1
|
Choi Y, Rebchuk AD, McKenzie M, Haw CS. Chronic encapsulated intracerebral haematoma following stereotactic radiosurgery for cerebral arteriovenous malformation. BMJ Case Rep 2025; 18:e263164. [PMID: 40180346 DOI: 10.1136/bcr-2024-263164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Chronic encapsulated intracerebral haematoma (CEIH) is a rare, delayed complication of stereotactic radiosurgery (SRS) for intracranial arteriovenous malformations. There are no evidence-based guidelines for CEIH management. Current practice patterns range from conservative management with steroids to surgical excision. Here, we report a very delayed case of CEIH that ultimately required surgical resection 24 years following SRS. To our knowledge, this is one of the longest documented cases of recurrent haemorrhages secondary to CEIH, which failed extensive attempts at conservative treatments including steroids, hyperbaric oxygen, vitamin E and pentoxifylline. This case suggests early surgical intervention may be warranted to prevent persistent and recurrent haemorrhages.
Collapse
Affiliation(s)
- Yoojin Choi
- Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander D Rebchuk
- Division of Neurosurgery, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael McKenzie
- Department of Radiation Oncology, BC Cancer-Vancouver Centre, Vancouver, British Columbia, Canada
| | - Charles S Haw
- Division of Neurosurgery, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Myeong HS, Jeong SS, Kim JH, Lee JM, Park KH, Park K, Park HJ, Park HR, Yoon BW, Lee EJ, Kim JW, Chung HT, Kim DG, Paek SH. Long-Term Outcomes of Gamma Knife Radiosurgery for Cerebral Cavernous Malformations: 10 Years and Beyond. J Korean Med Sci 2024; 39:e229. [PMID: 39164054 PMCID: PMC11333802 DOI: 10.3346/jkms.2024.39.e229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/25/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND We aimed to evaluate long-term outcomes of gamma knife radiosurgery (GKS) for cerebral cavernous malformations (CCMs). METHODS Among the 233 CCM patients who underwent GKS, 79 adult patients (96 lesions) followed for over 10 years were included and analyzed retrospectively. Annual hemorrhage rate (AHR) was analyzed the entire cohort of 233 patients and the subset of 79 enrolled patients by dividing lesions into overall CCM lesions and brainstem lesions. AHR, neurologic outcome, adverse radiation effect (ARE), and changes of lesions in magnetic resonance imaging (MRI) were compared before and after GKS. Cox-regression analysis was performed to identify risk factors for hemorrhage following GKS. RESULTS Mean follow-up duration of 79 enrolled patients was 14 years (range, 10-23 years). The AHR of all CCMs for entire cohort at each time point was 17.8% (pre-GKS), 5.9% (≤ 2 years post-GKS), 1.8% (≤ 10 years post-GKS). The AHR of all CCM for 79 enrolled patients was 21.4% (pre-GKS), 3.8% (2 years post-GKS), 1.4% (10 years post-GKS), and 2.3% (> 10 years post-GKS). The AHR of brainstem cavernous malformation (CM) for entire cohort at each time point was 22.4% (pre-GKS), 10.1% (≤ 2 years post-GKS), 3.2% (≤ 10 years post-GKS). The AHR of brainstem CM for 79 enrolled patients was 27.2% (pre-GKS), 5.8% (2 years post-GKS), 3.4% (10 years post-GKS), and 3.5% (> 10 years post-GKS). Out of the 79 enrolled patients, 35 presented with focal neurologic deficits at the initial clinical visit. Among these patients, 74.3% showed recovery at the last follow-up. Symptomatic ARE occurred in five (6.4%) patients. No mortality occurred. Most lesions were decreased in size at the last follow-up MRI. Previous hemorrhage history (hazard ratio [HR], 8.38; 95% confidence interval [CI], 1.07-65.88; P = 0.043), and brainstem location (HR, 3.10; 95% CI, 1.26-7.64; P = 0.014) were significant risk factors for hemorrhage event. CONCLUSION GKS for CCM showed favorable long-term outcomes. GKS should be considered for CCM, especially when it has a previous hemorrhage history and brainstem location.
