1
|
Liu L, Liu A, Liu X. PRRX2 predicts poor survival prognosis, and promotes malignant phenotype of lung adenocarcinoma via transcriptional activates PSMD1. Transl Oncol 2022; 27:101586. [PMID: 36379103 PMCID: PMC9661514 DOI: 10.1016/j.tranon.2022.101586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Paired-related homeobox transcription factor 2 (PRRX2) has been proved involves in the pathogenesis of tumors, but the role of PRRX2 in lung adenocarcinoma (LUAD) is basically not clear. MATERIALS AND METHODS LUAD datasets were obtained from Gene Expression Omnibus datasets. Functional enrichment analyses were performed based on R language. Several online analysis tools were used for PRRX2 expression, survival curves, and immune cell infiltration analyses. CCK-8, flow cytometry assays were used to detect the cell proliferation and apoptosis. Dual luciferase reporter system and chromatin immunoprecipitation were used to explore the interaction of PRRX2 and Proteasome 26S subunit, non-ATPases 1 (PSMD1). Xenograft in nude mice was used to assess the function of PRRX2 regulation in vivo. RESULTS AND DISCUSSION Bioinformatics analyses found that PRRX2 was highly expressed in LUAD tissues and the high PRRX2 expression had a poor prognostic value. PRRX2 was highly expressed in LUAD clinical samples and cell lines. PRRX2 acted as a positive regulator of cell proliferation and a negative regulator of apoptosis. PRRX2 could bind with the PSMD1 promoter and regulate PSMD1 expression, thereby affected LUAD cells' malignant phenotype. Result of xenografts in nude mice confirmed that PRRX2 promotes LUAD tumor growth in vivo. Summary, our study results reveal the crucial roles for PRRX2 in the proliferation and apoptosis of LUAD progression and suggest that PRRX2 may regulate PSMD1 expression by combining with the PSMD1 promoter, thereby participating in the malignant behavior of LUAD.
Collapse
Affiliation(s)
- Lihua Liu
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China,Department of Respiratory Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Aihua Liu
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xuezheng Liu
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China,Corresponding author.
| |
Collapse
|
2
|
Chen L, Wang YY, Li D, Wang C, Wang SY, Shao SH, Zhu ZY, Zhao J, Zhang Y, Ruan Y, Han BM, Xia SJ, Jiang CY, Zhao FJ. LMO2 upregulation due to AR deactivation in cancer-associated fibroblasts induces non-cell-autonomous growth of prostate cancer after androgen deprivation. Cancer Lett 2021; 503:138-150. [PMID: 33503448 DOI: 10.1016/j.canlet.2021.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/16/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
The androgen receptor (AR) is expressed in prostate fibroblasts in addition to normal prostate epithelial cells and prostate cancer (PCa) cells. Moreover, AR activation in fibroblasts dramatically influences prostate cancer (PCa) cell behavior. Androgen deprivation leads to deregulation of AR downstream target genes in both fibroblasts and PCa cells. Here, we identified LIM domain only 2 (LMO2) as an AR target gene in prostate fibroblasts using ChIP-seq and revealed that LMO2 can be repressed directly by AR through binding to androgen response elements (AREs), which results in LMO2 overexpression after AR deactivation due to normal prostate fibroblasts to cancer-associated fibroblasts (CAFs) transformation or androgen deprivation therapy. Next, we investigated the mechanisms of LMO2 overexpression in fibroblasts and the role of this event in non-cell-autonomous promotion of PCa cells growth in the androgen-independent manner through paracrine release of IL-11 and FGF-9. Collectively, our data suggest that AR deactivation deregulates LMO2 expression in prostate fibroblasts, which induces castration resistance in PCa cells non-cell-autonomously through IL-11 and FGF-9.
Collapse
Affiliation(s)
- Lei Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Yue-Yang Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Deng Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Cheng Wang
- Department of Urology, Jiangsu Jiangyin People's Hospital, Jiangyin, 214400, China
| | - Shi-Yuan Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Si-Hui Shao
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zheng-Yang Zhu
- Clinical Medical College, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Jing Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Yu Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Yuan Ruan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Bang-Min Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Shu-Jie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China.
| | - Chen-Yi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China.
| | - Fu-Jun Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China.
