1
|
Kanellopoulos P, Yu Q, Abouzayed A, Bezverkhniaia E, Tolmachev V, Orlova A. Evaluation of maSSS/maSES-PEG2-RM26 for their potential therapeutic use after labeling with Re-188. Could their [ 99mTc]Tc-labeled counterparts be used to estimate dosimetry? EJNMMI Radiopharm Chem 2025; 10:3. [PMID: 39825204 PMCID: PMC11748620 DOI: 10.1186/s41181-024-00326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/19/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Gastrin releasing peptide receptor (GRPR)-directed radiopharmaceuticals for targeted radionuclide therapy may be a very promising addition in prostate and breast cancer patient management. Aiming to provide a GRPR-targeting theranostic pair, we have utilized the Tc-99m/Re-188 radiometal pair, in combination with two bombesin based antagonists, maSSS-PEG2-RM26 and maSES-PEG2-RM26. The two main aims of the current study were (i) to elucidate the influence of the radiometal-exchange on the biodistribution profile of the two peptides and (ii) to evaluate the feasibility of using the [99mTc]Tc labeled counterparts for the dosimetry estimation for the [188Re]Re-labeled conjugates. RESULTS Both peptides were successfully labeled with Re-188 and evaluated both in vitro and in vivo. In GRPR expressing PC-3 cells, both [188Re]Re-labeled peptides displayed high cellular uptake (8.5 ± 0.1% and 5 ± 0.3% of added activity, respectively), heavily GRPR-driven, while retaining the radioantagonistic profile with slow internalization rates. Both agents demonstrated high receptor affinity when loaded with natRe (7.5 nM and 8 nM, respectively). When tested in vivo in GRPR expressing PC-3 xenografts, both radioantagonists demonstrated high tumor accumulation (6.3 ± 0.5%IA/g and 5 ± 1%IA/g at 1 h pi, respectively), with good retention over time (4 ± 2%IA/g and 3.1 ± 0.1%IA/g at 4 h pi, respectively). In addition, their biodistribution profiles were closely mimicking their [99mTc]Tc-labeled counterparts. Statistically significant lower tumor uptake was found for both conjugates labeled with Tc-99m, which may result in underestimation of the dose delivered to the tumor. CONCLUSIONS All the results indicate that Tc-99 m could be used for dosimetry evaluation for the two [188Re]Re-labeled radioligands, with minimal alterations in their biodistribution pattern and tumor targeting capabilities.
Collapse
Affiliation(s)
| | - Quanyi Yu
- Department of Medicinal Chemistry, Uppsala University, Uppsala, 751 23, Sweden
| | - Abouzayed Abouzayed
- Department of Medicinal Chemistry, Uppsala University, Uppsala, 751 23, Sweden
| | | | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, 751 83, Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, Uppsala, 751 23, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, 752 37, Sweden
| |
Collapse
|
2
|
Baun C, Olsen BB, Alves CML, Ditzel HJ, Terp M, Hildebrandt MG, Poulsen CA, Gé LG, Gammelsrød VS, Orlova A, Dam JH, Thisgaard H. Gastrin-releasing peptide receptor as theranostic target in estrogen-receptor positive breast cancer: A preclinical study of the theranostic pair [ 55Co]Co- and [ 177Lu]Lu-DOTA-RM26. Nucl Med Biol 2024; 138-139:108961. [PMID: 39357076 DOI: 10.1016/j.nucmedbio.2024.108961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Patients with advanced metastatic estrogen receptor-positive breast cancer often develop resistance to standard treatments, leading to uncontrolled progression. Thus, innovative therapies are urgently needed. The gastrin-releasing peptide receptor (GRPR) is overexpressed in various cancers, including breast cancer, making it an interesting theranostic target. RM26, a GRPR-targeting antagonist, has demonstrated promising in vivo kinetics in prostate cancer models. This study evaluated the theranostic capabilities of [55Co]Co-/[177Lu]Lu-DOTA-RM26 in vitro in estrogen receptor-positive breast cancer cells and assessed the diagnostic potential of [55Co]Co-DOTA-RM26 in vivo in a breast cancer mouse model. METHODS We analyzed the binding specificity of [57Co]Co-/[177Lu]Lu-DOTA-RM26 in T47D breast cancer cells, using [57Co]Co-DOTA-RM26 as a surrogate for [55Co]Co-DOTA-RM26. The therapeutic efficacy of increasing [177Lu]Lu-DOTA-RM26 concentrations was determined via viability assay in vitro. Ex vivo biodistribution of [57Co]Co-DOTA-RM26 (17.2 ± 2.7 kBq, 33 ± 5.2 pmol/mouse) was investigated in 12 mice (n= 4/group) with orthotopic breast cancer tumors. The mice were sacrificed at 4 and 24 h post-injection (pi), including a blocking group (20 nmol of unlabeled [Tyr4]-Bombesin) at 4 h pi. For imaging, two tumor-bearing mice underwent [55Co]Co-DOTA-RM26 PET/CT, 4 and 24 h pi (2.8 ± 0.2 MBq, 167.5 ± 0.5 pmol/mouse), with or without GRPR blocking. RESULTS In vitro studies revealed high, specific binding of [57Co]Co-DOTA-RM26 (43 ± 1 % of total added activity per 106 cells (%IA/106)) and [177Lu]Lu-DOTA-RM26 (37 ± 4 %IA/106). The activity was predominantly localized at the cell surface: 71 ± 3 % and 80 ± 6 % for [57Co]Co-DOTA-RM26 and [177Lu]Lu-DOTA-RM26, respectively. [177Lu]Lu-DOTA-RM26 significantly reduced cell viability at all activity concentrations >0.625 MBq/mL (p < 0.0001), with cell viability below 1 % at concentrations ≥5 MBq/mL. Biodistribution data (n = 12) indicated a high, specific tumor uptake of [57Co]Co-DOTA-RM26, surpassing all other tissues significantly at both time points, 3.7 ± 0.6 % of the injected activity per gram (%IA/g) 4 h pi and 0.98 ± 0.05 %IA/g 24 h pi. The kidneys showed the second-highest uptake (2.0 ± 0.1 %IA/g 4 h pi), followed by the pancreas (1.4 ± 0.4 %IA/g 4 h pi). PET/CT imaging with [55Co]Co-DOTA-RM26 supported the biodistribution data and, distinctly visualized the tumor 24 h pi and showed an improved tumor-to-background compared to the earlier time points. Effective GRPR blocking significantly reduced tumor uptake in the PET images 24 h pi. CONCLUSION These findings suggest that the theranostic pair [55Co]Co-/[177Lu]Lu-DOTA-RM26 holds significant promise as a theranostic agent for estrogen receptor-positive breast cancer.
Collapse
Affiliation(s)
- Christina Baun
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Centre for Personalized Response Monitoring in Oncology (PREMIO), Odense University Hospital, Odense, Denmark.
| | - Birgitte Brinkmann Olsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Carla Maria Lourenco Alves
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Henrik Jørn Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Mikkel Terp
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Malene Grubbe Hildebrandt
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Centre for Personalized Response Monitoring in Oncology (PREMIO), Odense University Hospital, Odense, Denmark; Centre for Innovative Medical Technology, Odense University Hospital, Odense, Denmark
| | | | - Lorraine Gaenaelle Gé
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Vigga Sand Gammelsrød
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Anna Orlova
- Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Sweden; Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Sweden
| | - Johan Hygum Dam
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Helge Thisgaard
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
3
|
McNeil BL, Ramogida CF. From cyclotrons to chromatography and beyond: a guide to the production and purification of theranostic radiometals. Chem Soc Rev 2024; 53:10409-10449. [PMID: 39360601 DOI: 10.1039/d4cs00802b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Recent clinical success with metal-based radiopharmaceuticals has sparked an interest in the potential of these drugs for personalized medicine. Although often overlooked, the success and global impact of nuclear medicine is contingent upon the purity and availability of medical isotopes, commonly referred to as radiometals. For nuclear medicine to reach its true potential and change patient lives, novel production and purification techniques that increase inventory of radiometals are desperately needed. This tutorial review serves as a resource for those both new and experienced in nuclear medicine by providing a detailed explanation of the foundations for the production and purification of radiometals, stemming from nuclear physics, analytical chemistry, and so many other fields, all in one document. The fundamental science behind targetry, particle accelerators, nuclear reactors, nuclear reactions, and radiochemical separation are presented in the context of the field. Finally, a summary of the latest breakthroughs and a critical discussion of the threats and future potential of the most utilized radiometals is also included. With greater understanding of the fundamentals, fellow scientists will be able to better interpret the literature, identify knowledge gaps or problems and ultimately invent new production and purification pathways to increase the global availability of medical isotopes.
