1
|
Li Z, Duan J, Cao A, Gong Z, Liu H, Shen D, Ye T, Zhu S, Cen Q, He S, He Y, Zheng C, Lin X. Activating Wnt1/β-Catenin signaling pathway to restore Otx2 expression in the dopaminergic neurons of ventral midbrain. Exp Neurol 2025; 388:115216. [PMID: 40089003 DOI: 10.1016/j.expneurol.2025.115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Parkinson's disease (PD) is the world's second most prevalent neurodegenerative disease. Currently, aside from levodopa, there are no other effective drugs clinically available to slow its progression. Otx2 plays a critical role in the differentiation of midbrain dopaminergic neurons (mDANs) during midbrain development. However, in adulthood, Otx2 is primarily expressed in the ventral tegmental area (VTA)-ventral part, and mDANs in the dorsal part of the VTA and the substantia nigra pars compacta (SNc) show no Otx2 expression. Research indicates that Otx2 is essential not only for the development of mDANs but also for their protection against the toxicity of MPTP and rotenone. Consequently, Otx2 is a potential clinical target for mDANs protection. Identifying the upstream mechanism that regulates Otx2 expression is crucial to restoring its expression in the SNc and enhancing its levels in the entire ventral midbrain mDANs. In this study, we have demonstrated the safety of Otx2 overexpression in vitro by using adeno-associate virus (AAV) and explored the feasibility of promoting Otx2 expression through the Wnt/β-Catenin signaling pathway using various drugs, a miR-34 mimic, and an inhibitor. Our results showed that Otx2 overexpression via AAV in the SNc is relatively safe, and CHIR99021 can induce Otx2 expression in mouse mDANs, thereby, alleviating PD-liked motor symptoms induced by MPTP. These findings suggest that modulating Otx2 expression through the Wnt/β-Catenin signaling pathway holds a therapeutic approach for Parkinson's disease.
Collapse
Affiliation(s)
- Zhao Li
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Jinhai Duan
- Department of Geriatric Neurology, Guangdong Institute of Geriatrics, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, #106, Zhongshan, 2nd Road, Guanzhou, Guangdong, China
| | - AnQi Cao
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Zhuo Gong
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Hao Liu
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Danyang Shen
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Tonglin Ye
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Shunyan Zhu
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Qikai Cen
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Shuaiying He
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Yongqian He
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Canbing Zheng
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China.
| | - Xian Lin
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Meccariello R, Bellenchi GC, Pulcrano S, D’Addario SL, Tafuri D, Mercuri NB, Guatteo E. Neuronal dysfunction and gene modulation by non-coding RNA in Parkinson's disease and synucleinopathies. Front Cell Neurosci 2024; 17:1328269. [PMID: 38249528 PMCID: PMC10796818 DOI: 10.3389/fncel.2023.1328269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
Over the last few decades, emerging evidence suggests that non-coding RNAs (ncRNAs) including long-non-coding RNA (lncRNA), microRNA (miRNA) and circular-RNA (circRNA) contribute to the molecular events underlying progressive neuronal degeneration, and a plethora of ncRNAs have been identified significantly misregulated in many neurodegenerative diseases, including Parkinson's disease and synucleinopathy. Although a direct link between neuropathology and causative candidates has not been clearly established in many cases, the contribution of ncRNAs to the molecular processes leading to cellular dysfunction observed in neurodegenerative diseases has been addressed, suggesting that they may play a role in the pathophysiology of these diseases. Aim of the present Review is to overview and discuss recent literature focused on the role of RNA-based mechanisms involved in different aspects of neuronal pathology in Parkinson's disease and synucleinopathy models.