| |
Collapse
|
3
|
Hussein D, Dallol A, Quintas R, Schulten HJ, Alomari M, Baeesa S, Bangash M, Alghamdi F, Khan I, ElAssouli MZM, Saka M, Carracedo A, Chaudhary A, Abuzenadah A. Overlapping variants in the blood, tissues and cell lines for patients with intracranial meningiomas are predominant in stem cell-related genes. Heliyon 2020; 6:e05632. [PMID: 33305042 PMCID: PMC7710648 DOI: 10.1016/j.heliyon.2020.e05632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Bulk tissue genomic analysis of meningiomas identified common somatic mutations, however, it often excluded blood-related variants. In contrast, genomic characterisation of primary cell lines that can provide critical information regarding growth and proliferation, have been rare. In our work, we identified the variants that are present in the blood, tissues and corresponding cell lines that are likely to be predictive, tumorigenic and progressive. METHOD Whole-exome sequencing was used to identify variants and distinguish related pathways that exist in 42 blood, tissues and corresponding cell lines (BTCs) samples for patients with intracranial meningiomas. Conventional sequencing was used for the confirmation of variants. Integrative analysis of the gene expression for the corresponding samples was utilised for further interpretations. RESULTS In total, 926 BTC variants were detected, implicating 845 genes. A pathway analysis of all BTC genes with damaging variants indicated the 'cell morphogenesis involved in differentiation' stem cell-related pathway to be the most frequently affected pathway. Concordantly, five stem cell-related genes, GPRIN2, ALDH3B2, ASPN, THSD7A and SIGLEC6, showed BTC variants in at least five of the patients. Variants that were heterozygous in the blood and homozygous in the tissues or the corresponding cell lines were rare (average: 1.3 ± 0.3%), and included variants in the RUNX2 and CCDC114 genes. An analysis comparing the variants detected only in tumours with aggressive features indicated a total of 240 BTC genes, implicating the 'homophilic cell adhesion via plasma membrane adhesion molecules' pathway, and identifying the stem cell-related transcription coactivator NCOA3/AIB1/SRC3 as the most frequent BTC gene. Further analysis of the possible impact of the poly-Q mutation present in the NCOA3 gene indicated associated deregulation of 15 genes, including the up-regulation of the stem cell related SEMA3D gene and the angiogenesis related VEGFA gene. CONCLUSION Stem cell-related pathways and genes showed high prevalence in the BTC variants, and novel variants in stem cell-related genes were identified for meningioma. These variants can potentially be used as predictive, tumorigenic and progressive biomarkers for meningioma.
Collapse
Affiliation(s)
- Deema Hussein
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Ashraf Dallol
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rita Quintas
- Galician Foundation of Genomic Medicine-SERGAS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mona Alomari
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Saleh Baeesa
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Bangash
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad Alghamdi
- Pathology Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ishaq Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan
| | - M-Zaki Mustafa ElAssouli
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Mohamad Saka
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Angel Carracedo
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Galician Foundation of Genomic Medicine-SERGAS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Adeel Chaudhary
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Adel Abuzenadah
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
4
|
Mehdipour T, Tohidkia MR, Ata Saei A, Kazemi A, Khajeh S, Rahim Rahimi AA, Nikfarjam S, Farhadi M, Halimi M, Soleimani R, Zubarev RA, Nouri M. Tailoring subtractive cell biopanning to identify diffuse gastric adenocarcinoma-associated antigens via human scFv antibodies. Immunology 2019; 159:96-108. [PMID: 31596953 DOI: 10.1111/imm.13129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 12/24/2022] Open
Abstract
Among various solid tumours, gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide. Expansion into the peritoneal cavity, which results from dissemination of diffuse cancer cells, is the main cause of mortality in gastric adenocarcinoma patients. Therefore, investigation of putative biomarkers involved in metastasis is prerequisite for GC management. In an effort to discover potential tumour markers associated with peritoneal metastasis of GC, a semi-synthetic human scFv library (Tomlinson I) was used to isolate novel antibody fragments recognizing MKN-45, a poorly differentiated diffuse gastric adenocarcinoma cell line. Four rounds of subtractive selection each consisting of extensive pre-absorption of phage library with NIH-3T3 murine embryonic fibroblasts and AGS (a well-differentiated intestinal gastric adenocarcinoma) cell line were carried out prior to positive selection on MKN-45 target cells. ELISA-based screening of 192 phage-displayed scFv clones indicated 21 high-affinity binders with specific staining of MKN-45 compared with AGS cells. Diversity analysis of the selected phage-scFvs resulted in five distinct sequences with multiple frequency. Further analysis by ELISA and flow cytometry verified three clones that specifically recognized MKN-45 cells. Liquid chromatography-mass spectrometry analysis of the scFv-immunoprecipitated proteins has led to identification of c-Met, HSP90 α and HSP90 β as candidate biomarkers associated with diffuse GC. Immunohistochemistry revealed the capability of purified scFvs to differentiate diffuse and intestinal gastric adenocarcinoma. Taken together, the isolated MKN-45-specific scFv fragments and their cognate antigens would be beneficial in screening and management as well as targeting and therapy of the diffuse gastric adenocarcinoma.