Collapse
Affiliation(s)
- Brooke L McNeil
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| |
Collapse
|
4
|
Nagy Á, Abouzayed A, Kanellopoulos P, Landmark F, Bezverkhniaia E, Tolmachev V, Orlova A, Eriksson Karlström A. Evaluation of ABD-Linked RM26 Conjugates for GRPR-Targeted Drug Delivery. ACS OMEGA 2024; 9:36122-36133. [PMID: 39220525 PMCID: PMC11359615 DOI: 10.1021/acsomega.4c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Targeting the gastrin-releasing peptide receptor (GRPR) with the bombesin analogue RM26, a 9 aa peptide, has been a promising strategy for cancer theranostics, with recent success in radionuclide imaging of prostate cancer. However, therapeutic application of the short peptide RM26 would require a longer half-life to prevent fast clearance from the circulation. Conjugation to an albumin-binding domain (ABD) is a viable strategy to extend the in vivo half-life of peptides and proteins. We previously reported an ABD-fused RM26 peptide targeting GRPR (ABD-RM26 Gen 1) that showed prolonged and stable tumor uptake over 144 h; however, the observed high kidney uptake indicated that the conjugate's binding to albumin was reduced and that this could be an obstacle for its use as a delivery system for targeted therapy, especially for radiotherapy. Here, we have designed, produced, and preclinically evaluated a series of novel ABD-RM26 conjugates with the aim of improving the conjugate's binding to albumin and decreasing the kidney uptake. We developed three second-generation constructs with varying formats, differing in the relative positions of the targeting moieties and the radionuclide chelator. The produced conjugates were radiolabeled with indium-111 and evaluated in vitro and in vivo. All constructs displayed improved biophysical characteristics, biodistribution, and lower kidney uptake compared to previously reported first-generation molecules. The ABD-RM26 Gen 2A conjugate showed the best biodistribution profile with a nearly 6-fold reduction in kidney uptake. However, the ABD-RM26 Gen 2A conjugate's binding to GRPR was compromised. This conjugate's assembly of albumin- and GRPR-binding moieties might be used for further development of drug conjugates for targeted therapy/radiotherapy of GRPR-expressing cancers.
Collapse
Affiliation(s)
- Ábel Nagy
- Department
of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Ayman Abouzayed
- Department
of Medicinal Chemistry, Uppsala University, 752 37 Uppsala, Sweden
| | | | - Fredrika Landmark
- Department
of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Ekaterina Bezverkhniaia
- Department
of Medicinal Chemistry, Uppsala University, 752 37 Uppsala, Sweden
- Research
Centrum for Oncotheranostics, Research School of Chemistry and Applied
Biomedical Sciences, Tomsk Polytechnic University, 634009 Tomsk, Russia
| | - Vladimir Tolmachev
- Department
of Immunology, Genetics and Pathology, Uppsala
University, 752 37 Uppsala, Sweden
| | - Anna Orlova
- Department
of Medicinal Chemistry, Uppsala University, 752 37 Uppsala, Sweden
- Science for
Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Amelie Eriksson Karlström
- Department
of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| |
Collapse
|
5
|
Dalm S, Duan H, Iagaru A. Gastrin Releasing Peptide Receptors-targeted PET Diagnostics and Radionuclide Therapy for Prostate Cancer Management: Preclinical and Clinical Developments of the Past 5 Years. PET Clin 2024; 19:401-415. [PMID: 38644111 DOI: 10.1016/j.cpet.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Each tumor has its own distinctive molecular identity. Treatment, therefore, should be tailored to this unique cancer phenotype. Theragnostics uses the same compound for targeted imaging and treatment, radiolabeled to an appropriate radionuclide, respectively. Gastrin-releasing peptide receptors (GRPRs) are overexpressed in prostate cancer, and radiolabeled GRPR antagonists have shown high diagnostic performance at staging and biochemical recurrence. Several GRPR-targeting theragnostic compounds have been developed preclinically. Their translation into clinics is underway with 4 clinical trials recruiting participants with GRPR-expressing tumors.
Collapse
Affiliation(s)
- Simone Dalm
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, Rotterdam 3015 GD, The Netherlands
| | - Heying Duan
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, 300 Pasteur Drive, H2200, Stanford, CA 94305, USA
| | - Andrei Iagaru
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, 300 Pasteur Drive, H2200, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
de Roode KE, Joosten L, Behe M. Towards the Magic Radioactive Bullet: Improving Targeted Radionuclide Therapy by Reducing the Renal Retention of Radioligands. Pharmaceuticals (Basel) 2024; 17:256. [PMID: 38399470 PMCID: PMC10892921 DOI: 10.3390/ph17020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Targeted radionuclide therapy (TRT) is an emerging field and has the potential to become a major pillar in effective cancer treatment. Several pharmaceuticals are already in routine use for treating cancer, and there is still a high potential for new compounds for this application. But, a major issue for many radiolabeled low-to-moderate-molecular-weight molecules is their clearance via the kidneys and their subsequent reuptake. High renal accumulation of radioactive compounds may lead to nephrotoxicity, and therefore, the kidneys are often the dose-limiting organs in TRT with these radioligands. Over the years, different strategies have been developed aiming for reduced kidney retention and enhanced therapeutic efficacy of radioligands. In this review, we will give an overview of the efforts and achievements of the used strategies, with focus on the therapeutic potential of low-to-moderate-molecular-weight molecules. Among the strategies discussed here is coadministration of compounds that compete for binding to the endocytic receptors in the proximal tubuli. In addition, the influence of altering the molecular design of radiolabeled ligands on pharmacokinetics is discussed, which includes changes in their physicochemical properties and implementation of cleavable linkers or albumin-binding moieties. Furthermore, we discuss the influence of chelator and radionuclide choice on reabsorption of radioligands by the kidneys.
Collapse
Affiliation(s)
- Kim E. de Roode
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands;
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Lieke Joosten
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands;
| | - Martin Behe
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, 5232 Villigen, Switzerland
| |
Collapse
|
7
|
Kanellopoulos P, Mattsson A, Abouzayed A, Obeid K, Nock BA, Tolmachev V, Maina T, Orlova A. Preclinical evaluation of new GRPR-antagonists with improved metabolic stability for radiotheranostic use in oncology. EJNMMI Radiopharm Chem 2024; 9:13. [PMID: 38366299 PMCID: PMC10873254 DOI: 10.1186/s41181-024-00242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND The gastrin-releasing peptide receptor (GRPR) has been extensively studied as a biomolecular target for peptide-based radiotheranostics. However, the lack of metabolic stability and the rapid clearance of peptide radioligands, including radiolabeled GRPR-antagonists, often impede clinical application. Aiming at circumventing these drawbacks, we have designed three new GRPR-antagonist radioligands using [99mTc]Tc-DB15 ([99mTc]Tc-N4-AMA-DIG-DPhe-Gln-Trp-Ala-Val-Sar-His-Leu-NHEt; AMA: p-aminomethylaniline; DIG: diglycolate) as a motif, due to its high GRPR-affinity and stability to neprilysin (NEP). The new analogues carry the DOTAGA-chelator (1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid) through different linkers at the N-terminus to allow for labeling with the theranostic radionuclide pair In-111/Lu-177. After labeling with In-111 the following radioligands were evaluated: (i) [111In]In-AU-SAR-M1 ([111In]In-DOTAGA-AMA-DIG-DPhe-Gln-Trp-Ala-Val-Sar-His-Leu-NHEt), (ii) [111In]In-AU-SAR-M2 ([111In]In-[DOTAGA-Arg]AU-SAR-M1) and (iii) [111In]In-AU-SAR-M3 ([111In]In-[DOTAGA-DArg]AU-SAR-M1). RESULTS These radioligands were compared in a series of in vitro assays using prostate adenocarcinoma PC-3 cells and in murine models. They all displayed high and GRPR-specific uptake in PC-3 cells. Analysis of mice blood collected 5 min post-injection (pi) revealed similar or even higher metabolic stability of the new radioligands compared with [99mTc]Tc-DB15. The stability could be further increased when the mice were treated with Entresto® to in situ induce NEP-inhibition. In PC-3 xenograft-bearing mice, [111In]In-AU-SAR-M1 displayed the most favourable biodistribution profile, combining a good tumor retention with the highest tumor-to-organ ratios, with the kidneys as the dose-limiting organ. CONCLUSIONS These findings strongly point at AU-SAR-M1 as a promising radiotherapeutic candidate when labeled with Lu-177, or other medically appealing therapeutic radiometals, especially when combined with in situ NEP-inhibition. To this goal further investigations are currently pursued.
Collapse
Affiliation(s)
- Panagiotis Kanellopoulos
- Department of Medicinal Chemistry, Uppsala University, 75183, Uppsala, Sweden
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15341, Athens, Greece
| | - Adam Mattsson
- Department of Medicinal Chemistry, Uppsala University, 75183, Uppsala, Sweden
| | - Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, 75183, Uppsala, Sweden
| | - Karim Obeid
- Department of Medicinal Chemistry, Uppsala University, 75183, Uppsala, Sweden
| | - Berthold A Nock
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15341, Athens, Greece
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 75183, Uppsala, Sweden
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15341, Athens, Greece
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 75183, Uppsala, Sweden.
- Science for Life Laboratory, Uppsala University, 75237, Uppsala, Sweden.
| |
Collapse
|
8
|
Baun C, Dam JH, Hildebrandt MG, Ewald JD, Kristensen BW, Gammelsrød VS, Olsen BB, Thisgaard H. Preclinical evaluation of [ 58mCo]Co-DOTA-PSMA-617 for Auger electron therapy of prostate cancer. Sci Rep 2023; 13:18837. [PMID: 37914790 PMCID: PMC10620164 DOI: 10.1038/s41598-023-43429-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/23/2023] [Indexed: 11/03/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA), highly expressed in prostate cancer, is a promising target for radionuclide therapy. Auger electron-emitting radionuclides are well suited for targeted radionuclide therapy if they can be delivered close to the DNA of the targeted cells. This preclinical study evaluated the theranostic pair [55/58mCo]Co-DOTA-PSMA-617 for PET imaging and Auger electron therapy of prostate cancer. [58mCo]Co-DOTA-PSMA-617 was successfully prepared with > 99% radiochemical yield and purity. In vitro, uptake and subcellular distribution assays in PSMA-positive prostate cancer cells showed PSMA-specific uptake with high cell-associated activity in the nucleus. Incubation with [58mCo]Co-DOTA-PSMA-617 reduced cell viability and clonogenic survival in a significant dose-dependent manner (p < 0.05). Biodistribution of xenografted mice showed high specific tumor uptake of the cobalt-labeled PSMA ligand for all time points with rapid clearance from normal tissues, which PET imaging confirmed. In vivo, therapy with [58mCo]Co-DOTA-PSMA-617 in tumor-bearing mice demonstrated significantly increased median survival for treated mice compared to control animals (p = 0.0014). In conclusion, [55/58mCo]Co-DOTA-PSMA-617 displayed excellent in vitro and in vivo properties, offering significant survival benefits in mice with no observed toxicities.
