1
|
Rakhshan K, Mohammadkhanizadeh A, Saberi Pirouz M, Azizi Y. Diosgenin Ameliorates Cardiac Function following Myocardial Ischemia Through Angiogenic and Anti-Fibrotic Properties; An Experimental Study. ARCHIVES OF ACADEMIC EMERGENCY MEDICINE 2025; 13:e40. [PMID: 40352098 PMCID: PMC12065035 DOI: 10.22037/aaemj.v13i1.2483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Introduction Angiogenesis through restoration of blood supply to the ischemic myocardium is a pivotal process that contributes to cardiac repair and leads to improvement of myocardial function. This study was conducted to evaluate cardioprotective effects of Diosgenin against myocardial infarction (MI) with focus on angiogenesis, myocardial fibrosis, and oxidative stress. Methods 4 groups of male Wistar rats were considered for this study: (1) sham, (2) MI, (3) MI+Vehicle and (4) MI+Diosgenin. MI model was created by occluding left anterior descending (LAD) artery for 30 minutes and reperfusion was established for 14 days by opening this artery. Diosgenin (50 mg/kg) was given orally to the rats for 21 days (from 7 days before MI induction until the end of the 14-day reperfusion period). Cardiac injury markers including troponin I, creatine kinase-MB (CK-MB), and lactate dehydrogenase (LDH) were measured using enzyme-linked immunosorbent assay (ELISA), same as cardiac stress oxidative markers (superoxide dismutase (SOD), Malondialdehyde (MDA), reduced glutathione (GSH)). Echocardiography was used to measure heart function parameters and myocardial fibrosis was assessed via a specific tissue staining named Masson׳s trichrome. Blood vessel staining kit was used to assess left ventricular angiogenesis. Results Ischemia-reperfusion injury increased serum levels of troponin I, CK-MB and LDH, as well as cardiac malondialdehyde (MDA) and myocardial fibrosis. MI also decreased myocardial function (Ejection fraction (EF)% and Fractional shortening (FS)%) and Diosgenin treatment reversed these parameters. Capillary density as marker of angiogenesis significantly increased in all of MI groups. However, development of angiogenesis was significantly higher in Diosgenin group compared with MI group. Conclusion Diosgenin exerts cardioprotective effects against ischemia-reperfusion injury by strengthening cardiac antioxidant defense and reducing deposition of collagen fibers. It seems that the strengthening of angiogenesis in heart tissue is one of the main mechanisms of Diosgenin to increase the heart's resistance against ischemia.
Collapse
Affiliation(s)
- Kamran Rakhshan
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammadkhanizadeh
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Saberi Pirouz
- Electrophysiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Azizi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Luo Y, Lu J, Wang Z, Wang L, Wu G, Guo Y, Dong Z. Small ubiquitin-related modifier (SUMO)ylation of SIRT1 mediates (-)-epicatechin inhibited- differentiation of cardiac fibroblasts into myofibroblasts. PHARMACEUTICAL BIOLOGY 2022; 60:1762-1770. [PMID: 36086802 PMCID: PMC9467557 DOI: 10.1080/13880209.2022.2101672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT (-)-Epicatechin (EPI) is a crucial substance involved in the protective effects of flavanol-rich foods. Previous studies have indicated EPI has a cardioprotective effect, but the molecular mechanisms in inhibition of cardiac fibrosis are unclear. OBJECTIVE We evaluated the effect of EPI in preventing cardiac fibrosis and the underlying molecular mechanism related to the SIRT1-SUMO1/AKT/GSK3β pathway. MATERIALS AND METHODS Cardiac fibrosis mice model was established with transaortic constriction (TAC). Male C57BL/6 mice were randomly separated into 4 groups. Mice received 1 mg/kg/day of EPI or vehicle orally for 4 weeks. The acutely isolated cardiac fibroblasts were induced to myofibroblasts with 1 µM angiotensin II (Ang II). The cardiac function was measured with the ultrasonic instrument. Histological analysis of mice's hearts was determined with H&E or Masson method. The protein level of fibrosis markers, SUMOylation of SIRT1, and AKT/GSK3β pathway were quantified by immunofluorescence and western blot. RESULTS EPI treatment (1 mg/kg/day) could reverse the TAC-induced decline in LVEF (TAC, 61.28% ± 1.33% vs. TAC + EPI, 74.00% ± 1.64%), LVFS (TAC, 28.16% ± 0.89% vs. TAC + EPI, 37.18% ± 1.29%). Meantime, we found that 10 µM EPI blocks Ang II-induced transformation of cardiac fibroblasts into myofibroblasts. The underlying mechanism of EPI-inhibited myofibroblasts transformation involves activation of SUMOylation of SIRT1 through SP1. Furthermore, SUMOylation of SIRT1 inhibited Ang II-induced fibrogenic effect via the AKT/GSK3β pathway. CONCLUSION EPI plays a protective effect on cardiac fibrosis by regulating the SUMO1-dependent modulation of SIRT1, which provides a theoretical basis for use in clinical therapies.