Collapse
Affiliation(s)
- Rosaria Meccariello
- Department of Medical and Movement Sciences and Wellness, University of Naples Parthenope, Naples, Italy
| | - Gian Carlo Bellenchi
- Institute of Genetics and Biophysics, CNR, Naples, Italy
- Experimental Neurology Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
| | | | - Sebastian Luca D’Addario
- Experimental Neurology Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Domenico Tafuri
- Department of Medical and Movement Sciences and Wellness, University of Naples Parthenope, Naples, Italy
| | - Nicola B. Mercuri
- Experimental Neurology Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ezia Guatteo
- Department of Medical and Movement Sciences and Wellness, University of Naples Parthenope, Naples, Italy
- Experimental Neurology Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| |
Collapse
|
3
|
Stein CS, McLendon JM, Witmer NH, Boudreau RL. Modulation of miR-181 influences dopaminergic neuronal degeneration in a mouse model of Parkinson's disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:1-15. [PMID: 35280925 PMCID: PMC8899134 DOI: 10.1016/j.omtn.2022.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/10/2022] [Indexed: 12/30/2022]
Abstract
Parkinson's disease (PD) is caused by the loss of dopaminergic (DA) neurons in the substantia nigra (SN). Although PD pathogenesis is not fully understood, studies implicate perturbations in gene regulation, mitochondrial function, and neuronal activity. MicroRNAs (miRs) are small gene regulatory RNAs that inhibit diverse subsets of target mRNAs, and several studies have noted miR expression alterations in PD brains. For example, miR-181a is abundant in the brain and is increased in PD patient brain samples; however, the disease relevance of this remains unclear. Here, we show that miR-181 target mRNAs are broadly downregulated in aging and PD brains. To address whether the miR-181 family plays a role in PD pathogenesis, we generated adeno-associated viruses (AAVs) to overexpress and inhibit the miR-181 isoforms. After co-injection with AAV overexpressing alpha-synuclein (aSyn) into mouse SN (PD model), we found that moderate miR-181a/b overexpression exacerbated aSyn-induced DA neuronal loss, whereas miR-181 inhibition was neuroprotective relative to controls (GFP alone and/or scrambled RNA). Also, prolonged miR-181 overexpression in SN alone elicited measurable neurotoxicity that is coincident with an increased immune response. mRNA-seq analyses revealed that miR-181a/b inhibits genes involved in synaptic transmission, neurite outgrowth, and mitochondrial respiration, along with several genes having known protective roles and genetic links in PD.
Collapse
Affiliation(s)
- Colleen S. Stein
- Department of Internal Medicine, Iowa Neuroscience Institute, Fraternal Order of Eagles Diabetes Research Center, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jared M. McLendon
- Department of Internal Medicine, Iowa Neuroscience Institute, Fraternal Order of Eagles Diabetes Research Center, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nathan H. Witmer
- Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ryan L. Boudreau
- Department of Internal Medicine, Iowa Neuroscience Institute, Fraternal Order of Eagles Diabetes Research Center, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
4
|
Bachmann M, Li W, Edwards MJ, Ahmad SA, Patel S, Szabo I, Gulbins E. Voltage-Gated Potassium Channels as Regulators of Cell Death. Front Cell Dev Biol 2020; 8:611853. [PMID: 33381507 PMCID: PMC7767978 DOI: 10.3389/fcell.2020.611853] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Ion channels allow the flux of specific ions across biological membranes, thereby determining ion homeostasis within the cells. Voltage-gated potassium-selective ion channels crucially contribute to the setting of the plasma membrane potential, to volume regulation and to the physiologically relevant modulation of intracellular potassium concentration. In turn, these factors affect cell cycle progression, proliferation and apoptosis. The present review summarizes our current knowledge about the involvement of various voltage-gated channels of the Kv family in the above processes and discusses the possibility of their pharmacological targeting in the context of cancer with special emphasis on Kv1.1, Kv1.3, Kv1.5, Kv2.1, Kv10.1, and Kv11.1.