Collapse
Affiliation(s)
- Tayebeh Mehdipour
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad R Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ata Saei
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Amir Kazemi
- Department of Microbiology, Islamic Azad University, Shahr-e-Qods Branch, Tehran, Iran
| | - Shirin Khajeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali A Rahim Rahimi
- Department of Microbiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Nikfarjam
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Farhadi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Monireh Halimi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Soleimani
- Department of Molecular Biology, Research and Diagnostic Laboratory of Dook, Sari, Iran
| | - Roman A Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mohammad Nouri
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Chai WX, Sun LG, Dai FH, Shao HS, Zheng NG, Cai HY. Inhibition of PRRX2 suppressed colon cancer liver metastasis via inactivation of Wnt/β-catenin signaling pathway. Pathol Res Pract 2019; 215:152593. [PMID: 31471104 DOI: 10.1016/j.prp.2019.152593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/23/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate whether PRRX2 may regulate the liver metastasis of colon cancer via the Wnt/β-catenin signaling pathway. PRRX2 and β-catenin in patients with the liver metastases of colon cancer was detected by immunochemistry. Colon cancer cells (CT-26 and CMT93) were divided into Normal, si-Ctrl, si-PRRX2 and si-PRRX2 +LiCl groups. Cell invasive and migrating abilities and the related proteins were detected. Liver-metastatic mice model was constructed consisting of Normal, NC shRNA and PRRX2 shRNA groups to examine the function of PRRX2 shRNA on liver metastasis. We found that PRRX2 and β-catenin positive rate was elevated in colon cancer tissues, especially in those tissues with liver metastasis, and there was a close relation between PRRX2 and the clinical staging, lymph node metastasis and numbers of liver metastases of colon cancer patients with liver metastasis. In vitro, the invasive and migrating abilities of CT-26 and CMT93 cells decreased apparently in the si-PRRX2 group, with down-regulation of PRRX2, p-GSK3βSer9/GSK3β, nucleus and cytoplasm β-catenin, TCF4 and Vimentin but up-regulation of E-cadherin. However, LiCl, the Wnt/β-catenin pathway activator, can reverse the inhibitory effect of si-PRRX2 on invasive and migrating ability of colon cancer cells. In vivo, the volume and weight of transplanted tumor and the number of liver metastases in the PRRX2 shRNA group were significantly reduced, with the similar protein expression patterns as in vitro. In a word, PRRX2 inhibition may reduce invasive and migrating abilities to hinder epithelial-mesenchymal transition (EMT), and suppress colon cancer liver metastasis through inactivation of Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Wen-Xiao Chai
- Department of Interventional Oncology, Gansu Provincial People's Hospital, Lanzhou 730000, Gansu, China
| | - Li-Guo Sun
- Department of Surgical Oncology, Dingxi City People's Hospital, Dingxi 743000, Gansu, China
| | - Fu-Hong Dai
- Department of Interventional Oncology, Gansu Provincial People's Hospital, Lanzhou 730000, Gansu, China
| | - Hong-Sheng Shao
- Department of Radiology, Rehabilitation Center Hospital of Gansu Province, Lanzhou 730000, Gansu, China
| | - Ning-Gang Zheng
- Department of Interventional Oncology, Gansu Provincial People's Hospital, Lanzhou 730000, Gansu, China
| | - Hong-Yi Cai
- Department of Radiation oncology, Gansu Provincial People's Hospital, Lanzhou 730000, Gansu, China.