Collapse
Affiliation(s)
- Christina Baun
- Department of Nuclear Medicine, Odense University Hospital, Kløvervænget 47, 5000, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Center for Personalized Response Monitoring in Oncology (PREMIO), Odense University Hospital, Odense, Denmark
| | - Johan Hygum Dam
- Department of Nuclear Medicine, Odense University Hospital, Kløvervænget 47, 5000, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Malene Grubbe Hildebrandt
- Department of Nuclear Medicine, Odense University Hospital, Kløvervænget 47, 5000, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Center for Personalized Response Monitoring in Oncology (PREMIO), Odense University Hospital, Odense, Denmark
- Centre for Innovative Medical Technology, Odense University Hospital, Odense, Denmark
| | - Jesper Dupont Ewald
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Bjarne Winther Kristensen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Vigga Sand Gammelsrød
- Department of Nuclear Medicine, Odense University Hospital, Kløvervænget 47, 5000, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Birgitte Brinkmann Olsen
- Department of Nuclear Medicine, Odense University Hospital, Kløvervænget 47, 5000, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Helge Thisgaard
- Department of Nuclear Medicine, Odense University Hospital, Kløvervænget 47, 5000, Odense C, Denmark.
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
9
|
Abouzayed A, Kanellopoulos P, Gorislav A, Tolmachev V, Maina T, Nock BA, Orlova A. Preclinical Characterization of a Stabilized Gastrin-Releasing Peptide Receptor Antagonist for Targeted Cancer Theranostics. Biomolecules 2023; 13:1134. [PMID: 37509170 PMCID: PMC10377574 DOI: 10.3390/biom13071134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Radiolabeled gastrin-releasing peptide receptor (GRPR) antagonists have shown great promise for the theranostics of prostate cancer; however, their suboptimal metabolic stability leaves room for improvements. It was recently shown that the replacement of Gly11 with Sar11 in the peptidic [D-Phe6,Leu13-NHEt,des-Met14]BBN(6-14) chain stabilized the [99mTc]Tc-DB15 radiotracer against neprilysin (NEP). We herein present DOTAGA-PEG2-(Sar11)RM26 (AU-RM26-M1), after Gly11 to Sar11-replacement. The impact of this replacement on the metabolic stability and overall biological performance of [111In]In-AU-RM26-M1 was studied using a head-to-head comparison with the unmodified reference [111In]In-DOTAGA-PEG2-RM26. In vitro, the cell uptake of [111In]In-AU-RM26-M1 could be significantly reduced in the presence of a high-excess GRPR-blocker that demonstrated its specificity. The cell uptake of both radiolabeled GRPR antagonists increased with time and was superior for [111In]In-AU-RM26-M1. The dissociation constant reflected strong affinities for GRPR (500 pM for [111In]In-AU-RM26-M1). [111In]In-AU-RM26-M1 showed significantly higher stability in peripheral mice blood at 5 min pi (88 ± 8% intact) than unmodified [111In]In-DOTAGA-PEG2-RM26 (69 ± 2% intact; p < 0.0001). The administration of a NEP inhibitor had no significant impact on the Sar11-compound (91 ± 2% intact; p > 0.05). In vivo, [111In]In-AU-RM26-M1 showed high and GRPR-mediated uptake in the PC-3 tumors (7.0 ± 0.7%IA/g vs. 0.9 ± 0.6%IA/g in blocked mice) and pancreas (2.2 ± 0.6%IA/g vs. 0.3 ± 0.2%IA/g in blocked mice) at 1 h pi, with rapid clearance from healthy tissues. The tumor uptake of [111In]In-AU-RM26-M1 was higher than for [111In]In-DOTAGA-PEG2-RM26 (at 4 h pi, 5.7 ± 1.8%IA/g vs. 3 ± 1%IA/g), concordant with its higher stability. The implanted PC-3 tumors were visualized with high contrast in mice using [111In]In-AU-RM26-M1 SPECT/CT. The Gly11 to Sar11-substitution stabilized [111In]In-DOTAGA-PEG2-(Sar11)RM26 against NEP without negatively affecting other important biological features. These results support the further evaluation of AU-RM26-M1 for prostate cancer theranostics after labeling with clinically relevant radionuclides.
Collapse
Affiliation(s)
- Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; (A.A.); (P.K.); (A.G.)
| | - Panagiotis Kanellopoulos
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; (A.A.); (P.K.); (A.G.)
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15310 Athens, Greece; (T.M.); (B.A.N.)
| | - Alisa Gorislav
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; (A.A.); (P.K.); (A.G.)
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 83 Uppsala, Sweden;
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15310 Athens, Greece; (T.M.); (B.A.N.)
| | - Berthold A. Nock
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15310 Athens, Greece; (T.M.); (B.A.N.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; (A.A.); (P.K.); (A.G.)
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| |
Collapse
|
10
|
Wang Y, Yuan H, Tang S, Liu Y, Cai P, Liu N, Chen Y, Zhou Z. The effects of novel macrocyclic chelates on the targeting properties of the 68Ga-labeled Gastrin releasing peptide receptor antagonist RM2. EJNMMI Res 2023; 13:56. [PMID: 37285007 PMCID: PMC10247930 DOI: 10.1186/s13550-023-01005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND The gastrin-releasing peptide receptor (GRPr) is a molecular target for the visualization of prostate cancer. Bombesin (BN) analogs are short peptides with a high affinity for GRPr. RM2 is a bombesin-based antagonist. It has been demonstrated that RM2 have superior in vivo biodistribution and targeting properties than high-affinity receptor agonists. This study developed new RM2-like antagonists by introducing the novel bifunctional chelators AAZTA5 and DATA5m to RM2. RESULTS The effects of different macrocyclic chelating groups on drug targeting properties and the possibility of preparing 68Ga-radiopharmaceuticals in a kit-based protocol were investigated using 68Ga-labeled entities. Both new RM2 variants were labelled with 68Ga3+ resulting in high yields, stability, and low molarity of the ligand. DATA5m-RM2 and AAZTA5-RM2 incorporated 68Ga3+ nearly quantitatively at room temperature within 3-5 min, and the labelling yield for 68Ga-DOTA-RM2 was approximately 10% under the same conditions. 68Ga-AAZTA5-RM2 showed stronger hydrophilicity according to partition coefficient. Although the maximal cellular uptake values of the three compounds were similar, 68Ga-AAZTA5-RM2 and 68Ga-DATA5m-RM2 peaked more rapidly. Biodistribution studies showed high and specific tumor uptake, with a maximum of 9.12 ± 0.81 percentage injected activity per gram of tissue (%ID/g) for 68Ga-DATA5m-RM2 and 7.82 ± 0.61%ID/g for 68Ga-AAZTA5-RM2 at 30 min after injection. CONCLUSIONS The conditions for complexation of DATA5m-RM2 and AAZTA5-RM2 with gallium-68 are milder, faster and require less amount of precursors than DOTA-RM2. Chelators had an evident influence on the pharmacokinetics and targeting properties of 68Ga-X-RM2 derivatives. Positively charged 68Ga-DATA5m-RM2 provided a high tumor uptake, high image contrast and good capability of targeting GRPr.
Collapse
Affiliation(s)
- Yinwen Wang
- The Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan, China
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
| | - Hongmei Yuan
- The Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan, China
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
| | - Sufan Tang
- The Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan, China
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
| | - Yang Liu
- The Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan, China
- Institute of Nuclear Medicine, Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
| | - Ping Cai
- The Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan, China
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
| | - Nan Liu
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yue Chen
- The Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan, China.
- Institute of Nuclear Medicine, Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China.
| | - Zhijun Zhou
- The Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan, China.
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China.
- Institute of Nuclear Medicine, Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China.
| |
Collapse
|
11
|
Kwon D, Zhang Z, Zeisler J, Kuo HT, Lin KS, Benard F. Reducing the Kidney Uptake of High Contrast CXCR4 PET Imaging Agents via Linker Modifications. Pharmaceutics 2022; 14:pharmaceutics14071502. [PMID: 35890397 PMCID: PMC9316317 DOI: 10.3390/pharmaceutics14071502] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
Purpose: The C-X-C chemokine receptor 4 (CXCR4) is highly expressed in many subtypes of cancers, notably in several kidney-based malignancies. We synthesized, labeled, and assessed a series of radiotracers based on a previous high contrast PET imaging radiopharmaceutical [68Ga]Ga-BL02, with modifications to its linker and metal chelator, in order to improve its tumor-to-kidney contrast ratio. Methods: Based on the design of BL02, a piperidine-based cationic linker (BL06) and several anionic linkers (tri-Aad (BL17); tri-D-Glu (BL20); tri-Asp (BL25); and tri-cysteic acid (BL31)) were substituted for the triglutamate linker. Additionally, the DOTA chelator was swapped for a DOTAGA chelator (BL30). Each radiotracer was labeled with 68Ga and evaluated in CXCR4-expressing Daudi xenograft mice with biodistribution and/or PET imaging studies. Results: Of all the evaluated radiotracers, [68Ga]Ga-BL31 showed the most promising biodistribution profile, with a lower kidney uptake compared to [68Ga]Ga-BL02, while retaining the high imaging contrast capabilities of [68Ga]Ga-BL02. [68Ga]Ga-BL31 also compared favorably to [68Ga]Ga-Pentixafor, with superior imaging contrast in all non-target organs. The other anionic linker-based radiotracers showed either equivocal or worse contrast ratios compared to [68Ga]Ga-BL02; however, [68Ga]Ga-BL25 also showed lower kidney uptake, as compared to that of [68Ga]Ga-BL02. Meanwhile, [68Ga]Ga-BL06 had high non-target organ uptake and relatively lower tumor uptake, while [68Ga]Ga-BL30 showed significantly increased kidney uptake and similar tumor uptake values. Conclusions: [68Ga]Ga-BL31 is an optimized CXCR4-targeting radiopharmaceutical with lower kidney retention that has clinical potential for PET imaging and radioligand therapy.