Collapse
Affiliation(s)
- Yingchun Luo
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jing Lu
- Department of Pharmacy, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zeng Wang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Lu Wang
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Guodong Wu
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yuanyuan Guo
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zengxiang Dong
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Semwal P, Painuli S, Abu-Izneid T, Rauf A, Sharma A, Daştan SD, Kumar M, Alshehri MM, Taheri Y, Das R, Mitra S, Emran TB, Sharifi-Rad J, Calina D, Cho WC. Diosgenin: An Updated Pharmacological Review and Therapeutic Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1035441. [PMID: 35677108 PMCID: PMC9168095 DOI: 10.1155/2022/1035441] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 05/09/2022] [Indexed: 02/07/2023]
Abstract
Plants including Rhizoma polgonati , Smilax china , and Trigonella foenum-graecum contain a lot of diosgenin, a steroidal sapogenin. This bioactive phytochemical has shown high potential and interest in the treatment of various disorders such as cancer, diabetes, arthritis, asthma, and cardiovascular disease, in addition to being an important starting material for the preparation of several steroidal drugs in the pharmaceutical industry. This review aims to provide an overview of the in vitro, in vivo, and clinical studies reporting the diosgenin's pharmacological effects and to discuss the safety issues. Preclinical studies have shown promising effects on cancer, neuroprotection, atherosclerosis, asthma, bone health, and other pathologies. Clinical investigations have demonstrated diosgenin's nontoxic nature and promising benefits on cognitive function and menopause. However, further well-designed clinical trials are needed to address the other effects seen in preclinical studies, as well as a better knowledge of the diosgenin's safety profile.
