) of hepal-6 hepatocarcinoma cell line in vitro, but the mechanism is unclear. The expression profile of microRNA-200 (miR-200) families is different in hepatocellular carcinoma. In this study, we found that ATRA treatment could up-regulate the expression of miR-200a-3p, 200c-3p, and 141-3p, which were involved in ATRA regulated proliferation and apoptosis of hepal-6 cell, but not colony formation. Meanwhile, miR-200a-3p, 200c-3p, and 141-3p could recovery ATRA inhibited migration and invasion abilities of hepal-6 cells at various levels. miR-200a-3p and 200c-3p prevented ATRA from inducing the differentiation and hepatic functions of hepal-6 cells. Antagomir specific for miR-200a-3p and 200c-3p down-regulated the expression of CK18, but only miR-200a-3p antagomir played prominent role in regulating the expression of these mesenchymal markers, N-Cadherin, Snail and Twist. The transcriptional activities of 8 transcription factors were up-regulated and 35 transcription factors were down-regulated by ATRA. Compared with ATRA group, inhibition of miR-200a-3p, 200c-3p, and 141-3p significantly strengthened the expression of Fra1/Jun (AP1), Ets1/PEA3, Brn3, and Zeb1/AREB6 at varying degrees. Therefore, this result suggested that ATRA may suppress EMT through down-regulating miR-200a-3p, 200c-3p and 141-3p related transcription factors. miR-200 and their downstream genes might be the potentially specific targets for the treatment of hepatocarcinoma.
Collapse
Affiliation(s)
- Jiejie Cui
- Department of Pediatric Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China.,Puyang People's Hospital, Puyang, Henan Province, 457000, PR China
| | - Mengjia Gong
- Department of Pediatric Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Shuyu Fang
- Department of Pediatric Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Chaoqun Hu
- Department of Pediatric Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Yi Wang
- Department of Pediatric Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Jingfang Zhang
- Puyang People's Hospital, Puyang, Henan Province, 457000, PR China
| | - Ni Tang
- Department of Pediatric Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Yun He
- Department of Pediatric Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| |
Collapse
|
13
|
Guoren Z, Zhaohui F, Wei Z, Mei W, Yuan W, Lin S, Xiaoyue X, Xiaomei Z, Bo S. TFAP2A Induced ITPKA Serves as an Oncogene and Interacts with DBN1 in Lung Adenocarcinoma. Int J Biol Sci 2020; 16:504-514. [PMID: 32015686 PMCID: PMC6990902 DOI: 10.7150/ijbs.40435] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022] Open
Abstract
The inositol polyphosphate kinase (IPK) family member ITPKA (inositol 1,4,5-trisphosphate 3-kinase) regulates the levels of many inositol polyphosphates which are important in cellular signaling. Several recent studies reported the aberrant expression of ITPKA in malignancy disease and usually made cancer more aggressive. However, the contribution of the inositol polyphosphate kinase ITPKA to lung cancer development remains unclear. Here we report that ITPKA is overexpressed in lung adenocarcinoma (LUAD) and positively correlated with advanced clinical parameters. ITPKA contributes to the malignant phenotypes in-vitro. Mechanistically, ITPKA executed its action through the inducting of epithelial-mesenchymal transition (EMT) and interacting with Drebrin 1 (which is related to cancer metastasis). Moreover, the hyper-expression of ITPKA in LUAD is transcriptionally activated by the transcription factor TFAP2A. In survival analysis by using tissue microarray (TMA), we indicate that ITPKA is hyper-expressed in LUAD tissues compared to adjacent normal tissues, and increased expression of ITPKA is associated with poor prognosis. Collectively, this study indicates that TFAP2A induced ITPKA hyperexpression promotes LUAD via interacting with Drebrin 1 and activating epithelial-mesenchymal transition (EMT). ITPKA might represent a potent candidate for the treatment and prognostic prediction of LUAD.