Collapse
Affiliation(s)
- Daniel Kwon
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (Z.Z.); (J.Z.); (H.-T.K.); (K.-S.L.)
| | - Zhengxing Zhang
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (Z.Z.); (J.Z.); (H.-T.K.); (K.-S.L.)
| | - Jutta Zeisler
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (Z.Z.); (J.Z.); (H.-T.K.); (K.-S.L.)
| | - Hsiou-Ting Kuo
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (Z.Z.); (J.Z.); (H.-T.K.); (K.-S.L.)
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (Z.Z.); (J.Z.); (H.-T.K.); (K.-S.L.)
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Francois Benard
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (Z.Z.); (J.Z.); (H.-T.K.); (K.-S.L.)
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Correspondence: ; Tel.: +1-604-675-8206
| |
Collapse
|
12
|
Kurth J, Potratz M, Heuschkel M, Krause BJ, Schwarzenböck SM. GRPr Theranostics: Current Status of Imaging and Therapy using GRPr Targeting Radiopharmaceuticals. Nuklearmedizin 2022; 61:247-261. [PMID: 35668669 DOI: 10.1055/a-1759-4189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Addressing molecular targets, that are overexpressed by various tumor entities, using radiolabeled molecules for a combined diagnostic and therapeutic (theranostic) approach is of increasing interest in oncology. The gastrin-releasing peptide receptor (GRPr), which is part of the bombesin family, has shown to be overexpressed in a variety of tumors, therefore, serving as a promising target for those theranostic applications. A large amount of differently radiolabeled bombesin derivatives addressing the GRPr have been evaluated in the preclinical as well as clinical setting showing fast blood clearance and urinary excretion with selective GRPr-binding. Most of the available studies on GRPr-targeted imaging and therapy have evaluated the theranostic approach in prostate and breast cancer applying bombesin derivatives tagged with the predominantly used theranostic pair of 68Ga/177Lu which is the focus of this review.
Collapse
Affiliation(s)
- Jens Kurth
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Madlin Potratz
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Martin Heuschkel
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Bernd J Krause
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | | |
Collapse
|
13
|
Ariztia J, Solmont K, Moïse NP, Specklin S, Heck MP, Lamandé-Langle S, Kuhnast B. PET/Fluorescence Imaging: An Overview of the Chemical Strategies to Build Dual Imaging Tools. Bioconjug Chem 2022; 33:24-52. [PMID: 34994545 DOI: 10.1021/acs.bioconjchem.1c00503] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular imaging is a biomedical research discipline that has quickly emerged to afford the observation, characterization, monitoring, and quantification of biomarkers and biological processes in living organism. It covers a large array of imaging techniques, each of which provides anatomical, functional, or metabolic information. Multimodality, as the combination of two or more of these techniques, has proven to be one of the best options to boost their individual properties, hence offering unprecedented tools for human health. In this review, we will focus on the combination of positron emission tomography and fluorescence imaging from the specific perspective of the chemical synthesis of dual imaging agents. Based on a detailed analysis of the literature, this review aims at giving a comprehensive overview of the chemical strategies implemented to build adequate imaging tools considering radiohalogens and radiometals as positron emitters, fluorescent dyes mostly emitting in the NIR window and all types of targeting vectors.
Collapse
Affiliation(s)
- Julen Ariztia
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | - Kathleen Solmont
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | | | - Simon Specklin
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | - Marie Pierre Heck
- Université Paris-Saclay, INRAE, Département Médicaments et Technologies pour la santé (DMTS), SCBM, 91191, Gif-sur-Yvette cedex, France
| | | | - Bertrand Kuhnast
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| |
Collapse
|
14
|
Renard E, Moreau M, Bellaye PS, Guillemin M, Collin B, Prignon A, Denat F, Goncalves V. Positron Emission Tomography Imaging of Neurotensin Receptor-Positive Tumors with 68Ga-Labeled Antagonists: The Chelate Makes the Difference Again. J Med Chem 2021; 64:8564-8578. [PMID: 34107209 DOI: 10.1021/acs.jmedchem.1c00523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neurotensin receptor 1 (NTS1) is involved in the development and progression of numerous cancers, which makes it an interesting target for the development of diagnostic and therapeutic agents. A small molecule NTS1 antagonist, named [177Lu]Lu-IPN01087, is currently evaluated in phase I/II clinical trials for the targeted therapy of neurotensin receptor-positive cancers. In this study, we synthesized seven compounds based on the structure of NTS1 antagonists, bearing different chelating agents, and radiolabeled them with gallium-68 for PET imaging. These compounds were evaluated in vitro and in vivo in mice bearing a HT-29 xenograft. The compound [68Ga]Ga-bisNODAGA-16 showed a promising biodistribution profile with mainly signal in tumor (4.917 ± 0.776%ID/g, 2 h post-injection). Its rapid clearance from healthy tissues led to high tumor-to-organ ratios, resulting in highly contrasted PET images. These results were confirmed on subcutaneous xenografts of AsPC-1 tumor cells, a model of NTS1-positive human pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Emma Renard
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB UMR CNRS 6302, Université Bourgogne Franche-Comté, Dijon 21000, France
| | - Mathieu Moreau
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB UMR CNRS 6302, Université Bourgogne Franche-Comté, Dijon 21000, France
| | | | - Mélanie Guillemin
- Georges-François LECLERC Cancer Center - UNICANCER, Dijon 21000, France
| | - Bertrand Collin
- Georges-François LECLERC Cancer Center - UNICANCER, Dijon 21000, France
| | - Aurélie Prignon
- UMS28 Laboratoire d'Imagerie Moléculaire Positonique (LIMP), Sorbonne Université, Paris 75020, France
| | - Franck Denat
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB UMR CNRS 6302, Université Bourgogne Franche-Comté, Dijon 21000, France
| | - Victor Goncalves
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB UMR CNRS 6302, Université Bourgogne Franche-Comté, Dijon 21000, France
| |
Collapse
|
15
|
Rinne SS, Orlova A, Tolmachev V. PET and SPECT Imaging of the EGFR Family (RTK Class I) in Oncology. Int J Mol Sci 2021; 22:ijms22073663. [PMID: 33915894 PMCID: PMC8036874 DOI: 10.3390/ijms22073663] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The human epidermal growth factor receptor family (EGFR-family, other designations: HER family, RTK Class I) is strongly linked to oncogenic transformation. Its members are frequently overexpressed in cancer and have become attractive targets for cancer therapy. To ensure effective patient care, potential responders to HER-targeted therapy need to be identified. Radionuclide molecular imaging can be a key asset for the detection of overexpression of EGFR-family members. It meets the need for repeatable whole-body assessment of the molecular disease profile, solving problems of heterogeneity and expression alterations over time. Tracer development is a multifactorial process. The optimal tracer design depends on the application and the particular challenges of the molecular target (target expression in tumors, endogenous expression in healthy tissue, accessibility). We have herein summarized the recent preclinical and clinical data on agents for Positron Emission Tomography (PET) and Single Photon Emission Tomography (SPECT) imaging of EGFR-family receptors in oncology. Antibody-based tracers are still extensively investigated. However, their dominance starts to be challenged by a number of tracers based on different classes of targeting proteins. Among these, engineered scaffold proteins (ESP) and single domain antibodies (sdAb) show highly encouraging results in clinical studies marking a noticeable trend towards the use of smaller sized agents for HER imaging.
Collapse
Affiliation(s)
- Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Vladimir Tolmachev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
- Correspondence: ; Tel.: +46-704-250-782
| |
Collapse
|
16
|
Rinne SS, Abouzayed A, Gagnon K, Tolmachev V, Orlova A. 66Ga-PET-imaging of GRPR-expression in prostate cancer: production and characterization of [ 66Ga]Ga-NOTA-PEG 2-RM26. Sci Rep 2021; 11:3631. [PMID: 33574368 PMCID: PMC7878787 DOI: 10.1038/s41598-021-82995-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
Molecular imaging of the gastrin-releasing peptide receptor (GRPR) could improve patient management in prostate cancer. This study aimed to produce gallium-66 (T½ = 9.5 h) suitable for radiolabeling, and investigate the imaging properties of gallium-66 labeled GRPR-antagonist NOTA-PEG2-RM26 for later-time point PET-imaging of GRPR expression. Gallium-66 was cyclotron-produced using a liquid target, and enriched [66Zn]Zn(NO3)2. In vitro, [66Ga]Ga-NOTA-PEG2-RM26 was characterized in GRPR-expressing PC-3 prostate cancer cells. In vivo, specificity test and biodistribution studies were performed 3 h and 22 h pi in PC-3 xenografted mice. microPET/MR was performed 3 h and 22 h pi. Biodistribution of [66Ga]Ga-NOTA-PEG2-RM26 was compared with [68Ga]Ga-NOTA-PEG2-RM26 3 h pi. [66Ga]Ga-NOTA-PEG2-RM26 was successfully prepared with preserved binding specificity and high affinity towards GRPR. [66Ga]Ga-NOTA-PEG2-RM26 cleared rapidly from blood via kidneys. Tumor uptake was GRPR-specific and exceeded normal organ uptake. Normal tissue clearance was limited, resulting in no improvement of tumor-to-organ ratios with time. Tumors could be clearly visualized using microPET/MR. Gallium-66 was successfully produced and [66Ga]Ga-NOTA-PEG2-RM26 was able to clearly visualize GRPR-expression both shortly after injection and on the next day using PET. However, delayed imaging did not improve contrast for Ga-labeled NOTA-PEG2-RM26.