| |
Collapse
|
6
|
Quintero-Ronderos P, Laissue P. The multisystemic functions of FOXD1 in development and disease. J Mol Med (Berl) 2018; 96:725-739. [PMID: 29959475 DOI: 10.1007/s00109-018-1665-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/18/2018] [Accepted: 06/21/2018] [Indexed: 12/13/2022]
Abstract
Transcription factors (TFs) participate in a wide range of cellular processes due to their inherent function as essential regulatory proteins. Their dysfunction has been linked to numerous human diseases. The forkhead box (FOX) family of TFs belongs to the "winged helix" superfamily, consisting of proteins sharing a related winged helix-turn-helix DNA-binding motif. FOX genes have been extensively present during vertebrates and invertebrates' evolution, participating in numerous molecular cascades and biological functions, such as embryonic development and organogenesis, cell cycle regulation, metabolism control, stem cell niche maintenance, signal transduction, and many others. FOXD1, a forkhead TF, has been related to different key biological processes such as kidney and retina development and embryo implantation. FOXD1 dysfunction has been linked to different pathologies, thereby constituting a diagnostic biomarker and a promising target for future therapies. This paper aims to present, for the first time, a comprehensive review of FOXD1's role in mouse development and human disease. Molecular, structural, and functional aspects of FOXD1 are presented in light of physiological and pathogenic conditions, including its role in human disease aetiology, such as cancer and recurrent pregnancy loss. Taken together, the information given here should enable a better understanding of FOXD1 function for basic science researchers and clinicians.
Collapse
Affiliation(s)
- Paula Quintero-Ronderos
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá, Colombia
| | - Paul Laissue
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá, Colombia.
| |
Collapse
|
7
|
Jiang CY, Yu JJ, Ruan Y, Wang XH, Zhao W, Wang XJ, Zhu YP, Gao Y, Hao KY, Chen L, Han BM, Xia SJ, Zhao FJ. LIM domain only 2 over-expression in prostate stromal cells facilitates prostate cancer progression through paracrine of Interleukin-11. Oncotarget 2018; 7:26247-58. [PMID: 27028859 PMCID: PMC5041978 DOI: 10.18632/oncotarget.8359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/07/2016] [Indexed: 12/18/2022] Open
Abstract
Mechanisms of stromal-epithelial crosstalk are essential for Prostate cancer (PCa) tumorigenesis and progression. Peripheral zone of the prostate gland possesses a stronger inclination for PCa than transition zone. We previously found a variety of genes that differently expressed among different prostate stromal cells, including LIM domain only 2 (LMO2) which highly expressed in peripheral zone derived stromal cells (PZSCs) and PCa associated fibroblasts (CAFs) compared to transition zone derived stromal cells (TZSCs). Studies on its role in tumors have highlighted LMO2 as an oncogene. Herein, we aim to study the potential mechanisms of stromal LMO2 in promoting PCa progression. The in vitro cells co-culture and in vivo cells recombination revealed that LMO2 over-expressed prostate stromal cells could promote the proliferation and invasiveness of either prostate epithelial or cancer cells. Further protein array screening confirmed that stromal LMO2 stimulated the secretion of Interleukin-11 (IL-11), which could promote proliferation and invasiveness of PCa cells via IL-11 receptor α (IL11Rα) – STAT3 signaling. Moreover, stromal LMO2 over-expression could suppress miR-204-5p which was proven to be a negative regulator of IL-11 expression. Taken together, results of our study demonstrate that prostate stromal LMO2 is capable of stimulating IL-11 secretion and by which activates IL11Rα – STAT3 signaling in PCa cells and then facilitates PCa progression. These results may make stromal LMO2 responsible for zonal characteristic of PCa and as a target for PCa microenvironment-targeted therapy.