Collapse
Affiliation(s)
- Magdalena Bachmann
- Department of Biology, University of Padova, Padua, Italy.,Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Weiwei Li
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Michael J Edwards
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Syed A Ahmad
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Sameer Patel
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padua, Italy.,Consiglio Nazionale delle Ricerche Institute of Neuroscience, Padua, Italy
| | - Erich Gulbins
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States.,Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
5
|
Grossi I, Radeghieri A, Paolini L, Porrini V, Pilotto A, Padovani A, Marengoni A, Barbon A, Bellucci A, Pizzi M, Salvi A, De Petro G. MicroRNA‑34a‑5p expression in the plasma and in its extracellular vesicle fractions in subjects with Parkinson's disease: An exploratory study. Int J Mol Med 2020; 47:533-546. [PMID: 33416118 PMCID: PMC7797475 DOI: 10.3892/ijmm.2020.4806] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is an important disabling age-related disorder and is the second most common neuro-degenerative disease. Currently, no established molecular biomarkers exist for the early diagnosis of PD. Circulating microRNAs (miRNAs), either vesicle-free or encapsulated in extracellular vesicles (EVs), have emerged as potential blood-based biomarkers also for neurodegenerative diseases. In this exploratory study, we focused on miR-34a-5p because of its well-documented involvement in neurobiology. To explore a differential profile of circulating miR-34a-5p in PD, PD patients and age-matched control subjects were enrolled. Serial ultracentrifugation steps and density gradient were used to separate EV subpopulations from plasma according to their different sedimentation properties (Large, Medium, Small EVs). Characterization of EV types was performed using western blotting and atomic force microscopy (AFM); purity from protein contaminants was checked with the colorimetric nanoplasmonic assay. Circulating miR-34a-5p levels were evaluated using qPCR in plasma and in each EV type. miR-34a-5p was significantly up-regulated in small EVs devoid of exogenous protein contaminants (pure SEVs) from PD patients and ROC analysis indicated a good diagnostic performance in discriminating patients from controls (AUC=0.74, P<0.05). Moreover, miR-34a-5p levels in pure SEVs were associated with disease duration, Hoehn and Yahr and Beck Depression Inventory scores. These results under-line the necessity to examine the miRNA content of each EV subpopulation to identify miRNA candidates with potential diagnostic value and lay the basis for future studies to validate the overexpression of circulating miR-34a-5p in PD via the use of pure SEVs.
Collapse
Affiliation(s)
- Ilaria Grossi
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Annalisa Radeghieri
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Lucia Paolini
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Vanessa Porrini
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, I‑25123 Brescia, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, I‑25123 Brescia, Italy
| | - Alessandra Marengoni
- General Medicine and Geriatrics Unit, Department of Clinical and Experimental Sciences, University of Brescia, I‑25123 Brescia, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Alessandro Salvi
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Giuseppina De Petro
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| |
Collapse
|
6
|
Acharya S, Salgado-Somoza A, Stefanizzi FM, Lumley AI, Zhang L, Glaab E, May P, Devaux Y. Non-Coding RNAs in the Brain-Heart Axis: The Case of Parkinson's Disease. Int J Mol Sci 2020; 21:E6513. [PMID: 32899928 PMCID: PMC7555192 DOI: 10.3390/ijms21186513] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is a complex and heterogeneous disorder involving multiple genetic and environmental influences. Although a wide range of PD risk factors and clinical markers for the symptomatic motor stage of the disease have been identified, there are still no reliable biomarkers available for the early pre-motor phase of PD and for predicting disease progression. High-throughput RNA-based biomarker profiling and modeling may provide a means to exploit the joint information content from a multitude of markers to derive diagnostic and prognostic signatures. In the field of PD biomarker research, currently, no clinically validated RNA-based biomarker models are available, but previous studies reported several significantly disease-associated changes in RNA abundances and activities in multiple human tissues and body fluids. Here, we review the current knowledge of the regulation and function of non-coding RNAs in PD, focusing on microRNAs, long non-coding RNAs, and circular RNAs. Since there is growing evidence for functional interactions between the heart and the brain, we discuss the benefits of studying the role of non-coding RNAs in organ interactions when deciphering the complex regulatory networks involved in PD progression. We finally review important concepts of harmonization and curation of high throughput datasets, and we discuss the potential of systems biomedicine to derive and evaluate RNA biomarker signatures from high-throughput expression data.
Collapse
Affiliation(s)
- Shubhra Acharya
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Antonio Salgado-Somoza
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| | - Francesca Maria Stefanizzi
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| | - Andrew I. Lumley
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| | - Lu Zhang
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (E.G.); (P.M.)
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (E.G.); (P.M.)