Collapse
Affiliation(s)
- Sara S Rinne
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | | | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Centrum for Oncotheranostics, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
- Centrum for Oncotheranostics, National Research Tomsk Polytechnic University, Tomsk, Russia.
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
17
|
Mitran B, Tolmachev V, Orlova A. Radiolabeled GRPR Antagonists for Imaging of Disseminated Prostate Cancer - Influence of Labeling Chemistry on Targeting Properties. Curr Med Chem 2021; 27:7090-7111. [PMID: 32164503 DOI: 10.2174/0929867327666200312114902] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/31/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Radionuclide molecular imaging of Gastrin-Releasing Peptide Receptor (GRPR) expression promises unparalleled opportunities for visualizing subtle prostate tumors, which due to small size, adjacent benign tissue, or a challenging location would otherwise remain undetected by conventional imaging. Achieving high imaging contrast is essential for this purpose and the molecular design of any probe for molecular imaging of prostate cancer should be aimed at obtaining as high tumor-to-organ ratios as possible. OBJECTIVE This short review summarizes the key imaging modalities currently used in prostate cancer, with a special focus on radionuclide molecular imaging. Emphasis is laid mainly on the issue of radiometals labeling chemistry and its influence on the targeting properties and biodistribution of radiolabeled GRPR antagonists for imaging of disseminated prostate cancer. METHODS A comprehensive literature search of the PubMed/MEDLINE, and Scopus library databases was conducted to find relevant articles. RESULTS The combination of radionuclide, chelator and required labeling chemistry was shown to have a significant influence on the stability, binding affinity and internalization rate, off-target interaction with normal tissues and blood proteins, interaction with enzymes, activity uptake and retention in excretory organs and activity uptake in tumors of radiolabeled bombesin antagonistic analogues. CONCLUSION Labeling chemistry has a very strong impact on the biodistribution profile of GRPRtargeting peptide based imaging probes and needs to be considered when designing a targeting probe for high contrast molecular imaging. Taking into account the complexity of in vivo interactions, it is not currently possible to accurately predict the optimal labeling approach. Therefore, a detailed in vivo characterization and optimization is essential for the rational design of imaging agents.
Collapse
Affiliation(s)
- Bogdan Mitran
- Department of Medicianl Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Faculty of Medicine, Uppsala University, Uppsala, Sweden
| | - Anna Orlova
- Department of Medicianl Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Lee CH, Lim I, Woo SK, Kim KI, Lee KC, Song K, Choi CW, Lim SM. The Feasibility of 64Cu-PSMA I&T PET for Prostate Cancer. Cancer Biother Radiopharm 2021; 37:417-423. [DOI: 10.1089/cbr.2020.4189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Chul-Hee Lee
- Department of Nuclear Medicine, Korea Cancer Centre Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
- Division of Applied RI, Research Institute of Radiological & Medical Sciences, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
- Department of Urology, Korea Cancer Centre Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Ilhan Lim
- Department of Nuclear Medicine, Korea Cancer Centre Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Sang-Keun Woo
- Department of Nuclear Medicine, Korea Cancer Centre Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul. National University Hospital, Seoul, Republic of Korea
| | - Kwang Il Kim
- Department of Nuclear Medicine, Seoul. National University Hospital, Seoul, Republic of Korea
| | - Kyo Chul Lee
- Department of Nuclear Medicine, Seoul. National University Hospital, Seoul, Republic of Korea
| | - Kanghyon Song
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chang Woon Choi
- Department of Nuclear Medicine, Korea Cancer Centre Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Sang Moo Lim
- Department of Nuclear Medicine, Korea Cancer Centre Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| |
Collapse
|
19
|
Li X, Cai H, Wu X, Li L, Wu H, Tian R. New Frontiers in Molecular Imaging Using Peptide-Based Radiopharmaceuticals for Prostate Cancer. Front Chem 2020; 8:583309. [PMID: 33335885 PMCID: PMC7736158 DOI: 10.3389/fchem.2020.583309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/27/2020] [Indexed: 02/05/2023] Open
Abstract
The high incidence of prostate cancer (PCa) increases the need for progress in its diagnosis, staging, and precise treatment. The overexpression of tumor-specific receptors for peptides in human cancer cells, such as gastrin-releasing peptide receptor, natriuretic peptide receptor, and somatostatin receptor, has indicated the ideal molecular basis for targeted imaging and therapy. Targeting these receptors using radiolabeled peptides and analogs have been an essential topic on the current forefront of PCa studies. Radiolabeled peptides have been used to target receptors for molecular imaging in human PCa with high affinity and specificity. The radiolabeled peptides enable optimal quick elimination from blood and normal tissues, producing high contrast for positron emission computed tomography and single-photon emission computed tomography imaging with high tumor-to-normal tissue uptake ratios. Owing to their successful application in visualization, peptide derivatives with therapeutic radionuclides for peptide receptor radionuclide therapy in PCa have been explored in recent years. These developments offer the promise of personalized, molecular medicine for individual patients. Hence, we review the preclinical and clinical literature in the past 20 years and focus on the newer developments of peptide-based radiopharmaceuticals for the imaging and therapy of PCa.
Collapse
Affiliation(s)
- Xin Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Huawei Cai
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Haoxing Wu
- Department of Nuclear Medicine, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Preclinical Evaluation of the Copper-64 Labeled GRPR-Antagonist RM26 in Comparison with the Cobalt-55 Labeled Counterpart for PET-Imaging of Prostate Cancer. Molecules 2020; 25:molecules25245993. [PMID: 33352838 PMCID: PMC7766840 DOI: 10.3390/molecules25245993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 01/21/2023] Open
Abstract
Gastrin-releasing peptide receptor (GRPR) is overexpressed in the majority of prostate cancers. This study aimed to investigate the potential of 64Cu (radionuclide for late time-point PET-imaging) for imaging of GRPR expression using NOTA-PEG2-RM26 and NODAGA-PEG2-RM26. Methods: NOTA/NODAGA-PEG2-RM26 were labeled with 64Cu and evaluated in GRPR-expressing PC-3 cells. Biodistribution of [64Cu]Cu-NOTA/NODAGA-PEG2-RM26 was studied in PC-3 xenografted mice and compared to the biodistribution of [57Co]Co-NOTA/NODAGA-PEG2-RM26 at 3 and 24 h p.i. Preclinical PET/CT imaging was performed in tumor-bearing mice. NOTA/NODAGA-PEG2-RM26 were stably labeled with 64Cu with quantitative yields. In vitro, binding of [64Cu]Cu-NOTA/NODAGA-PEG2-RM26 was rapid and GRPR-specific with slow internalization. In vivo, [64Cu]Cu-NOTA/NODAGA-PEG2-RM26 bound specifically to GRPR-expressing tumors with fast clearance from blood and normal organs and displayed generally comparable biodistribution profiles to [57Co]Co-NOTA/NODAGA-PEG2-RM26; tumor uptake exceeded normal tissue uptake 3 h p.i.. Tumor-to-organ ratios did not increase significantly with time. [64Cu]Cu-NOTA-PEG2-RM26 had a significantly higher liver and pancreas uptake compared to other agents. 57Co-labeled radioconjugates showed overall higher tumor-to-non-tumor ratios, compared to the 64Cu-labeled counterparts. [64Cu]Cu-NOTA/NODAGA-PEG2-RM26 was able to visualize GRPR-expression in a murine PC model using PET. However, [55/57Co]Co-NOTA/NODAGA-PEG2-RM26 provided better in vivo stability and overall higher tumor-to-non-tumor ratios compared with the 64Cu-labeled conjugates.