Collapse
Affiliation(s)
- Zhou Guoren
- Jiangsu Cancer Hospital, Jiangsu Institute Of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital; 42 Baiziting, Nanjing, Jiangsu, 210009, China (Corresponding Address)
| | - Fan Zhaohui
- Jiangsu Cancer Hospital, Jiangsu Institute Of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital; 42 Baiziting, Nanjing, Jiangsu, 210009, China (Corresponding Address)
| | - Zhu Wei
- School Of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wang Mei
- School Of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wu Yuan
- Jiangsu Cancer Hospital, Jiangsu Institute Of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital; 42 Baiziting, Nanjing, Jiangsu, 210009, China (Corresponding Address)
| | - Shi Lin
- Jiangsu Cancer Hospital, Jiangsu Institute Of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital; 42 Baiziting, Nanjing, Jiangsu, 210009, China (Corresponding Address)
| | - Xu Xiaoyue
- Jiangsu Cancer Hospital, Jiangsu Institute Of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital; 42 Baiziting, Nanjing, Jiangsu, 210009, China (Corresponding Address)
| | - Zhang Xiaomei
- Jiangsu Cancer Hospital, Jiangsu Institute Of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital; 42 Baiziting, Nanjing, Jiangsu, 210009, China (Corresponding Address)
| | - Shen Bo
- Jiangsu Cancer Hospital, Jiangsu Institute Of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital; 42 Baiziting, Nanjing, Jiangsu, 210009, China (Corresponding Address)
| |
Collapse
|
14
|
Huang W, Zhong Z, Luo C, Xiao Y, Li L, Zhang X, Yang L, Xiao K, Ning Y, Chen L, Liu Q, Hu X, Zhang J, Ding X, Xiang S. The miR-26a/AP-2α/Nanog signaling axis mediates stem cell self-renewal and temozolomide resistance in glioma. Am J Cancer Res 2019; 9:5497-5516. [PMID: 31534499 PMCID: PMC6735392 DOI: 10.7150/thno.33800] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022] Open
Abstract
Aberrant expression of transcription factor AP-2α has been functionally associated with various cancers, but its clinical significance and molecular mechanisms in human glioma are largely elusive. Methods: AP-2α expression was analyzed in human glioma tissues by immunohistochemistry (IHC) and in glioma cell lines by Western blot. The effects of AP-2α on glioma cell proliferation, migration, invasion and tumor formation were evaluated by the 3-(4,5-dimethyNCthiazol-2-yl)-25-diphenyltetrazolium bromide (MTT) and transwell assays in vitro and in nude mouse models in vivo. The influence of AP-2α on glioma cell stemness was analyzed by sphere-formation, self-renewal and limiting dilution assays in vitro and in intracranial mouse models in vivo. The effects of AP-2α on temozolomide (TMZ) resistance were detected by the MTT assay, cell apoptosis, real-time PCR analysis, western blotting and mouse experiments. The correlation between AP-2α expression and the expression of miR-26a, Nanog was determined by luciferase reporter assays, electrophoretic mobility shift assay (EMSA) and expression analysis. Results: AP-2α expression was downregulated in 58.5% of glioma tissues and in 4 glioma cell lines. AP-2α overexpression not only reduced the proliferation, migration and invasion of glioma cell lines but also suppressed the sphere-formation and self-renewal abilities of glioma stem cells in vitro. Moreover, AP-2α overexpression inhibited subcutaneous and intracranial xenograft tumor growth in vivo. Furthermore, AP-2α enhanced the sensitivity of glioma cells to TMZ. Finally, AP-2α directly bound to the regulatory region of the Nanog gene, reduced Nanog, Sox2 and CD133 expression. Meanwhile, AP-2α indirectly downregulated Nanog expression by inhibiting the interleukin 6/janus kinase 2/signal transducer and activator of transcription 3 (IL6/JAK2/STAT3) signaling pathway, consequently decreasing O6-methylguanine methyltransferase (MGMT) and programmed death-ligand 1 (PD-L1) expression. In addition, miR-26a decreased AP-2α expression by binding to the 3' untranslated region (UTR) of AP-2α and reversed the tumor suppressive role of AP-2α in glioma, which was rescued by a miR-26a inhibitor. TMZ and the miR-26a inhibitor synergistically suppressed intracranial GSC growth. Conclusion: These results suggest that AP-2α reduces the stemness and TMZ resistance of glioma by inhibiting the Nanog/Sox2/CD133 axis and IL6/STAT3 signaling pathways. Therefore, AP-2α and miR-26a inhibition might represent a new target for developing new therapeutic strategies in TMZ resistance and recurrent glioma patients.