Collapse
Affiliation(s)
- Ho Sung Myeong
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Sang Soon Jeong
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Jung Hoon Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Jae Meen Lee
- Department of Neurosurgery, Pusan National University Hospital, Busan, Korea
| | - Kwang Hyon Park
- Department of Neurosurgery, Chungnam National University Sejong Hospital, Sejong, Korea
| | - Kawngwoo Park
- Department of Neurosurgery, Gachon University Gil Medical Center, Incheon, Korea
| | - Hyun Joo Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Hye Ran Park
- Department of Neurosurgery, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Byung Woo Yoon
- Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Eun Jung Lee
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Jin Wook Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Hyun Tai Chung
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Dong Gyu Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
- Department of Neurosurgery, Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, Korea.
| |
Collapse
|
3
|
Nakkazi A, Forster D, Whitfield GA, Dyer DP, Dickie BR. A systematic review of normal tissue neurovascular unit damage following brain irradiation-Factors affecting damage severity and timing of effects. Neurooncol Adv 2024; 6:vdae098. [PMID: 39239570 PMCID: PMC11375288 DOI: 10.1093/noajnl/vdae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Background Radiotherapy is key in the treatment of primary and secondary brain tumors. However, normal tissue is inevitably irradiated, causing toxicity and contributing to cognitive dysfunction. The relative importance of vascular damage to cognitive decline is poorly understood. Here, we systematically review the evidence for radiation-induced damage to the entire neurovascular unit (NVU), particularly focusing on establishing the factors that influence damage severity, and timing and duration of vascular effects relative to effects on neural tissue. Methods Using PubMed and Web of Science, we searched preclinical and clinical literature published between January 1, 1970 and December 1, 2022 and evaluated factors influencing NVU damage severity and timing of NVU effects resulting from ionizing radiation. Results Seventy-two rodents, 4 canines, 1 rabbit, and 5 human studies met inclusion criteria. Radiation increased blood-brain barrier (BBB) permeability, reduced endothelial cell number and extracellular matrix proteoglycans, reduced tight junction proteins, upregulated cellular adhesion molecule expression, reduced activity of glucose and BBB efflux transporters and activated glial cells. In the brain parenchyma, increased metalloproteinases 2 and 9 levels, demyelination, cell death, and inhibited differentiation were observed. Effects on the vasculature and neural compartment were observed across acute, delayed, and late timepoints, and damage extent was higher with low linear energy transfer radiation, higher doses, lower dose rates, broader beams, and in the presence of a tumor. Conclusions Irradiation of normal brain tissue leads to widespread and varied impacts on the NVU. Data indicate that vascular damage is in most cases an early effect that does not quickly resolve. More studies are needed to confirm sequence of damages, and mechanisms that lead to cognitive dysfunction.
Collapse
Affiliation(s)
- Annet Nakkazi
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, The University of Manchester, Manchester, UK
- Faculty of Biology, Medicine, and Health, Division of Informatics, Imaging, and Data Sciences, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Duncan Forster
- Faculty of Biology, Medicine, and Health, Division of Informatics, Imaging, and Data Sciences, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Gillian A Whitfield
- Division of Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Douglas P Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, The University of Manchester, Manchester, UK
| | - Ben R Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, The University of Manchester, Manchester, UK
- Faculty of Biology, Medicine, and Health, Division of Informatics, Imaging, and Data Sciences, School of Health Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
4
|
Abou-Al-Shaar H, Patel A, Mallela AN, Bin-Alamer O, Niranjan A, Peker S, Samanci Y, Liscak R, May J, Kumar JS, Sheehan JP, Lunsford LD. Chronic Encapsulated Expanding Hematomas After Stereotactic Radiosurgery for Intracranial Arteriovenous Malformations: An International Multicenter Case Series. Neurosurgery 2023; 92:195-204. [PMID: 36519863 DOI: 10.1227/neu.0000000000002175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/04/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Stereotactic radiosurgery (SRS) offers a minimally invasive treatment modality for appropriately selected intracranial arteriovenous malformations (AVMs). Recent reports have described the development of rare, delayed chronic encapsulated expanding hematomas (CEEHs) at the site of an angiographically confirmed obliterated AVM. OBJECTIVE To elucidate the incidence, characteristics, and management of CEEH in patients with AVM after SRS. METHODS The records of all patients who underwent SRS for an intracranial AVM at 4 institutions participating in the International Radiosurgery Research Foundation between 1987 and 2021 were retrospectively reviewed. Data regarding characteristics of the AVM, SRS treatment parameters, CEEH presentation, management, and outcomes were collected and analyzed. RESULTS Among 5430 patients, 15 developed a CEEH at a crude incidence of 0.28%. Nine patients were female, and the mean age was 43 ± 14.6 years. Nine patients underwent surgical evacuation, while 6 were managed conservatively. The median CEEH development latency was 106 months after SRS. The patients were followed for a median of 32 months, and 9 patients improved clinically, while 6 patients remained stable. No intraoperative complications were reported after CEEH resection, although 1 patient recovered from postoperative meningitis requiring intravenous antibiotics. CONCLUSION CEEH is a rare, late complication of AVM SRS with an incidence of 0.28% and a median latency of 106 months. In the presence of a delayed and symptomatic expanding hematoma in the bed of an angiographically obliterated AVM, surgical resection resulted in clinical improvement in most patients. Conservative management is possible in asymptomatic patients with stable, small-sized hematomas in deeply seated locations.