Collapse
|
21
|
Torres JB, Mosley M, Koustoulidou S, Hopkins S, Knapp S, Chaikuad A, Kondoh M, Tachibana K, Kersemans V, Cornelissen B. Radiolabeled cCPE Peptides for SPECT Imaging of Claudin-4 Overexpression in Pancreatic Cancer. J Nucl Med 2020; 61:1756-1763. [PMID: 32414951 PMCID: PMC8679629 DOI: 10.2967/jnumed.120.243113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/16/2020] [Indexed: 01/09/2023] Open
Abstract
Overexpression of tight-junction protein claudin-4 has been detected in primary and metastatic pancreatic cancer tissue and is associated with better prognosis in patients. Noninvasive measurement of claudin-4 expression by imaging methods could provide a means for accelerating detection and stratifying patients into risk groups. Clostridium perfringens enterotoxin (CPE) is a natural ligand for claudin-4 and holds potential as a targeting vector for molecular imaging of claudin-4 overexpression. A glutathione S-transferases (GST)-tagged version of the C terminus of CPE (cCPE) was previously used to delineate claudin-4 overexpression by SPECT but showed modest binding affinity and slow blood clearance in vivo. Methods: On the basis of the crystal structure of cCPE, a series of smaller cCPE194-319 mutants with putatively improved binding affinity for claudin-4 was generated by site-directed mutagenesis. All peptides were conjugated site-specifically on a C-terminal cysteine using maleimide-diethylenetriamine pentaacetate to enable radiolabeling with 111In. The binding affinity of all radioconjugates was evaluated in claudin-4-expressing PSN-1 cells and HT1080-negative controls. The specificity of all cCPE mutants to claudin-4 was assessed in HT1080 cells stably transfected with claudin-4. SPECT/CT imaging of BALB/c nude mice bearing PSN-1 or HT1080 tumor xenografts was performed to determine the claudin-4-targeting ability of these peptides in vivo. Results: Uptake of all cCPE-based radioconjugates was significantly higher in PSN-1 cells than in HT1080-negative controls. All peptides showed a marked improvement in affinity for claudin-4 in vitro when compared with previously reported values (dissociation constant: 2.2 ± 0.8, 3 ± 0.1, 4.2 ± 0.5, 10 ± 0.9, and 9.7 ± 0.7 nM). Blood clearance of [111In]In-cCPE194-319, as measured by SPECT, was considerably faster than that of [111In]In-cCPE.GST (half-life, <1 min). All radiopeptides showed significantly higher accumulation in PSN-1 xenografts than in HT1080 tumors at 90 min after injection of the tracer ([111In]In-cCPE194-319, 2.7 ± 0.8 vs. 0.4 ± 0.1 percentage injected dose per gram [%ID/g], P < 0.001; [111In]In-S313A, 2.3 ± 0.9 vs. 0.5 ± 0.1 %ID/g, P < 0.01; [111In]In-S307A + N309A + S313A, 2 ± 0.4 vs. 0.3 ± 0.1 %ID/g, P < 0.01; [111In]In-D284A, 2 ± 0.2 vs. 0.7 ± 0.1 %ID/g, P < 0.05; [111In]In-L254F + K257D, 6.3 ± 0.9 vs. 0.7 ± 0.2 %ID/g, P < 0.001). Conclusion: These optimized cCPE-based SPECT imaging agents show great promise as claudin-4-targeting vectors for in vivo imaging of claudin-4 overexpression in pancreatic cancer.
Collapse
Affiliation(s)
- Julia Baguña Torres
- Cancer Research United Kingdom and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Michael Mosley
- Cancer Research United Kingdom and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Sofia Koustoulidou
- Cancer Research United Kingdom and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Samantha Hopkins
- Cancer Research United Kingdom and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry and Structure Genomics Consortium, Goethe-University Frankfurt, Frankfurt am Main, Germany
- German Cancer Network, Mainz-Frankfurt, Germany; and
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry and Structure Genomics Consortium, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Keisuke Tachibana
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Veerle Kersemans
- Cancer Research United Kingdom and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Bart Cornelissen
- Cancer Research United Kingdom and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Abouzayed A, Tano H, Nagy Á, Rinne SS, Wadeea F, Kumar S, Westerlund K, Tolmachev V, Eriksson Karlström A, Orlova A. Preclinical Evaluation of the GRPR-Targeting Antagonist RM26 Conjugated to the Albumin-Binding Domain for GRPR-Targeting Therapy of Cancer. Pharmaceutics 2020; 12:E977. [PMID: 33081166 PMCID: PMC7594083 DOI: 10.3390/pharmaceutics12100977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 01/02/2023] Open
Abstract
The targeting of gastrin-releasing peptide receptors (GRPR) was recently proposed for targeted therapy, e.g., radiotherapy. Multiple and frequent injections of peptide-based therapeutic agents would be required due to rapid blood clearance. By conjugation of the GRPR antagonist RM26 (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2) to an ABD (albumin-binding domain), we aimed to extend the blood circulation of peptides. The synthesized conjugate DOTA-ABD-RM26 was labelled with indium-111 and evaluated in vitro and in vivo. The labelled conjugate was stable in PBS and retained specificity and its antagonistic function against GRPR. The half-maximal inhibitory concentration (IC50) of natIn-DOTA-ABD-RM26 in the presence of human serum albumin was 49 ± 5 nM. [111In]In-DOTA-ABD-RM26 had a significantly longer residence time in blood and in tumors (without a significant decrease of up to 144 h pi) than the parental RM26 peptide. We conclude that the ABD-RM26 conjugate can be used for GRPR-targeted therapy and delivery of cytotoxic drugs. However, the undesirable elevated activity uptake in kidneys abolishes its use for radionuclide therapy. This proof-of-principle study justified further optimization of the molecular design of the ABD-RM26 conjugate.
Collapse
Affiliation(s)
- Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; (A.A.); (S.S.R.); (F.W.)
| | - Hanna Tano
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden; (H.T.); (Á.N.); (S.K.); (K.W.); (A.E.K.)
| | - Ábel Nagy
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden; (H.T.); (Á.N.); (S.K.); (K.W.); (A.E.K.)
| | - Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; (A.A.); (S.S.R.); (F.W.)
| | - Fadya Wadeea
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; (A.A.); (S.S.R.); (F.W.)
| | - Sharmishtaa Kumar
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden; (H.T.); (Á.N.); (S.K.); (K.W.); (A.E.K.)
| | - Kristina Westerlund
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden; (H.T.); (Á.N.); (S.K.); (K.W.); (A.E.K.)
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden;
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Amelie Eriksson Karlström
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden; (H.T.); (Á.N.); (S.K.); (K.W.); (A.E.K.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; (A.A.); (S.S.R.); (F.W.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia
- Science for Life Laboratory, Uppsala University, 751 05 Uppsala, Sweden
| |
Collapse
|
23
|
Ding L, Lyu Z, Louis B, Tintaru A, Laurini E, Marson D, Zhang M, Shao W, Jiang Y, Bouhlel A, Balasse L, Garrigue P, Mas E, Giorgio S, Iovanna J, Huang Y, Pricl S, Guillet B, Peng L. Surface Charge of Supramolecular Nanosystems for In Vivo Biodistribution: A MicroSPECT/CT Imaging Study. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003290. [PMID: 32794645 DOI: 10.1002/smll.202003290] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Bioimaging has revolutionized medicine by providing accurate information for disease diagnosis and treatment. Nanotechnology-based bioimaging is expected to further improve imaging sensitivity and specificity. In this context, supramolecular nanosystems based on self-assembly of amphiphilic dendrimers for single photon emission computed tomography (SPECT) bioimaging are developed. These dendrimers bear multiple In3+ radionuclides at their terminals as SPECT reporters. By replacing the macrocyclic 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid cage with the smaller 1,4,7-triazacyclononane-1,4,7-triacetic acid scaffold as the In3+ chelator, the corresponding dendrimer exhibits neutral In3+ -complex terminals in place of negatively charged In3+ -complex terminals. This negative-to-neutral surface charge alteration completely reverses the zeta-potential of the nanosystems from negative to positive. As a consequence, the resulting SPECT nanoprobe generates a highly sought-after biodistribution profile accompanied by a drastically reduced uptake in liver, leading to significantly improved tumor imaging. This finding contrasts with current literature reporting that positively charged nanoparticles have preferential accumulation in the liver. As such, this study provides new perspectives for improving the biodistribution of positively charged nanosystems for biomedical applications.
Collapse
Affiliation(s)
- Ling Ding
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, 13385, France
| | - Zhenbin Lyu
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273, Marseille, 13013, France
| | - Beatrice Louis
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, 13005, France
- Aix-Marseille Université, CNRS, CERIMED, Marseille, 13005, France
| | - Aura Tintaru
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273, Marseille, 13013, France
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Trieste, 34127, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Trieste, 34127, Italy
| | - Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Wanxuan Shao
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Yifan Jiang
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| | - Ahlem Bouhlel
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, 13005, France
- Aix-Marseille Université, CNRS, CERIMED, Marseille, 13005, France
| | - Laure Balasse
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, 13005, France
- Aix-Marseille Université, CNRS, CERIMED, Marseille, 13005, France
| | - Philippe Garrigue
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, 13005, France
- Aix-Marseille Université, CNRS, CERIMED, Marseille, 13005, France
| | - Eric Mas
- Aix-Marseille Université, INSERM, CNRS, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, 13288, France
| | - Suzanne Giorgio
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| | - Juan Iovanna
- Aix-Marseille Université, INSERM, CNRS, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, 13288, France
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Trieste, 34127, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90-236, Poland
| | - Benjamin Guillet
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, 13005, France
- Aix-Marseille Université, CNRS, CERIMED, Marseille, 13005, France
| | - Ling Peng
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| |
Collapse
|
24
|
Yang H, Zhang C, Yuan Z, Rodriguez-Rodriguez C, Robertson A, Radchenko V, Perron R, Gendron D, Causey P, Gao F, Bénard F, Schaffer P. Synthesis and Evaluation of a Macrocyclic Actinium-225 Chelator, Quality Control and In Vivo Evaluation of 225 Ac-crown-αMSH Peptide. Chemistry 2020; 26:11435-11440. [PMID: 32588455 DOI: 10.1002/chem.202002999] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 12/16/2022]
Abstract
Targeted alpha-therapy (TAT) has great potential for treating a broad range of late-stage cancers by delivering a focused and lethal radiation dose to tumors. Actinium-225 (225 Ac) is an emerging alpha emitter suitable for TAT; however, the availability of chelators for Ac remains limited to a small number of examples (DOTA and macropa). Herein, we report a new Ac macrocyclic chelator named 'crown', which binds quantitatively and rapidly (<10 min) to Ac at ambient temperature. We synthesized 225 Ac-crown-αMSH, a peptide targeting the melanocortin 1 receptor (MC1R), specifically expressed in primary and metastatic melanoma. Biodistribution of 225 Ac-crown-αMSH showed favorable tumor-to-background ratios at 2 h post injection in a preclinical model. In addition, we demonstrated dramatically different biodistrubution patterns of 225 Ac-crown-αMSH when subjected to different latency times before injection. A combined quality control methodology involving HPLC, gamma spectroscopy and radioTLC is recommended.