Collapse
Affiliation(s)
- Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, Dehradun, 248002 Uttarakhand, India
| | - Sakshi Painuli
- Department of Biotechnology, Graphic Era University, Dehradun, 248002 Uttarakhand, India
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences Department, College of Pharmacy, Al Ain University, Al Ain 64141, UAE
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar-23561, K.P .K, Pakistan
| | - Anshu Sharma
- Department of Food Science and Technology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, 173230, India
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
4
|
Gu L, Zheng H, Zhao R, Zhang X, Wang Q. Diosgenin inhibits the proliferation of gastric cancer cells via inducing mesoderm posterior 1 down-regulation-mediated alternative reading frame expression. Hum Exp Toxicol 2021; 40:S632-S645. [PMID: 34806916 DOI: 10.1177/09603271211053292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Whether and how mesoderm posterior 1 (MESP1) plays a role in the proliferation of gastric cancer cells remain unclear. METHODS The expression of MESP1 was compared in 48 human gastric cancer tissues and adjacent normal tissues. Knockdown of MESP1 was performed to investigate the role of MESP1 in the proliferation and apoptosis of BGC-823 and MGC-803 gastric cancer cells. Knockdown of alternative reading frame (ARF) was performed to study the role of ARF in the inhibitory effect of MESP1 knockdown on cell proliferation in gastric cancer cells. Mouse subcutaneous xenograft tumor model bearing BGC-823 cells was used to investigate the role of MESP1 in the growth of gastric tumor in vivo. The effect of seven active ingredients from T. terrestris on MESP1 expression was tested. The anti-cancer effect of diosgenin was confirmed in gastric cancer cells. MESP1 dependence of the anti-cancer effect of diosgenin was confirmed by MESP1 knockdown. RESULTS MESP1 was highly expressed in human gastric cancer tissues (p < 0.05). MESP1 knockdown induced apoptosis and up-regulated the expression of ARF in gastric cancer cells (p < 0.05). Knockdown of ARF attenuated the anti-cancer effect of MESP1 knockdown (p < 0.05). In addition, MESP1 knockdown also suppressed tumor growth in vivo (p < 0.05). Diosgenin inhibits both mRNA and protein expression of MESP1 (p < 0.05). MESP1 knockdown attenuated the anti-cancer effect of diosgenin (p < 0.05). CONCLUSIONS MESP1 promotes the proliferation of gastric cancer cells via inhibiting ARF expression. Diosgenin exerts anti-cancer effect through inhibiting MESP1 expression in gastric cancer cells.
Collapse
Affiliation(s)
- Lin Gu
- Department of Gastroenterology, 74540The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, P. R. China
| | - Hailun Zheng
- Department of Gastroenterology, 74540The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, P. R. China
| | - Rui Zhao
- Department of Gastroenterology, 74540The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, P. R. China
| | - Xiaojing Zhang
- Department of Surgical Oncology, 74540The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, P. R. China
| | - Qizhi Wang
- Department of Gastroenterology, 74540The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, P. R. China
| |
Collapse
|
5
|
Li X, Liu S, Qu L, Chen Y, Yuan C, Qin A, Liang J, Huang Q, Jiang M, Zou W. Dioscin and diosgenin: Insights into their potential protective effects in cardiac diseases. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114018. [PMID: 33716083 DOI: 10.1016/j.jep.2021.114018] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/07/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND ETHNOPHARMACOLOGICAL RELEVANCE Dioscin and diosgenin derived from plants of the genus Dioscoreaceae such as D. nipponica and D. panthaica Prain et Burk. Were utilized as the main active ingredients of traditional herbal medicinal products for coronary heart disease in the former Soviet Union and China since 1960s. A growing number of research showed that dioscin and diosgenin have a wide range of pharmacological activities in heart diseases. AIM OF THE STUDY To summarize the evidence of the effectiveness of dioscin and diosgenin in cardiac diseases, and to provide a basis and reference for future research into their clinical applications and drug development in the field of cardiac disease. METHODS Literatures in this review were searched in PubMed, ScienceDirect, Google Scholar, China National Knowledge Infrastructure (CNKI) and Web of Science. All eligible studies are analyzed and summarized in this review. RESULTS The pharmacological activities and therapeutic potentials of dioscin and diosgenin in cardiac diseases are similar, can effectively improve hypertrophic cardiomyopathy, arrhythmia, myocardial I/R injury and cardiotoxicity caused by doxorubicin. But the bioavailability of dioscin and diosgenin may be too low as a result of poor absorption and slow metabolism, which hinders their development and utilization. CONCLUSION Dioscin and diosgenin need further in-depth experimental research, clinical transformation and structural modification or research of new preparations before they can be expected to be developed into new therapeutic drugs in the field of cardiac disease.