Collapse
Affiliation(s)
- Hussam Abou-Al-Shaar
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Aneek Patel
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Arka N Mallela
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Othman Bin-Alamer
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ajay Niranjan
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Selcuk Peker
- Department of Neurosurgery, Koc University School of Medicine, Istanbul, Turkey
| | - Yavuz Samanci
- Department of Neurosurgery, Koc University School of Medicine, Istanbul, Turkey
| | - Roman Liscak
- Department of Radiation and Stereotactic Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Jaromir May
- Department of Radiation and Stereotactic Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Jeyan Sathia Kumar
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - L Dade Lunsford
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Blood-Brain Barrier Permeability Following Conventional Photon Radiotherapy - A Systematic Review and Meta-Analysis of Clinical and Preclinical Studies. Clin Transl Radiat Oncol 2022; 35:44-55. [PMID: 35601799 PMCID: PMC9117815 DOI: 10.1016/j.ctro.2022.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/30/2022] [Indexed: 01/16/2023] Open
Abstract
Radiotherapy (RT) is a cornerstone treatment strategy for brain tumours. Besides cytotoxicity, RT can cause disruption of the blood–brain barrier (BBB), resulting in an increased permeability into the surrounding brain parenchyma. Although this effect is generally acknowledged, it remains unclear how and to what extent different radiation schemes affect BBB integrity. The aim of this systematic review and meta-analysis is to investigate the effect of photon RT regimens on BBB permeability, including its reversibility, in clinical and preclinical studies. We systematically reviewed relevant clinical and preclinical literature in PubMed, Embase, and Cochrane search engines. A total of 69 included studies (20 clinical, 49 preclinical) were qualitatively and quantitatively analysed by meta-analysis and evaluated on key determinants of RT-induced BBB permeability in different disease types and RT protocols. Qualitative data synthesis showed that 35% of the included clinical studies reported BBB disruption following RT, whereas 30% were inconclusive. Interestingly, no compelling differences were observed between studies with different calculated biological effective doses based on the fractionation schemes and cumulative doses; however, increased BBB disruption was noted during patient follow-up after treatment. Qualitative analysis of preclinical studies showed RT BBB disruption in 78% of the included studies, which was significantly confirmed by meta-analysis (p < 0.01). Of note, a high risk of bias, publication bias and a high heterogeneity across the studies was observed. This systematic review and meta-analysis sheds light on the impact of RT protocols on BBB integrity and opens the discussion for integrating this factor in the decision-making process of future RT, with better study of its occurrence and influence on concomitant or adjuvant therapies.