Collapse
|
15
|
Yuanhua L, Pudong Q, Wei Z, Yuan W, Delin L, Yan Z, Geyu L, Bo S. TFAP2A Induced KRT16 as an Oncogene in Lung Adenocarcinoma via EMT. Int J Biol Sci 2019; 15:1419-1428. [PMID: 31337972 PMCID: PMC6643144 DOI: 10.7150/ijbs.34076] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/05/2019] [Indexed: 12/25/2022] Open
Abstract
Objectives: keratin 16 (KRT16) is a type I cytokeratin that overexpressed in many kinds of cancers, but unlike other keratins, KRT16 was poorly studied, so the aim of current study was to determine the biological role of KRT16 in lung adenocarcinoma (LUAD). Materials and Methods: by utilizing open access data, we determined KRT16 expression in LUAD. After that we evaluated the biological role of KRT16 in-vitro and in-vivo. We also explored the reason for KRT16 overexpression. Last, we explored the clinical significance of KRT16 in LUAD. Results: we found KRT16 is overexpressed in LUAD and positively correlated with lymph node metastasis. Knockdown of KRT16 significantly influenced the LUAD cells' migration, invasion, proliferation and epithelial-mesenchymal transition (EMT). Moreover, TFAP2A could transcriptionally overexpress KRT16, which contributed to the TFAP2A tumorigenicity. Last, we determined that high level of KRT16 predicts poor prognosis of LUAD patients. Conclusions: our data indicate that, TFAP2A induced KRT16 overexpression promotes tumorigenicity in LUAD via EMT, and KRT16 expression could serve as an independent prognosis marker.
Collapse
Affiliation(s)
- Liu Yuanhua
- Jiangsu Cancer Hospital, Jiangsu Institute Of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital; 42 Baiziting, Nanjing, Jiangsu, 210009, China (Corresponding Address)
| | - Qian Pudong
- Jiangsu Cancer Hospital, Jiangsu Institute Of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital; 42 Baiziting, Nanjing, Jiangsu, 210009, China (Corresponding Address)
| | - Zhu Wei
- School Of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wu Yuan
- Jiangsu Cancer Hospital, Jiangsu Institute Of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital; 42 Baiziting, Nanjing, Jiangsu, 210009, China (Corresponding Address)
| | - Liu Delin
- Jiangsu Cancer Hospital, Jiangsu Institute Of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital; 42 Baiziting, Nanjing, Jiangsu, 210009, China (Corresponding Address)
| | - Zhang Yan
- Jiangsu Cancer Hospital, Jiangsu Institute Of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital; 42 Baiziting, Nanjing, Jiangsu, 210009, China (Corresponding Address)
| | - Liang Geyu
- Key Laboratory Of Environmental Medicine Engineering, Ministry Of Education And School Of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Shen Bo
- Jiangsu Cancer Hospital, Jiangsu Institute Of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital; 42 Baiziting, Nanjing, Jiangsu, 210009, China (Corresponding Address)
| |
Collapse
|
16
|
Kołat D, Kałuzińska Ż, Bednarek AK, Płuciennik E. The biological characteristics of transcription factors AP-2α and AP-2γ and their importance in various types of cancers. Biosci Rep 2019; 39:BSR20181928. [PMID: 30824562 PMCID: PMC6418405 DOI: 10.1042/bsr20181928] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/11/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023] Open
Abstract
The Activator Protein 2 (AP-2) transcription factor (TF) family is vital for the regulation of gene expression during early development as well as carcinogenesis process. The review focusses on the AP-2α and AP-2γ proteins and their dualistic regulation of gene expression in the process of carcinogenesis. Both AP-2α and AP-2γ influence a wide range of physiological or pathological processes by regulating different pathways and interacting with diverse molecules, i.e. other proteins, long non-coding RNAs (lncRNA) or miRNAs. This review summarizes the newest information about the biology of two, AP-2α and AP-2γ, TFs in the carcinogenesis process. We emphasize that these two proteins could have either oncogenic or suppressive characteristics depending on the type of cancer tissue or their interaction with specific molecules. They have also been found to contribute to resistance and sensitivity to chemotherapy in oncological patients. A better understanding of molecular network of AP-2 factors and other molecules may clarify the atypical molecular mechanisms occurring during carcinogenesis, and may assist in the recognition of new diagnostic biomarkers.