Collapse
Affiliation(s)
- Hua Yang
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada
| | | | - Zheliang Yuan
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada.,Key Laboratory of the Ministry of Education for, Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Cristina Rodriguez-Rodriguez
- Faculty of Pharmaceutical Sciences, Department of Physics and Astronomy and Centre for Comparative, Medicine, University of British Columbia, Vancouver, BC, V6T 1W5, Canada
| | | | - Valery Radchenko
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada.,Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Randy Perron
- Canadian Nuclear Laboratories, Chalk River, ON, K0J 1J0, Canada
| | - Denise Gendron
- Canadian Nuclear Laboratories, Chalk River, ON, K0J 1J0, Canada
| | - Patrick Causey
- Canadian Nuclear Laboratories, Chalk River, ON, K0J 1J0, Canada
| | - Feng Gao
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada
| | - François Bénard
- BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.,Department of Radiology, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada.,Department of Radiology, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.,Department of Chemistry, Simon Fraser University, Burnaby, V5A 1S6, Canada
| |
Collapse
|
25
|
Li L, Kuo HT, Wang X, Merkens H, Colpo N, Radchenko V, Schaffer P, Lin KS, Bénard F, Orvig C. tBu 4octapa-alkyl-NHS for metalloradiopeptide preparation. Dalton Trans 2020; 49:7605-7619. [PMID: 32459231 DOI: 10.1039/d0dt00845a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The peptide is an important class of biological targeting molecule; herein, a new bifunctional octadentate non-macrocyclic H4octapa, tBu4octapa-alkyl-NHS, which is compatible with solid-phase peptide synthesis and thus useful for radiopeptide preparation, has been synthesized. To preserve denticity, the alkyl-N-hydroxylsuccinimide linker was covalently attached to the methylene-carbon on one of the acetate arms, yielding a chiral carbon center. According to density-functional theory (DFT) calculations using [Lu(octapa-alkyl-benzyl-ester)]- as a simulation model, the chirality has minimal effects on the complex geometry; regardless of the S-/R-stereochemistry, DFT calculations revealed two possible geometric isomers, distorted bicapped trigonal antiprism (DBTA) and distorted square antiprism (DSA), due to the asymmetry in the chelator. To evaluate the biological behavior of the new bifunctionalization, two well-studied PSMA (prostate-specific membrane antigen)-targeting peptidomimetics of varying hydrophobicity were chosen as proof-of-principle targeting vector molecules. Radiolabeling both bioconjugates with lutetium-177 was highly efficient at room temperature in 15 min at micromolar chelator concentration pH = 7. Both the in vitro serum challenge and the lanthanum(iii) challenge studies revealed complex lability, and notably, progressive bone accumulation was only observed with the more hydrophobic linker (i.e. H4octapa-alkyl-PSMA617). This in vivo result informs potential alterations exerted by the linker on the complex geometry and stability, with an appropriate biological targeting vector adopted for such evaluations.
Collapse
Affiliation(s)
- Lily Li
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada. and Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Hsiou-Ting Kuo
- Department of Molecular Oncology, BC Cancer, 675 West 10th Ave, Vancouver, British Columbia V5Z 1L3, Canada
| | - Xiaozhu Wang
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer, 675 West 10th Ave, Vancouver, British Columbia V5Z 1L3, Canada
| | - Nadine Colpo
- Department of Molecular Oncology, BC Cancer, 675 West 10th Ave, Vancouver, British Columbia V5Z 1L3, Canada
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada and Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6 T 1Z1, Canada
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer, 675 West 10th Ave, Vancouver, British Columbia V5Z 1L3, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer, 675 West 10th Ave, Vancouver, British Columbia V5Z 1L3, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
26
|
Mitran B, Thisgaard H, Rinne S, Dam JH, Azami F, Tolmachev V, Orlova A, Rosenström U. Selection of an optimal macrocyclic chelator improves the imaging of prostate cancer using cobalt-labeled GRPR antagonist RM26. Sci Rep 2019; 9:17086. [PMID: 31745219 PMCID: PMC6863848 DOI: 10.1038/s41598-019-52914-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022] Open
Abstract
Gastrin-releasing peptide receptors (GRPRs) are promising targets in oligometastatic prostate cancer. We have recently used 55Co (T1/2 = 17.5 h) as a label for next day PET imaging of GRPR expression obtaining high imaging contrast. The radionuclide-chelator combination can significantly influence the biodistribution of radiopeptides. Therefore, in this study, we hypothesized that the properties of 55Co-labeled PEG2-RM26 can be improved by identifying the optimal macrocyclic chelator. All analogues (X-PEG2-RM26, X = NOTA,NODAGA,DOTA,DOTAGA) were successfully labeled with radiocobalt with high yields and demonstrated high stability. The radiopeptides bound specifically and with picomolar affinity to GRPR and their cellular processing was characterized by low internalization. The best binding capacity was found for DOTA-PEG2-RM26. Ex vivo biodistribution in PC-3 xenografted mice was characterized by rapid blood clearance via renal excretion. Tumor uptake was similar for all conjugates at 3 h pi, exceeding the uptake in all other organs. Higher kidney uptake and longer retention were associated with N-terminal negative charge (DOTAGA-containing conjugate). Tumor-to-organ ratios increased over time for all constructs, although significant chelator-dependent differences were observed. Concordant with affinity measurements, DOTA-analog had the best retention of activity in tumors, resulting in the highest tumor-to-blood ratio 24 h pi, which translated into high contrast PET/CT imaging (using 55Co).
Collapse
Affiliation(s)
- Bogdan Mitran
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Helge Thisgaard
- PET & Cyclotron Unit, Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Sara Rinne
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Johan Hygum Dam
- PET & Cyclotron Unit, Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Frishta Azami
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Ulrika Rosenström
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
27
|
Oroujeni M, Abouzayed A, Lundmark F, Mitran B, Orlova A, Tolmachev V, Rosenström U. Evaluation of Tumor-Targeting Properties of an Antagonistic Bombesin Analogue RM26 Conjugated with a Non-Residualizing Radioiodine Label Comparison with a Radiometal-Labelled Counterpart. Pharmaceutics 2019; 11:pharmaceutics11080380. [PMID: 31382362 PMCID: PMC6724035 DOI: 10.3390/pharmaceutics11080380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 12/24/2022] Open
Abstract
Radiolabelled antagonistic bombesin analogues are successfully used for targeting of gastrin-releasing peptide receptors (GRPR) that are overexpressed in prostate cancer. Internalization of antagonistic bombesin analogues is slow. We hypothesized that the use of a non-residualizing radioiodine label might not affect the tumour uptake but would reduce the retention in normal organs, where radiopharmaceutical would be internalized. To test this hypothesis, tyrosine was conjugated via diethylene glycol linker to N-terminus of an antagonistic bombesin analogue RM26 to form Tyr-PEG2-RM26. [111In]In-DOTA-PEG2-RM26 was used as a control with a residualizing label. Tyr-PEG2-RM26 was labelled with 125I with 95% radiochemical purity and retained binding specificity to GRPR. The IC50 values for Tyr-PEG2-RM26 and DOTA-PEG2-RM26 were 1.7 ± 0.3 nM and 3.3 ± 0.5 nM, respectively. The cellular processing of [125I]I-Tyr-PEG2-RM26 by PC-3 cells showed unusually fast internalization. Biodistribution showed that uptake in pancreas and tumour was GRPR-specific for both radioconjugates. Blood clearance of [125I]I-Tyr-PEG2-RM26 was appreciably slower and activity accumulation in all organs was significantly higher than for [111In]In-DOTA-PEG2-RM26. Tumor uptake of [111In]In-DOTA-PEG2-RM26 was significantly higher than for [125I]I-Tyr-PEG2-RM26, resulting in higher tumour-to-organ ratio for [111In]In-DOTA-PEG2-RM26 at studied time points. Incorporation of amino acids with hydrophilic side-chains next to tyrosine might overcome the problems associated with the use of tyrosine as a prosthetic group for radioiodination.