Collapse
|
6
|
Zhang Z, Pang Y, Wang W, Zhu H, Jin S, Yu Z, Gu Y, Wu H. Neuroprotection of Heme Oxygenase-2 in Mice AfterIntracerebral Hemorrhage. J Neuropathol Exp Neurol 2021; 80:457-466. [PMID: 33870420 DOI: 10.1093/jnen/nlab025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There are few effective preventive or therapeutic strategies to mitigate the effects of catastrophic intracerebral hemorrhage (ICH) in humans. Heme oxygenase is the rate-limiting enzyme in heme metabolism; heme oxygenase-2 (HO-2) is a constitutively expressed heme oxygenase. We explored the involvement of HO-2 in a collagenase-induced mouse model of ICH in C57BL/6 wild-type and HO-2 knockout mice. We assessed oxidative stress injury, blood-brain barrier permeability, neuronal damage, late-stage angiogenesis, and hematoma clearance using immunofluorescence, Western blot, MRI, and special staining methods. Our results show that HO-2 reduces brain injury volume and brain edema, alleviates cytotoxic injury, affects vascular function in the early stage of ICH, and improves hematoma absorbance and angiogenesis in the late stage of ICH in this model. Thus, we found that HO-2 has a protective effect on brain injury after ICH.
Collapse
Affiliation(s)
- Ze Zhang
- From the Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuxin Pang
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, China
| | - Wei Wang
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Zhu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, China
| | - Sinan Jin
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, China
| | - Zihan Yu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, China
| | - Yunhe Gu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, China
| | - He Wu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Effects of Ozone on Injury after Gamma Knife Radiosurgery. World Neurosurg 2021; 149:e982-e988. [PMID: 33508487 DOI: 10.1016/j.wneu.2021.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND At present, gamma knife radiosurgery plays an important role in neurosurgical procedures. Gamma knife radiosurgery has been used to treat many types of brain tumors and as a functional intervention. However, gamma knife treatment has a devastating effect on the normal brain parenchyma surrounding the target point. It causes increased vascular permeability, vasodilation, and swelling in endothelial cells. Ozone has antioxidant, antiapoptotic, and anti-inflammatory effects in the body. Thus, we evaluated the radioprotective effects of ozone in rats undergoing gamma knife radiation. METHODS In the present study, 24 Sprague-Dawley male rats weighing 250-300 g in 3 groups of 8 rats each were used. The rats were selected randomly. The control group did not receive any gamma knife radiation. The other 2 groups received 50 Gy of radiation, with 1 group given ozone treatment and the other group not given ozone treatment after gamma knife radiosurgery. At 12 weeks after gamma knife radiation, the rats were sacrificed with high-dose anesthetic agents and the tissues prepared for evaluation. The slides were evaluated for necrosis, vacuolization, glial proliferation, and vascular proliferation using hematoxylin-eosin staining. Vascular endothelial growth factor (VEGF) and extracellular matrix metalloproteinase inducer (also known as CD147) were evaluated using immunohistochemical staining. RESULTS VEGF expression in glial tissue was significantly less in the group receiving ozone (χ2 = 15.00; df = 4; P = 0.005) compared with the group that had not received ozone and was similar to the expression in the control group. CONCLUSIONS The lower expression of VEGF in the group receiving ozone might cause less edema in the surrounding tissue owing to less degradation of vascular permeability in the rat brain tissue.
Collapse
|
8
|
Erpolat OP, Demircan NV, Sarıbas GS, Kuzucu P, Senturk E, Elmas C, Borcek A, Kurt G. A Comparison of Ramipril and Bevacizumab to Mitigate Radiation-Induced Brain Necrosis: An Experimental Study. World Neurosurg 2020; 144:e210-e220. [PMID: 32822951 DOI: 10.1016/j.wneu.2020.08.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Bevacizumab, an anti-vascular endothelial growth factor (VEGF) antibody, is a new treatment approach for radionecrosis. In our study, we compared the prophylactic and therapeutic usage of a promising agent, ramipril (an angiotensin-converting enzyme inhibitor), with that of bevacizumab for reducing radiation-induced brain injury after high-dose stereotactic radiosurgery (SRS). METHODS A total of 60 Wistar rats were used. The rats were irradiated with a single dose of 50 Gy using a Leksell Gamma Knife device. Bevacizumab and ramipril were administered in the prophylactic protocol (starting the first day of SRS) and in the therapeutic protocol (starting the fourth week of SRS). Their usage was continued until 12 weeks, and the right frontal lobes of the rats were examined histologically (hematoxylin and eosin stain) and immunohistochemically (hypoxia-inducible factor [HIF]-1α, VEGF, and CD31 antibody expression). RESULTS The expression of VEGF, HIF-1α, and CD31 had significantly increased at 12 weeks after SRS compared with the control group. The addition of bevacizumab or ramipril to SRS significantly mitigated the histological severity of radiation injury and the expression of VEGF, HIF-1α, and CD31. However, the prophylactic use of bevacizumab and ramipril seemed to be more effective than therapeutic administration. Our results also revealed that the greatest benefit was achieved with the use of prophylactic administration of bevacizumab compared with other treatment protocols. CONCLUSIONS Ramipril might be a promising agent for patients with radionecrosis. Clinical studies are required to investigate the effective and safe doses of ramipril, which is an inexpensive, well-tolerated drug that can cross the blood-brain barrier.