Collapse
Affiliation(s)
- Damian Kołat
- Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, Poland
| | - Żaneta Kałuzińska
- Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
17
|
Wu HR, Zhang J. AP-2α expression in papillary thyroid carcinoma predicts tumor progression and poor prognosis. Cancer Manag Res 2018; 10:2615-2625. [PMID: 30147362 PMCID: PMC6095110 DOI: 10.2147/cmar.s167874] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The activator protein (AP)-2α is involved in a wide variety of biologic processes in tumor. However, little is known about the role of AP-2α in human papillary thyroid carcinoma (PTC). Methods The immunohistochemical method was used to detect AP-2α expression in 63 PTC cases. Western blotting was carried out to assess the change in expression of certain proteins. The bioinformatics analysis of 496 PTC samples comes from The Cancer Genome Atlas (TCGA). The Gene Set Enrichment Analysis (GSEA) was performed using TCGA data set. Cell transfection was used to induce related protein expression or to repress it by RNA interference procedures. Results Our results demonstrated that AP-2α expression was higher in tumor tissues than the corresponding adjacent nontumor tissues, the positive substances of AP-2α were observed mainly in the cytoplasm of PTC, and AP-2α was positively correlated with histologic type (P=0.026) of PTC patients. The high expression of AP-2α mRNA was associated significantly with tumor stages (P=0.011), histologic type (P=0.019), and independently predicted shorter overall survival (P=0.005) based on TCGA analysis. Patients with high AP-2α mRNA expression have shorter overall survival compared to those with low AP-2α mRNA expression, particularly in advanced tumor stages (III and IV) of PTC patients (P=0.011). Multivariate analysis suggested that AP-2α mRNA expression might be an independent prognostic indicator for the survival of patients with PTC (P=0.037). Moreover, the association between enhanced AP-2α expression and two pathways (notch signaling and focal adhesion) was revealed by GSEA, and then confirmed by cellular experiments. Conclusion Taken together, our findings suggest that AP-2α may be a potential prognostic molecular marker and therapeutic target for PTC patients.
Collapse
Affiliation(s)
- Hong Rong Wu
- Department of Pathology, The Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China,
| | - Jian Zhang
- Department of Pathology, The Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China,
| |
Collapse
|
18
|
Zhang K, Che S, Pan C, Su Z, Zheng S, Yang S, Zhang H, Li W, Wang W, Liu J. The SHH/Gli axis regulates CD90-mediated liver cancer stem cell function by activating the IL6/JAK2 pathway. J Cell Mol Med 2018; 22:3679-3690. [PMID: 29722127 PMCID: PMC6010714 DOI: 10.1111/jcmm.13651] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/21/2018] [Indexed: 12/17/2022] Open
Abstract
The cell surface antigen CD90 has recently been established as a promising marker for liver cancer stem cells. This study aimed to investigate potential implications of SHH/Gli signalling in CD90+ liver cancer stem cells. Correlation of the expression of SHH signalling components and CD90 in liver cancer cells and clinical tissues, as well as in enriched CD90+ liver cancer stem cells and the TCGA database, were analysed by quantitative RT-PCR, Western blotting and flow cytometry. Functional analysis was conducted by siRNA-mediated CD90, Gli1 and Gli3 gene knockdown, SHH treatment and application of the JAK2 inhibitor AZD1480 and IL6 neutralizing antibody in CD90+ liver cancer stem cells, followed by cell proliferation, migration, sphere formation and tumorigenicity assays. CD90 expression exhibited a high positive correlation with Gli1 and Gli3 in multiple liver cancer cell lines and human cancerous liver tissues, both of which showed a significant increase in liver cancer. Analysis of TCGA data revealed an association of CD90, Gli1 and Gli3 with a short overall survival and positive correlation between CD90 expression and Gli3 expression level. The stem cell potentials of CD90+ 97L liver cancer cells were greatly impaired by Gli1/3 knockdown with siRNA but enhanced by SHH treatment. Application of the JAK2 inhibitor AZD1480 and IL6 neutralizing antibody showed the CD90 and SHH/Gli-regulated liver cancer stem cell functions were mediated by the IL6/JAK2/STAT3 pathway. The stem cell properties of CD90+ liver cancer cells are regulated by the downstream SHH/Gli and IL6/JAK2/STAT3 signalling pathways.