Collapse
Affiliation(s)
- Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Fanny Lundmark
- Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Bogdan Mitran
- Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, SE-750 03 Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden.
| | - Ulrika Rosenström
- Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
28
|
Mitran B, Rinne SS, Konijnenberg MW, Maina T, Nock BA, Altai M, Vorobyeva A, Larhed M, Tolmachev V, de Jong M, Rosenström U, Orlova A. Trastuzumab cotreatment improves survival of mice with PC-3 prostate cancer xenografts treated with the GRPR antagonist 177 Lu-DOTAGA-PEG 2 -RM26. Int J Cancer 2019; 145:3347-3358. [PMID: 31077356 PMCID: PMC6852655 DOI: 10.1002/ijc.32401] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/19/2019] [Accepted: 05/02/2019] [Indexed: 12/24/2022]
Abstract
Gastrin‐releasing peptide receptors (GRPRs) are overexpressed in prostate cancer and are suitable for targeted radionuclide therapy (TRT). We optimized the bombesin‐derived GRPR‐antagonist PEG2‐RM26 for labeling with 177Lu and further determined the effect of treatment with 177Lu‐labeled peptide alone or in combination with the anti‐HER2 antibody trastuzumab in a murine model. The PEG2‐RM26 analog was coupled to NOTA, NODAGA, DOTA and DOTAGA chelators. The peptide‐chelator conjugates were labeled with 177Lu and characterized in vitro and in vivo. A preclinical therapeutic study was performed in PC‐3 xenografted mice. Mice were treated with intravenous injections (6 cycles) of (A) PBS, (B) DOTAGA‐PEG2‐RM26, (C) 177Lu‐DOTAGA‐PEG2‐RM26, (D) trastuzumab or (E) 177Lu‐DOTAGA‐PEG2‐RM26 in combination with trastuzumab. 177Lu‐DOTAGA‐PEG2‐RM26 demonstrated quantitative labeling yield at high molar activity (450 GBq/μmol), high in vivo stability (5 min pi >98% of radioligand remained when coinjected with phosphoramidon), high affinity to GRPR (KD = 0.4 ± 0.2 nM), and favorable biodistribution (1 hr pi tumor uptake was higher than in healthy tissues, including the kidneys). Therapy with 177Lu‐DOTAGA‐PEG2‐RM26 induced a significant inhibition of tumor growth. The median survival for control groups was significantly shorter than for treated groups (Group C 66 days, Group E 74 days). Trastuzumab together with radionuclide therapy significantly improved survival. No treatment‐related toxicity was observed. In conclusion, based on in vitro and in vivo characterization of the four 177Lu‐labeled PEG2‐RM26 analogs, we concluded that 177Lu‐DOTAGA‐PEG2‐RM26 was the most promising analog for TRT. Radiotherapy using 177Lu‐DOTAGA‐PEG2‐RM26 effectively inhibited tumor growth in vivo in a murine prostate cancer model. Anti‐HER2 therapy additionally improved survival. What's new? Targeted radionuclide therapy (TRT) using radiolabeled peptides seeking gastrin‐releasing peptide receptors (GRPRs) in tumors is a promising approach to treat disseminated prostate cancer. The possibility to improve the therapeutic index via combination therapies also warrants further investigation. Here, the authors developed and characterized a promising GRPR‐targeting radioligand and demonstrated its therapeutic efficacy in prostate cancer xenografts. Moreover, this study using the anti‐HER2 antibody trastuzumab presents the first in vivo proof‐of‐principle that the effects of anti‐GRPR radiotherapy can be amplified by co‐administration of anti‐HER2 treatment leading to prolonged survival.
Collapse
Affiliation(s)
- Bogdan Mitran
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Sara S Rinne
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Mark W Konijnenberg
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Theodosia Maina
- Molecular Radiopharmacy, INRASTES, NCSR "Demokritos", Athens, Greece
| | - Berthold A Nock
- Molecular Radiopharmacy, INRASTES, NCSR "Demokritos", Athens, Greece
| | - Mohamed Altai
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mats Larhed
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marion de Jong
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Ulrika Rosenström
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
29
|
Rinne SS, Leitao CD, Mitran B, Bass TZ, Andersson KG, Tolmachev V, Ståhl S, Löfblom J, Orlova A. Optimization of HER3 expression imaging using affibody molecules: Influence of chelator for labeling with indium-111. Sci Rep 2019; 9:655. [PMID: 30679757 PMCID: PMC6345776 DOI: 10.1038/s41598-018-36827-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022] Open
Abstract
Radionuclide molecular imaging of human epidermal growth factor receptor 3 (HER3) expression using affibody molecules could be used for patient stratification for HER3-targeted cancer therapeutics. We hypothesized that the properties of HER3-targeting affibody molecules might be improved through modification of the radiometal-chelator complex. Macrocyclic chelators NOTA (1,4,7-triazacyclononane-N,N',N''-triacetic acid), NODAGA (1-(1,3-carboxypropyl)-4,7-carboxymethyl-1,4,7-triazacyclononane), DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid), and DOTAGA (1,4,7,10-tetraazacyclododececane,1-(glutaric acid)-4,7,10-triacetic acid) were conjugated to the C-terminus of anti-HER3 affibody molecule Z08698 and conjugates were labeled with indium-111. All conjugates bound specifically and with picomolar affinity to HER3 in vitro. In mice bearing HER3-expressing xenografts, no significant difference in tumor uptake between the conjugates was observed. Presence of the negatively charged 111In-DOTAGA-complex resulted in the lowest hepatic uptake and the highest tumor-to-liver ratio. In conclusion, the choice of chelator influences the biodistribution of indium-111 labeled anti-HER3 affibody molecules. Hepatic uptake of anti-HER3 affibody molecules could be reduced by the increase of negative charge of the radiometal-chelator complex on the C-terminus without significantly influencing the tumor uptake.
Collapse
Affiliation(s)
- Sara S Rinne
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Charles Dahlsson Leitao
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Bogdan Mitran
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Tarek Z Bass
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ken G Andersson
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Stefan Ståhl
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
30
|
Cheng S, Lang L, Wang Z, Jacobson O, Yung B, Zhu G, Gu D, Ma Y, Zhu X, Niu G, Chen X. Positron Emission Tomography Imaging of Prostate Cancer with Ga-68-Labeled Gastrin-Releasing Peptide Receptor Agonist BBN 7-14 and Antagonist RM26. Bioconjug Chem 2018; 29:410-419. [PMID: 29254329 PMCID: PMC5824342 DOI: 10.1021/acs.bioconjchem.7b00726] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Radiolabeled
bombesin (BBN) analogs have long been used for developing
gastrin-releasing peptide receptor (GRPR) targeted imaging probes,
and tracers with excellent in vivo performance including high tumor
uptake, high contrast, and favorable pharmacokinetics are highly desired.
In this study, we compared the 68Ga-labeled GRPR agonist
(Gln–Trp–Ala–Val–Gly–His–Leu–Met–NH2, BBN7–14) and antagonist (d-Phe–Gln–Trp–Ala–Val–Gly–His–Sta–Leu–NH2, RM26) for the positron emission tomography (PET) imaging
of prostate cancer. The in vitro stabilities, receptor binding, cell
uptake, internalization, and efflux properties of the probes 68Ga–1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA)–Aca–BBN7–14 and 68Ga–NOTA–poly(ethylene
glycol)3 (PEG3)–RM26 were studied in
PC-3 cells, and the in vivo GRPR targeting abilities and kinetics
were investigated using PC-3 tumor xenografted mice. BBN7–14, PEG3-RM26, NOTA–Aca–BBN7–14, and NOTA–PEG3–RM26 showed similar binding
affinity to GRPR. In PC-3 tumor-bearing mice, the tumor uptake of 68Ga–NOTA–PEG3–RM26 remained
at around 3.00 percentage of injected dose per gram of tissue within
1 h after injection, in contrast with 68Ga–NOTA–Aca–BBN7–14, which demonstrated rapid elimination and high
background signal. Additionally, the majority of the 68Ga–NOTA–PEG3–RM26 remained intact
in mouse serum at 5 min after injection, while almost all of the 68Ga–NOTA–Aca–BBN7–14 was degraded under the same conditions, demonstrating more-favorable
in vivo pharmacokinetic properties and metabolic stabilities of the
antagonist probe relative to its agonist counterpart. Overall, the
antagonistic GRPR targeted probe 68Ga–NOTA–PEG3–RM26 is a more-promising candidate than the agonist 68Ga–NOTA–Aca–BBN7–14 for the PET imaging of prostate cancer patients.
Collapse
Affiliation(s)
- Siyuan Cheng
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430000, PR China.,Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Lixin Lang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Bryant Yung
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Guizhi Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Dongyu Gu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Ying Ma
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Xiaohua Zhu
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430000, PR China
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| |
Collapse
|
31
|
High Contrast PET Imaging of GRPR Expression in Prostate Cancer Using Cobalt-Labeled Bombesin Antagonist RM26. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:6873684. [PMID: 29097932 PMCID: PMC5612608 DOI: 10.1155/2017/6873684] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 06/22/2017] [Indexed: 01/20/2023]
Abstract
High gastrin releasing peptide receptor (GRPR) expression is associated with numerous cancers including prostate and breast cancer. The aim of the current study was to develop a 55Co-labeled PET agent based on GRPR antagonist RM26 for visualization of GRPR-expressing tumors. Labeling with 57Co and 55Co, stability, binding specificity, and in vitro and in vivo characteristics of 57Co-NOTA-PEG2-RM26 were studied. NOTA-PEG2-RM26 was successfully radiolabeled with 57Co and 55Co with high yields and demonstrated high stability. The radiopeptide showed retained binding specificity to GRPR in vitro and in vivo. 57Co-NOTA-PEG2-RM26 biodistribution in mice was characterized by rapid clearance of radioactivity from blood and normal non-GRPR-expressing organs and low hepatic uptake. The clearance was predominantly renal with a low degree of radioactivity reabsorption. Tumor-to-blood ratios were approximately 200 (3 h pi) and 1000 (24 h pi). The favorable biodistribution of cobalt-labeled NOTA-PEG2-RM26 translated into high contrast preclinical PET/CT (using 55Co) and SPECT/CT (using 57Co) images of PC-3 xenografts. The initial biological results suggest that 55Co-NOTA-PEG2-RM26 is a promising tracer for PET visualization of GRPR-expressing tumors.
Collapse
|
32
|
Maina T, Nock BA, Kulkarni H, Singh A, Baum RP. Theranostic Prospects of Gastrin-Releasing Peptide Receptor–Radioantagonists in Oncology. PET Clin 2017; 12:297-309. [PMID: 28576168 DOI: 10.1016/j.cpet.2017.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|