Collapse
Affiliation(s)
- Ozge Petek Erpolat
- Department of Radiation Oncology, Gazi University Medical Faculty, Ankara, Turkey
| | | | | | - Pelin Kuzucu
- Department of Neurosurgery, Gazi University Medical Faculty, Ankara, Turkey
| | - Ertugrul Senturk
- Department of Radiation Oncology, Gazi University Medical Faculty, Ankara, Turkey
| | - Cigdem Elmas
- Department of Histology, Gazi University Medical Faculty, Ankara, Turkey
| | - Alp Borcek
- Department of Neurosurgery, Gazi University Medical Faculty, Ankara, Turkey
| | - Gokhan Kurt
- Department of Neurosurgery, Gazi University Medical Faculty, Ankara, Turkey
| |
Collapse
|
9
|
Aslan A, Kaya ZB, Bulduk EB, Ocal O, Ucar M, Erpolat OP, Kaymaz F, Borcek AO. Prophylactic Bevacizumab May Mitigate Radiation Injury: An Experimental Study. World Neurosurg 2018; 116:e791-e800. [PMID: 29803068 DOI: 10.1016/j.wneu.2018.05.094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/12/2018] [Accepted: 05/14/2018] [Indexed: 01/28/2023]
Abstract
BACKGROUND Stereotactic radiosurgery (SRS) is widely used to treat brain pathologies alone or in concert with other treatment modalities. However, there are some side effects, such as radiation injury characterized by edema and necrosis in peripheral tissues, that must be managed. A new treatment agent against this side effect is bevacizumab, which targets increased vascular endothelial growth factor (VEGF) as a prominent etiologic factor in radiation injury. In this study, we created a rat experimental model to describe the effects of both radiation and the anti-VEGF monoclonal antibody bevacizumab following high-dose SRS, and to compare the effects of prophylactic and delayed-onset bevacizumab treatment. METHODS Fifty-four adult male Wistar rats were allocated into 9 groups based on differing Gamma-knife surgery (GKS) doses and bevacizumab treatment protocols. After 12 weeks, the rats' right frontal lobes were examined with hematoxylin and eosin staining and immunohistochemistry analysis via VEGF and CD31 antibodies. RESULTS Radiation necrosis occurred to varying degrees in all irradiated animals between 3 and 10 weeks post-SRS. Higher GKS dose (50% isodose of 100 Gy) led earlier necrosis and prophylaxis of bevacizumab at this dose was associated with delayed onset of necrosis. Moreover, prophylactic bevacizumab mitigated the effects of radiation necrosis following GKS at both doses, whereas this effect was not prominent with late initiation of bevacizumab (treatment protocol). CONCLUSIONS Our findings show that the onset and degree of radiation injury are affected by the GKS dose and protocol of bevacizumab administration.
Collapse
Affiliation(s)
- Ayfer Aslan
- Department of Neurosurgery, Gazi University Faculty of Medicine, Ankara, Turkey.
| | - Zeynep Bengisu Kaya
- Department of Histology and Embryology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Erkut Baha Bulduk
- Department of Neurosurgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ozgur Ocal
- Department of Neurosurgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Murat Ucar
- Department of Radiology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ozge Petek Erpolat
- Department of Radiation Oncology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Figen Kaymaz
- Department of Histology and Embryology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alp Ozgun Borcek
- Division of Pediatric Neurosurgery, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|