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| |
Collapse
|
7
|
Glaesel K, May C, Marcus K, Matschke V, Theiss C, Theis V. miR-129-5p and miR-130a-3p Regulate VEGFR-2 Expression in Sensory and Motor Neurons during Development. Int J Mol Sci 2020; 21:ijms21113839. [PMID: 32481647 PMCID: PMC7312753 DOI: 10.3390/ijms21113839] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 01/23/2023] Open
Abstract
The wide-ranging influence of vascular endothelial growth factor (VEGF) within the central (CNS) and peripheral nervous system (PNS), for example through effects on axonal growth or neuronal cell survival, is mainly mediated by VEGF receptor 2 (VEGFR-2). However, the regulation of VEGFR-2 expression during development is not yet well understood. As microRNAs are considered to be key players during neuronal maturation and regenerative processes, we identified the two microRNAs (miRNAs)-miR-129-5p and miR-130a-3p-that may have an impact on VEGFR-2 expression in young and mature sensory and lower motor neurons. The expression level of VEGFR-2 was analyzed by using in situ hybridization, RT-qPCR, Western blot, and immunohistochemistry in developing rats. microRNAs were validated within the spinal cord and dorsal root ganglia. To unveil the molecular impact of our candidate microRNAs, dissociated cell cultures of sensory and lower motor neurons were transfected with mimics and inhibitors. We depicted age-dependent VEGFR-2 expression in sensory and lower motor neurons. In detail, in lower motor neurons, VEGFR-2 expression was significantly reduced during maturation, in conjunction with an increased level of miR-129-5p. In sensory dorsal root ganglia, VEGFR-2 expression increased during maturation and was accompanied by an overexpression of miR-130a-3p. In a second step, the functional significance of these microRNAs with respect to VEGFR-2 expression was proven. Whereas miR-129-5p seems to decrease VEGFR-2 expression in a direct manner in the CNS, miR-130a-3p might indirectly control VEGFR-2 expression in the PNS. A detailed understanding of genetic VEGFR-2 expression control might promote new strategies for the treatment of severe neurological diseases like ischemia or peripheral nerve injury.
Collapse
Affiliation(s)
- Kevin Glaesel
- Department of Cytology, Institute of Anatomy, Ruhr University Bochum, 44780 Bochum, Germany; (K.G.); (V.M.); (V.T.)
| | - Caroline May
- Medical Proteom-Center, Ruhr University Bochum, 44780 Bochum, NRW, Germany; (C.M.); (K.M.)
| | - Katrin Marcus
- Medical Proteom-Center, Ruhr University Bochum, 44780 Bochum, NRW, Germany; (C.M.); (K.M.)
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr University Bochum, 44780 Bochum, Germany; (K.G.); (V.M.); (V.T.)
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr University Bochum, 44780 Bochum, Germany; (K.G.); (V.M.); (V.T.)
- Correspondence: ; Tel.: +49-234-32-25018
| | - Verena Theis
- Department of Cytology, Institute of Anatomy, Ruhr University Bochum, 44780 Bochum, Germany; (K.G.); (V.M.); (V.T.)
| |
Collapse
|
8
|
Hartung F, Krüwel T, Shi X, Pfizenmaier K, Kontermann R, Chames P, Alves F, Pardo LA. A Novel Anti-Kv10.1 Nanobody Fused to Single-Chain TRAIL Enhances Apoptosis Induction in Cancer Cells. Front Pharmacol 2020; 11:686. [PMID: 32528281 PMCID: PMC7246340 DOI: 10.3389/fphar.2020.00686] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/27/2020] [Indexed: 01/11/2023] Open
Abstract
Antibody-based therapies hold promise for a safe and efficient treatment of cancer. The identification of target tumor cells through a specific antigen enriched on their surface and the subsequent delivery of the therapeutic agent only to those cells requires, besides the efficacy of the therapeutic agent itself, the identification of an antigen enriched on the surface of tumor cells, the generation of high affinity antibodies against that antigen. We have generated single-domain antibodies (nanobodies) against the voltage-gated potassium channel Kv10.1, which outside of the brain is detectable almost exclusively in tumor cells. The nanobody with highest affinity was fused to an improved form of the tumor necrosis factor-related apoptosis inducing ligand TRAIL, to target this cytokine to the surface of tumor cells. The resulting construct, VHH-D9-scTRAIL, shows rapid and strong apoptosis induction in different tumor models in cell culture. The construct combines two sources of specificity, the expression of the antigen restricted to tumor cells and the tumor selectivity of TRAIL. Such specificity combined with the high affinity obtained through nanobodies make the novel agent a promising concept for cancer therapy.