Collapse
Affiliation(s)
- Ketao Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Department of Hepatopancreatobiliary SurgerySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Siyao Che
- Department of Hepatobiliary SurgeryGaozhou People's HospitalGaozhouChina
| | - Chuzhi Pan
- Department of Hepatobiliary Surgerythe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Zheng Su
- Department of Hepatopancreatobiliary SurgerySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Shangyou Zheng
- Department of Hepatopancreatobiliary SurgerySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Shanglin Yang
- Department of Hepatopancreatobiliary SurgerySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Huayao Zhang
- Department of Hepatopancreatobiliary SurgerySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Wenda Li
- Department of Hepatopancreatobiliary SurgerySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Weidong Wang
- Department of Hepatobiliary SurgeryShunde Hospital of Southern Medical UniversityFoshanGuangdong ProvinceChina
| | - Jianping Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Department of Hepatopancreatobiliary SurgerySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
19
|
Yang L, Qiu J, Xiao Y, Hu X, Liu Q, Chen L, Huang W, Li X, Li L, Zhang J, Ding X, Xiang S. AP-2β inhibits hepatocellular carcinoma invasion and metastasis through Slug and Snail to suppress epithelial-mesenchymal transition. Theranostics 2018; 8:3707-3721. [PMID: 30026878 PMCID: PMC6037033 DOI: 10.7150/thno.25166] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/18/2018] [Indexed: 12/14/2022] Open
Abstract
Transcription factor AP-2β plays an important role in human cancer, but its clinical significance in hepatocellular carcinogenesis is largely unknown. Methods: AP-2β expression was detected in human hepatocellular cancer (HCC) tissues and cell lines. The effects of AP-2β on HCC proliferation, migration, invasion, tumor formation and metastasis were evaluated by MTT, colony formation and transwell assays in vitro and mouse experiments in vivo. The association between AP-2β and miR-27a/EMT markers in HCC cell lines and tissues was analyzed. Results: AP-2β expression was decreased in HCC tissues and cell lines. Reduced expression of AP-2β was significantly associated with more advanced tumor stages and larger tumor sizes. The overexpression of AP-2β reduced HCC proliferation, migration, invasion, tumor formation and metastasis in vitro and in vivo. Additionally, AP-2β overexpression increased the sensitivity of HCC cells to cisplatin. Moreover, AP-2β modulates the levels of EMT markers through Slug and Snail in HCC cell lines and tissues. Furthermore, oncogenic miR-27a inhibits AP-2β expression by binding to the AP-2β 3′ untranslated region (UTR) and reverses the tumor suppressive role of AP-2β. Conclusion: These results suggested that AP-2β is lowly expressed in HCC by inhibiting EMT signaling to regulate HCC cell growth and migration. Therefore, AP-2β in the novel miR-27a/AP-2β/Slug/EMT regulatory axis enhances the chemotherapeutic drug sensitivity of HCC and might represent a potential target for evaluating the treatment and prognosis of human HCC.