Collapse
Affiliation(s)
- Chen-Yi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jun-Jie Yu
- Department of Urology, Subei People's Hospital of Jiangsu Province, Clinical Medical College of Yangzhou University, Yangzhou 225001, China
| | - Yuan Ruan
- Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai 200080, China
| | - Xiao-Hai Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wei Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xing-Jie Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yi-Ping Zhu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yuan Gao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Kui-Yuan Hao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Lei Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Bang-Min Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shu-Jie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai 200080, China
| | - Fu-Jun Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
8
|
Nikitina AS, Sharova EI, Danilenko SA, Butusova TB, Vasiliev AO, Govorov AV, Prilepskaya EA, Pushkar DY, Kostryukova ES. Novel RNA biomarkers of prostate cancer revealed by RNA-seq analysis of formalin-fixed samples obtained from Russian patients. Oncotarget 2017; 8:32990-33001. [PMID: 28380430 PMCID: PMC5464844 DOI: 10.18632/oncotarget.16518] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/15/2017] [Indexed: 01/23/2023] Open
Abstract
Due to heterogeneous multifocal nature of prostate cancer (PCa), there is currently a lack of biomarkers that stably distinguish it from benign prostatic hyperplasia (BPH), predict clinical outcome and guide the choice of optimal treatment. In this study RNA-seq analysis was applied to formalin-fixed paraffin-embedded (FFPE) tumor and matched normal tissue samples collected from Russian patients with PCa and BPH. We identified 3384 genes differentially expressed (DE) (FDR < 0.05) between tumor tissue of PCa patients and adjacent normal tissue as well as both tissue types from BPH patients. Overexpression of four of the discovered genes (ANKRD34B, NEK5, KCNG3, and PTPRT) was validated by RT-qPCR. Furthermore, the enrichment analysis of overrepresented microRNA and transcription factor (TF) recognition sites within DE genes revealed common regulatory elements of which 13 microRNAs and 53 TFs were thus linked to PCa for the first time. Moreover, 8 of these TFs (FOXJ2, GATA6, NFE2L1, NFIL3, PRRX2, TEF, EBF2 and ZBTB18) were found to be differentially expressed in this study making them not only candidate biomarkers of prostate cancer but also potential therapeutic targets.
Collapse
Affiliation(s)
- Anastasia S. Nikitina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - Elena I. Sharova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | | | - Tatiana B. Butusova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Alexandr O. Vasiliev
- Department of Urology, Moscow State Medical Stomatological University, Moscow, Russia
| | - Alexandr V. Govorov
- Department of Urology, Moscow State Medical Stomatological University, Moscow, Russia
| | - Elena A. Prilepskaya
- Department of Urology, Moscow State Medical Stomatological University, Moscow, Russia
| | - Dmitry Y. Pushkar
- Department of Urology, Moscow State Medical Stomatological University, Moscow, Russia
| | - Elena S. Kostryukova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| |
Collapse
|
9
|
Transcriptomic analysis of gene expression profiles of stomach carcinoma reveal abnormal expression of mitotic components. Life Sci 2017; 170:41-49. [DOI: 10.1016/j.lfs.2016.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/24/2016] [Accepted: 12/01/2016] [Indexed: 12/16/2022]
|
10
|
Wang Y. Transcriptional Regulatory Network Analysis for Gastric Cancer Based on mRNA Microarray. Pathol Oncol Res 2017; 23:785-791. [PMID: 28078605 DOI: 10.1007/s12253-016-0159-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/14/2016] [Indexed: 12/27/2022]
Abstract
We aimed to screen the differential expressed genes (DEGs) and transcriptional factors (TFs) related to gastric cancer. GSE19826 microarray data downloaded from Gene Expression Omnibus was used to identify the differentially expressed genes (DEGs) and PPI network of DEGs were constructed by the Retrieval of Interacting Genes database. Pathway enrichment analysis of DEGs were performed by Gene Set Enrichment Analysis. Then, the transcriptional regulatory network was constructed based on TRANSFAC database. Finally, regulatory impact factor (RIF) of TF was calculated. We identified 446 DEGs including 209 up- and 237 down-regulated genes. These DEGs were mainly significantly enriched in 5 pathways including ECM receptor interaction (p = 0.013899), spliceosome (p = 0.025591), bladder cancer (p = 0.026316), focal adhesion (p = 0.047809) and WNT signaling pathway (p = 0.048077). PPI network with 247 nodes and 913 edges were constructed and COL5A2 was the hub node. Transcriptional regulatory network with 6 differently expressed TFs, 58 non-differently expressed TFs, 44 DEGs and 735 non-DEGs was constructed. Finally, top 5 TFs including CRX, TFAP4, NKX2-1, MYB and RARG with higher ZRIF were screened. The identified DEGs such as COL5A2 and TOP2A, and TFs including EGR2, FOXM1, NKX2-1 and TFAP4 might be the critical genes and TFs for gastric cancer.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastroenterology, Shengjing Hospital, China Medical University, No.36 Sanhao Road, Shenyang, 110004, China.