Collapse
Affiliation(s)
- Franziska Hartung
- Oncophysiology Group, Max Planck, Institute of Experimental Medicine, Göttingen, Germany
| | - Thomas Krüwel
- Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| | - Xiaoyi Shi
- Oncophysiology Group, Max Planck, Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus Pfizenmaier
- Institut für Zellbiologie und Immunologie, Universität Stuttgart, Stuttgart, Germany
| | - Roland Kontermann
- Institut für Zellbiologie und Immunologie, Universität Stuttgart, Stuttgart, Germany
| | - Patrick Chames
- Aix Marseille Univ, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Frauke Alves
- Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany.,Translational Molecular Imaging Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Luis A Pardo
- Oncophysiology Group, Max Planck, Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
9
|
Maor G, Rapaport D, Horowitz M. The effect of mutant GBA1 on accumulation and aggregation of α-synuclein. Hum Mol Genet 2020; 28:1768-1781. [PMID: 30615125 DOI: 10.1093/hmg/ddz005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/25/2018] [Accepted: 01/01/2019] [Indexed: 02/03/2023] Open
Abstract
Gaucher disease (GD) patients and carriers of GD mutations have a higher propensity to develop Parkinson's disease (PD) in comparison to the non-GD population. This implies that mutant GBA1 allele is a predisposing factor for the development of PD. One of the major characteristics of PD is the presence of oligomeric α-synuclein-positive inclusions known as Lewy bodies in the dopaminergic neurons localized to the substantia nigra pars compacta. In the present study we tested whether presence of human mutant GCase leads to accumulation and aggregation of α-synuclein in two models: in SHSY5Y neuroblastoma cells endogenously expressing α-synuclein and stably transfected with human GCase variants, and in Drosophila melanogaster co-expressing normal human α-synuclein and mutant human GCase. Our results showed that heterologous expression of mutant, but not WT, human GCase in SHSY5Y cells, led to a significant stabilization of α-synuclein and to its aggregation. In parallel, there was also a significant stabilization of mutant, but not WT, GCase. Co-expression of human α-synuclein and human mutant GCase in the dopaminergic cells of flies initiated α-synuclein aggregation, earlier death of these cells and significantly shorter life span, compared with flies expressing α-synuclein or mutant GCase alone. Taken together, our results strongly indicate that human mutant GCase contributes to accumulation and aggregation of α-synuclein. In the fly, this aggregation leads to development of more severe parkinsonian signs in comparison to flies expressing either mutant GCase or α-synuclein alone.
Collapse
Affiliation(s)
- Gali Maor
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Debora Rapaport
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Mia Horowitz
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| |
Collapse
|
10
|
Xu L, Zheng YL, Yin X, Xu SJ, Tian D, Zhang CY, Wang S, Ma JZ. Excessive Treadmill Training Enhances Brain-Specific MicroRNA-34a in the Mouse Hippocampus. Front Mol Neurosci 2020; 13:7. [PMID: 32082120 PMCID: PMC7002558 DOI: 10.3389/fnmol.2020.00007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/13/2020] [Indexed: 01/19/2023] Open
Abstract
Background: An imbalance between total training load and total recovery may cause overtraining (OT). The purpose of the present study was to verify the effects of OT on the expression of brain-derived neurotrophic factor (BDNF), its receptor tropomyosin receptor kinase B (TrkB) and p75 and the dynamic expression patterns of brain-specific miR-34a and miR-124 or inflammation-related miR-21 and miR-132 in the mouse hippocampus. Method: Eight weeks old C57BL/6J mice were randomly assigned to the control (CON), normal training (NT) and OT groups. An 8-week OT training protocol was applied to evaluate the phenotype of mice endurance (incremental load test, ILT) and cognitive capacity (Morris water maze test). We used qRT-PCR and immunoblotting to detect changes in the molecular level of hippocampal samples. Result: Compared with the CON, both NT and OT decreased bodyweight after 8-week training. After 8-week of training, NT increased the exhaustion velocity (EV) while the EV of OT was lower than NT. Mice in NT decreased the escape latency than CON. The percentage of time spent in the probe quadrant and the number of crossing platform times in NT were higher than CON and OT. The BDNF, p75 and TrkB mRNA levels were increased in NT than CON, only the p75 mRNA was increased in OT. The NT exhibited increased protein levels of BDNF and TrkB compared to CON. The protein expression of BDNF was decreased in OT than NT and CON. The protein level of p75 in the OT was higher than in NT and CON. In addition, the phosphorylation level of TrkB in OT was higher than CON and NT. Only the miR-34a level was increased in the OT. Moreover, the expression of miR-34a was found to be negatively correlated with the expression of BDNF, and the increase in miR-34a level was accompanied by a decrease in performance. Conclusion: In summary, the training-evoked increase in the BDNF level may help to improve performance, whereas this conditioning is lost after OT. Moreover, miR-34a potentially mediated changes in the expression of BDNF and may reflect the decrease in performance after OT.