Collapse
|
20
|
León IE, Díez P, Baran EJ, Etcheverry SB, Fuentes M. Decoding the anticancer activity of VO-clioquinol compound: the mechanism of action and cell death pathways in human osteosarcoma cells. Metallomics 2018; 9:891-901. [PMID: 28581009 DOI: 10.1039/c7mt00068e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vanadium compounds were studied in recent years by considering them as a representative of a new class of non-platinum metal anticancer drugs. However, a few challenges still remain in the discovery of new molecular targets of these new metallodrugs. Studies on cell signaling pathways related to vanadium compounds have scarcely been reported and so far this information is highly critical for identifying novel targets that play a key role in the antitumor actions of vanadium complexes. This research deals with the alterations in the intracellular signaling pathways promoted by an oxovanadium(iv) complex with the clioquinol (5-chloro-7-iodo-8-quinolinol), VO(CQ)2, on a human osteosarcoma cell line (MG-63). Herein are reported, for the first time, the antitumor properties of VO(CQ)2 and the relative abundance of 224 proteins (which are involved in most of the common intracellular pathways) to identify novel targets of the studied complex. Besides, full-length human recombinant AKT1 kinase was produced by using an IVTT system to evaluate the variation of relative tyrosin-phosphorylation levels caused by this compound. The results of the differential protein expression levels reveal several up-regulated proteins such as CASP3, CASP6, CASP7, CASP10, CASP11, Bcl-x, DAPK and down-regulated ones, such as PKB/AKT, DIABLO, among others. Moreover, cell signaling pathways involved in several altered pathways related to the PKC and AP2 family have been identified in both treatments (2.5 and 10 μM) suggesting the crucial antitumoral role of VO(CQ)2. Finally, it has been demonstrated that this compound (10 μM, 6 h) triggers a decrease of 2-fold in in situ AKT1 expression.
Collapse
Affiliation(s)
- Ignacio E León
- Chair of Patologic Biochemistry, Exact School Sciences, National University of La Plata, 47 y 115, 1900 La Plata, Argentina.
| | | | | | | | | |
Collapse
|
21
|
Dreyer FS, Cantone M, Eberhardt M, Jaitly T, Walter L, Wittmann J, Gupta SK, Khan FM, Wolkenhauer O, Pützer BM, Jäck HM, Heinzerling L, Vera J. A web platform for the network analysis of high-throughput data in melanoma and its use to investigate mechanisms of resistance to anti-PD1 immunotherapy. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2315-2328. [PMID: 29410200 DOI: 10.1016/j.bbadis.2018.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 01/11/2023]
Abstract
Cellular phenotypes are established and controlled by complex and precisely orchestrated molecular networks. In cancer, mutations and dysregulations of multiple molecular factors perturb the regulation of these networks and lead to malignant transformation. High-throughput technologies are a valuable source of information to establish the complex molecular relationships behind the emergence of malignancy, but full exploitation of this massive amount of data requires bioinformatics tools that rely on network-based analyses. In this report we present the Virtual Melanoma Cell, an online tool developed to facilitate the mining and interpretation of high-throughput data on melanoma by biomedical researches. The platform is based on a comprehensive, manually generated and expert-validated regulatory map composed of signaling pathways important in malignant melanoma. The Virtual Melanoma Cell is a tool designed to accept, visualize and analyze user-generated datasets. It is available at: https://www.vcells.net/melanoma. To illustrate the utilization of the web platform and the regulatory map, we have analyzed a large publicly available dataset accounting for anti-PD1 immunotherapy treatment of malignant melanoma patients.