| |
Collapse
|
11
|
Xu J, E C, Yao Y, Ren S, Wang G, Jin H. Matrix metalloproteinase expression and molecular interaction network analysis in gastric cancer. Oncol Lett 2016; 12:2403-2408. [PMID: 27698806 PMCID: PMC5038516 DOI: 10.3892/ol.2016.5013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/27/2016] [Indexed: 12/21/2022] Open
Abstract
Gastric cancer (GC) is one of the most common types of cancer of the digestive tract. Invasion of tumor cells into surrounding tissue and metastasis are among the most significant checkpoints in tumor progression. It is known that matrix metalloproteinases (MMPs) are involved in these processes; however, knowledge of their molecular interaction networks is still limited. Investigation of these networks could provide a more comprehensive picture of the function of MMPs in tumorigenesis. Furthermore, it could be used to develop new approaches to targeted anticancer therapy. In this study, we performed microarray analysis, and 1666 genes that were aberrantly expressed in GC tissues were identified (fold change >2, P<0.05). In addition, quantitative polymerase chain reaction analysis has confirmed that MMP1, MMP3, MMP7, MMP10, MMP11 and MMP12 expression is upregulated in GC. In addition, the MMP3 expression level was negatively correlated with GC differentiation (P<0.05). By integrating the microarray information and BioGRID and STRING databases, we constructed an MMP-related molecular interaction network and observed that 18 genes (including MMPs) were highly expressed in GC tissues. The most enriched of these 18 genes in the Gene Oncology (GO) and pathway analysis were in extracellular matrix disassembly (GO biological process) and extracellular matrix-receptor interaction (KEGG pathway), which are closely correlated with cancer invasion and metastasis. Collectively, our results suggest that the MMP-related interaction network has a role in GC progression, and therefore further studies are required in order to investigate these network interactions in tumorigenesis.
Collapse
Affiliation(s)
- Jianting Xu
- Cancer Centre, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Changyong E
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yongfang Yao
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Shuangchun Ren
- Department of Pathogenobiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guoqing Wang
- Department of Pathogenobiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Haofan Jin
- Cancer Centre, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
12
|
Screening Driving Transcription Factors in the Processing of Gastric Cancer. Gastroenterol Res Pract 2016; 2016:8431480. [PMID: 27403158 PMCID: PMC4925953 DOI: 10.1155/2016/8431480] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/18/2016] [Accepted: 03/16/2016] [Indexed: 12/20/2022] Open
Abstract
Background. Construction of the transcriptional regulatory network can provide additional clues on the regulatory mechanisms and therapeutic applications in gastric cancer. Methods. Gene expression profiles of gastric cancer were downloaded from GEO database for integrated analysis. All of DEGs were analyzed by GO enrichment and KEGG pathway enrichment. Transcription factors were further identified and then a global transcriptional regulatory network was constructed. Results. By integrated analysis of the six eligible datasets (340 cases and 43 controls), a bunch of 2327 DEGs were identified, including 2100 upregulated and 227 downregulated DEGs. Functional enrichment analysis of DEGs showed that digestion was a significantly enriched GO term for biological process. Moreover, there were two important enriched KEGG pathways: cell cycle and homologous recombination. Furthermore, a total of 70 differentially expressed TFs were identified and the transcriptional regulatory network was constructed, which consisted of 566 TF-target interactions. The top ten TFs regulating most downstream target genes were BRCA1, ARID3A, EHF, SOX10, ZNF263, FOXL1, FEV, GATA3, FOXC1, and FOXD1. Most of them were involved in the carcinogenesis of gastric cancer. Conclusion. The transcriptional regulatory network can help researchers to further clarify the underlying regulatory mechanisms of gastric cancer tumorigenesis.
Collapse
|
13
|
Juang YL, Jeng YM, Chen CL, Lien HC. PRRX2 as a novel TGF-β-induced factor enhances invasion and migration in mammary epithelial cell and correlates with poor prognosis in breast cancer. Mol Carcinog 2016; 55:2247-2259. [DOI: 10.1002/mc.22465] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/23/2015] [Accepted: 01/08/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Yu-Lin Juang
- Graduate Institute of Pathology; National Taiwan University; Taipei Taiwan
| | - Yung-Ming Jeng
- Graduate Institute of Pathology; National Taiwan University; Taipei Taiwan
- Department of Pathology; National Taiwan University Hospital; Taipei Taiwan
| | - Chi-Long Chen
- Department of Pathology, College of Medicine; Taipei Medical University; Taipei Taiwan
- Department of Pathology; Taipei Medical University Hospital; Taipei Taiwan
| | - Huang-Chun Lien
- Graduate Institute of Pathology; National Taiwan University; Taipei Taiwan
- Department of Pathology; National Taiwan University Hospital; Taipei Taiwan
| |
Collapse
|