Collapse
Affiliation(s)
- Xiaofen Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Sili Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Liping Qu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yang Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chuqiao Yuan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Anquan Qin
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jiyi Liang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Qianqian Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Miao Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Wenjun Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
6
|
Yao Y, Hu C, Song Q, Li Y, Da X, Yu Y, Li H, Clark IM, Chen Q, Wang QK. ADAMTS16 activates latent TGF-β, accentuating fibrosis and dysfunction of the pressure-overloaded heart. Cardiovasc Res 2020; 116:956-969. [PMID: 31297506 DOI: 10.1093/cvr/cvz187] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/04/2019] [Accepted: 07/10/2019] [Indexed: 12/18/2022] Open
Abstract
AIMS Cardiac fibrosis is a major cause of heart failure (HF), and mediated by the differentiation of cardiac fibroblasts into myofibroblasts. However, limited tools are available to block cardiac fibrosis. ADAMTS16 is a member of the ADAMTS superfamily of extracellular protease enzymes involved in extracellular matrix (ECM) degradation and remodelling. In this study, we aimed to establish ADAMTS16 as a key regulator of cardiac fibrosis. METHODS AND RESULTS Western blot and qRT-PCR analyses demonstrated that ADAMTS16 was significantly up-regulated in mice with transverse aortic constriction (TAC) associated with left ventricular hypertrophy and HF, which was correlated with increased expression of Mmp2, Mmp9, Col1a1, and Col3a1. Overexpression of ADAMTS16 accelerated the AngII-induced activation of cardiac fibroblasts into myofibroblasts. Protein structural analysis and co-immunoprecipitation revealed that ADAMTS16 interacted with the latency-associated peptide (LAP)-transforming growth factor (TGF)-β via a RRFR motif. Overexpression of ADAMTS16 induced the activation of TGF-β in cardiac fibroblasts; however, the effects were blocked by a mutation of the RRFR motif to IIFI, knockdown of Adamts16 expression, or a TGF-β-neutralizing antibody (ΝAb). The RRFR tetrapeptide, but not control IIFI peptide, blocked the interaction between ADAMTS16 and LAP-TGF-β, and accelerated the activation of TGF-β in cardiac fibroblasts. In TAC mice, the RRFR tetrapeptide aggravated cardiac fibrosis and hypertrophy by up-regulation of ECM proteins, activation of TGF-β, and increased SMAD2/SMAD3 signalling, however, the effects were blocked by TGF-β-NAb. CONCLUSION ADAMTS16 promotes cardiac fibrosis, cardiac hypertrophy, and HF by facilitating cardiac fibroblasts activation via interacting with and activating LAP-TGF-β signalling. The RRFR motif of ADAMTS16 disrupts the interaction between ADAMTS16 and LAP-TGF-β, activates TGF-β, and aggravated cardiac fibrosis and hypertrophy. This study identifies a novel regulator of TGF-β signalling and cardiac fibrosis, and provides a new target for the development of therapeutic treatment of cardiac fibrosis and HF.
Collapse
Affiliation(s)
- Yufeng Yao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, PR China
| | - Changqing Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, PR China
| | - Qixue Song
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, PR China
| | - Yong Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, PR China
| | - Xingwen Da
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, PR China
| | - Yubin Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, PR China
| | - Hui Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, PR China
| | - Ian M Clark
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Qiuyun Chen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, OH 44195, USA.,Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, PR China.,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, OH 44195, USA.,Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA.,Department of Genetics and Genome Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Dinesh Babu V, Suresh Kumar A, Sudhandiran G. Diosgenin inhibits TGF-β1/Smad signaling and regulates epithelial mesenchymal transition in experimental pulmonary fibrosis. Drug Chem Toxicol 2020; 45:1264-1275. [PMID: 32924642 DOI: 10.1080/01480545.2020.1814803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a grave disease characterized by abnormal wound healing associated with chronic, progressive, irreversible fatal lung disease, leading to persistent injuries to the alveolar epithelium. A consequent disturbance of fibroblast proliferation and apoptosis results in subsequent release of pro-inflammatory and pro-fibrotic mediators coupled with accumulation of extracellular matrix within the interstitium. Inexorable distortion of lung alveolar architecture leads to respiratory failure with a median survival rate of 3-5 years. Currently available drugs can only slowdown the progression of fibrosis and novel drugs are warranted to treat this disease. In this study, we demonstrate the fibro-protective effect of diosgenin in experimental lung fibrosis through regulation of Epithelial Mesenchymal Transition (EMT). A single dose of 3 U/kg body weight (b.wt) Bleomycin (BLM) was administered intratracheally in Wistar male albino rats and fibrotic animals were treated with diosgenin (100 mg/kg b.wt) orally for 28 days. BLM administered rat show histological alteration with increased mast cell and collagen accumulation. BLM induced abnormalities were significantly reduced upon treatment with diosgenin. Western blot analysis revealed an increased level of pro-inflammatory and pro-fibrotic molecules such as IL-1β and TGF-β in BLM induced rats. Rats supplemented with diosgenin showed a decreased expression of inflammatory and pro-fibrotic mediators. Markers of EMT molecules were evaluated by immunoblot. The results of immunoblot demonstrate that diosgenin regulated the expression of TGF-β mediated EMT. Hence, from the overall study, administration of diosgenin prevents pulmonary fibrosis by restraint inflammation and EMT.