Collapse
|
22
|
Liu Y, Yang Y, Wang T, Wang L, Wang X, Li T, Shi Y, Wang Y. Long non-coding RNA CCAL promotes hepatocellular carcinoma progression by regulating AP-2α and Wnt/β-catenin pathway. Int J Biol Macromol 2017; 109:424-434. [PMID: 29275200 DOI: 10.1016/j.ijbiomac.2017.12.110] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/26/2017] [Accepted: 12/20/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Long non-coding RNAs are emerging as key molecules in cancer progression. LncRNA-CCAL has shown to be highly expressed and important in regulating CRC and osteosarcoma development. Nevertheless, the expression and mechanism of CCAL in HCC is still not well understood. METHODS qRT-PCR and ISH were used to evaluate CCAL expression in HCC tissues and cell lines. Histone H3 methylation and acetylation levels across CCAL promoter region were examined by chromatin immunoprecipitation assays. Transfection of Lv-CCAL-shRNAs into HCC cell lines was used to evaluate cellular invasion and proliferation. The influence of CCAL depletion on AP-2α expression and Wnt/β-catenin pathway was analyzed by qRT-PCR, western blot and immunofluorescence. RESULTS Higher expression of CCAL was found in HCC tumor tissues compared with normal tissues, and was associated with tumor metastasis and TNM stage. Furthermore, the decreased histone H3 methylation and increased histone H3 acetylation across CCAL promoter region contributed to the upregulation of CCAL in HCC. Moreover, the depletion of CCAL inhibited HCC cellular invasion and proliferation, and promoted cell apoptosis. In addition, CCAL depletion up-regulated AP-2α expression and inhibited Wnt/β-catenin pathway activation. CONCLUSIONS CCAL has an important role in hepatic carcinogenesis and may serve as a new target for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Yu Liu
- Department of geriatric surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, PR China
| | - Ye Yang
- Department of geriatric surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, PR China
| | - Tianlong Wang
- Department of geriatric surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, PR China
| | - Li Wang
- Department of geriatric surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, PR China
| | - Xin Wang
- Department of geriatric surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, PR China
| | - Tiemin Li
- Department of geriatric surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, PR China
| | - Yue Shi
- Department of geriatric surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, PR China
| | - Yawei Wang
- Department of geriatric surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, PR China.
| |
Collapse
|
23
|
Fang X, Zhao Z, Jiang P, Yu H, Xiao H, Yang R. Identification of the bovine HSL gene expression profiles and its association with fatty acid composition and fat deposition traits. Meat Sci 2017; 131:107-118. [PMID: 28501436 DOI: 10.1016/j.meatsci.2017.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/26/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
Abstract
Hormone-sensitive lipase (HSL) is an intracellular neutral lipase capable of hydrolysing a variety of esters and is considered to be a candidate gene affecting fat deposition traits. Gene expression profiles of HSL were analysed in various adipose tissues of cattle, and the effect of HSL on lipid metabolism genes was analysed by a PCR array. Novel polymorphisms were identified within the HSL regulatory domain by sequencing, and the relationship between HSL variants and fat deposition traits was analysed. HSL mRNA was highly expressed in the subcutaneous and visceral fat of cattle. CPT1B/CPT1C and other lipocatabolic genes were upregulated, and lipogenesis-related genes (FASN, LPL and ACOT12) were downregulated by HSL overexpression in BFFs. Five novel variants in the HSL functional domain were significantly associated with fat deposition traits, including FCR, LBT, MFW and fatty acid composition. HSL plays a pivotal role in the regulation of lipolysis and fatty acid biosynthesis in beef cattle.
Collapse
Affiliation(s)
- Xibi Fang
- College of Animal Science, Jilin University, No.5333 Xi'an Road, Changchun 130062, PR China
| | - Zhihui Zhao
- College of Animal Science, Jilin University, No.5333 Xi'an Road, Changchun 130062, PR China
| | - Ping Jiang
- College of Animal Science, Jilin University, No.5333 Xi'an Road, Changchun 130062, PR China
| | - Haibin Yu
- College of Animal Science, Jilin University, No.5333 Xi'an Road, Changchun 130062, PR China
| | - Hang Xiao
- College of Animal Science, Jilin University, No.5333 Xi'an Road, Changchun 130062, PR China
| | - Runjun Yang
- College of Animal Science, Jilin University, No.5333 Xi'an Road, Changchun 130062, PR China.