Collapse
Affiliation(s)
- Lin Xu
- Department of Exercise and Health, Nanjing Sport Institute, Nanjing, China.,The Research Center of Military Exercise Science, The Army Engineering University of PLA, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Yi Li Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Xin Yin
- Department of Exercise and Health, Nanjing Sport Institute, Nanjing, China.,The Research Center of Military Exercise Science, The Army Engineering University of PLA, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Sheng Jia Xu
- The Research Center of Military Exercise Science, The Army Engineering University of PLA, Nanjing, China
| | - Dong Tian
- The Research Center of Military Exercise Science, The Army Engineering University of PLA, Nanjing, China
| | - Chen Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Sen Wang
- Department of Geriatric Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ji Zheng Ma
- The Research Center of Military Exercise Science, The Army Engineering University of PLA, Nanjing, China
| |
Collapse
|
11
|
Chua CEL, Tang BL. miR-34a in Neurophysiology and Neuropathology. J Mol Neurosci 2018; 67:235-246. [DOI: 10.1007/s12031-018-1231-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/22/2018] [Indexed: 12/28/2022]
|
12
|
Signature of Aberrantly Expressed microRNAs in the Striatum of Rotenone-Induced Parkinsonian Rats. Neurochem Res 2018; 43:2132-2140. [DOI: 10.1007/s11064-018-2638-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/25/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022]
|
13
|
Delivery of miRNA-Targeted Oligonucleotides in the Rat Striatum by Magnetofection with Neuromag ®. Molecules 2018; 23:molecules23071825. [PMID: 30041414 PMCID: PMC6099620 DOI: 10.3390/molecules23071825] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/17/2018] [Accepted: 07/21/2018] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression at posttranscriptional level by triggering RNA interference. In such a sense, aberrant expressions of miRNAs play critical roles in the pathogenesis of many disorders, including Parkinson’s disease (PD). Controlling the level of specific miRNAs in the brain is thus a promising therapeutic strategy for neuroprotection. A fundamental need for miRNA regulation (either replacing or inhibition) is a carrier capable of delivering oligonucleotides into brain cells. This study aimed to examine a polymeric magnetic particle, Neuromag®, for delivery of synthetic miRNA inhibitors in the rat central nervous system. We injected the miRNA inhibitor complexed with Neuromag® into the lateral ventricles next to the striatum, by stereotaxic surgery. Neuromag efficiently delivered oligonucleotides in the striatum and septum areas, as shown by microscopy imaging of fluorescein isothiocyanate (FITC)-labeled oligos in astrocytes and neurons. Transfected oligos showed efficacy concerning miRNA inhibition. Neuromag®-structured miR-134 antimiR (0.36 nmol) caused a significant 0.35 fold decrease of striatal miR-134, as revealed by real-time quantitative polymerase chain reaction (RT-qPCR). In conclusion, the polymeric magnetic particle Neuromag® efficiently delivered functional miRNA inhibitors in brain regions surrounding lateral ventricles, particularly the striatum. This delivery system holds potential as a promising miRNA-based disease-modifying drug and merits further pre-clinical studies using animal models of PD.
Collapse
|