| |
Collapse
|
24
|
Wang F, Huang W, Hu X, Chen C, Li X, Qiu J, Liang Z, Zhang J, Li L, Wang X, Ding X, Xiang S, Zhang J. Transcription factor AP-2β suppresses cervical cancer cell proliferation by promoting the degradation of its interaction partner β-catenin. Mol Carcinog 2017; 56:1909-1923. [PMID: 28277615 DOI: 10.1002/mc.22646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 02/28/2017] [Accepted: 03/03/2017] [Indexed: 12/21/2022]
Abstract
Transcription factor AP-2β mediates the transcription of a number of genes implicated in mammalian development, cell proliferation, and carcinogenesis. Although the expression pattern of AP-2β has been analyzed in cervical cancer cell lines, the functions and molecular mechanism of AP-2β are unknown. Here, we found that AP-2β significantly inhibits TCF/LEF reporter activity. Moreover, AP-2β and β-catenin interact both in vitro through GST pull-down assays and in vivo by co-immunoprecipitation. We further identified the interaction regions to the DNA-binding domain of AP-2β and the 1-9 Armadillo repeats of β-catenin. Moreover, AP-2β binds with β-TrCP and promotes the degradation of endogenous β-catenin via the proteasomal degradation pathway. Immunohistochemistry analysis revealed a negative correlation between the two proteins in cervical cancer tissues and cell lines. Finally, functional analysis showed that AP-2β suppresses cervical cancer cell growth in vitro and in vivo by inhibiting the expression of Wnt downstream genes. Taken together, these findings demonstrated that AP-2β functions as a novel inhibitor of the Wnt/β-catenin signaling pathway in cervical cancer.
Collapse
Affiliation(s)
- Fangmei Wang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| | - Wenhuan Huang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| | - Xiang Hu
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| | - Cheng Chen
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| | - Xinxin Li
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| | - Junlu Qiu
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| | - Zhongheng Liang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| | - Jianmei Zhang
- Reproductive Medicine Center, Changsha Hospital for Maternal & Child Health Care, Changsha, Hunan, China
| | - Limin Li
- College of Engineering and Design, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoqing Wang
- Xiangya Second Hospital, Central South University, Changsha, Hunan, China
| | - Xiaofeng Ding
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| | - Jian Zhang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| |
Collapse
|
25
|
Serine hydroxymethyl transferase 1 stimulates pro-oncogenic cytokine expression through sialic acid to promote ovarian cancer tumor growth and progression. Oncogene 2017; 36:4014-4024. [PMID: 28288142 PMCID: PMC5509519 DOI: 10.1038/onc.2017.37] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/12/2022]
Abstract
High-grade serous (HGS) ovarian cancer accounts for 90% of all ovarian cancer-related deaths. However, factors that drive HGS ovarian cancer tumor growth have not been fully elucidated. In particular, comprehensive analysis of the metabolic requirements of ovarian cancer tumor growth has not been performed. By analyzing The Cancer Genome Atlas mRNA expression data for HGS ovarian cancer patient samples, we observed that six enzymes of the folic acid metabolic pathway were overexpressed in HGS ovarian cancer samples compared with normal ovary samples. Systematic knockdown of all six genes using short hairpin RNAs (shRNAs) and follow-up functional studies demonstrated that serine hydroxymethyl transferase 1 (SHMT1) was necessary for ovarian cancer tumor growth and cell migration in culture and tumor formation in mice. SHMT1 promoter analysis identified transcription factor Wilms tumor 1 (WT1) binding sites, and WT1 knockdown resulted in reduced SHMT1 transcription in ovarian cancer cells. Unbiased large-scale metabolomic analysis and transcriptome-wide mRNA expression profiling identified reduced levels of several metabolites of the amino sugar and nucleotide sugar metabolic pathways, including sialic acid N-acetylneuraminic acid (Neu5Ac), and downregulation of pro-oncogenic cytokines interleukin-6 and 8 (IL-6 and IL-8) as unexpected outcomes of SHMT1 loss. Overexpression of either IL-6 or IL-8 partially rescued SHMT1 loss-induced tumor growth inhibition and migration. Supplementation of culture medium with Neu5Ac stimulated expression of IL-6 and IL-8 and rescued the tumor growth and migratory phenotypes of ovarian cancer cells expressing SHMT1 shRNAs. In agreement with the ovarian tumor-promoting role of Neu5Ac, treatment with Neu5Ac-targeting glycomimetic P-3Fax-Neu5Ac blocked ovarian cancer growth and migration. Collectively, these results demonstrate that SHMT1 controls the expression of pro-oncogenic inflammatory cytokines by regulating sialic acid Neu5Ac to promote ovarian cancer tumor growth and migration. Thus, targeting of SHMT1 and Neu5Ac represents a precision therapy opportunity for effective HGS ovarian cancer treatment.
Collapse
|