Collapse
Affiliation(s)
- Vadivel Dinesh Babu
- Department of Biochemistry, Cell Biology Laboratory, University of Madras, Chennai, India
| | | | - Ganapasam Sudhandiran
- Department of Biochemistry, Cell Biology Laboratory, University of Madras, Chennai, India
| |
Collapse
|
8
|
Parama D, Boruah M, Yachna K, Rana V, Banik K, Harsha C, Thakur KK, Dutta U, Arya A, Mao X, Ahn KS, Kunnumakkara AB. Diosgenin, a steroidal saponin, and its analogs: Effective therapies against different chronic diseases. Life Sci 2020; 260:118182. [PMID: 32781063 DOI: 10.1016/j.lfs.2020.118182] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic diseases are a major cause of mortality worldwide, and despite the recent development in treatment modalities, synthetic drugs have continued to show toxic side effects and development of chemoresistance, thereby limiting their application. The use of phytochemicals has gained attention as they show minimal side effects. Diosgenin is one such phytochemical which has gained importance for its efficacy against the life-threatening diseases, such as cardiovascular diseases, cancer, nervous system disorders, asthma, arthritis, diabetes, and many more. AIM To evaluate the literature available on the potential of diosgenin and its analogs in modulating different molecular targets leading to the prevention and treatment of chronic diseases. METHOD A detailed literature search has been carried out on PubMed for gathering information related to the sources, biosynthesis, physicochemical properties, biological activities, pharmacokinetics, bioavailability and toxicity of diosgenin and its analogs. KEY FINDINGS The literature search resulted in many in vitro, in vivo and clinical trials that reported the efficacy of diosgenin and its analogs in modulating important molecular targets and signaling pathways such as PI3K/AKT/mTOR, JAK/STAT, NF-κB, MAPK, etc., which play a crucial role in the development of most of the diseases. Reports have also revealed the safety of the compound and the adaptation of nanotechnological approaches for enhancing its bioavailability and pharmacokinetic properties. SIGNIFICANCE Thus, the review summarizes the efficacy of diosgenin and its analogs for developing as a potent drug against several chronic diseases.
Collapse
Affiliation(s)
- Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Monikongkona Boruah
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam 781001, India
| | - Kumari Yachna
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam 781001, India
| | - Aditya Arya
- Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Xinliang Mao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
9
|
Chen Y, Fan X. Use of Chou's 5-Steps Rule to Reveal Active Compound and Mechanism of Shuangshen Pingfei San on Idiopathic Pulmonary Fibrosis. Curr Mol Med 2019; 20:220-230. [PMID: 31612829 DOI: 10.2174/1566524019666191011160543] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Shuangshen Pingfei San (SPS) is the derivative from the classic formula Renshen Pingfei San in treating idiopathic pulmonary fibrosis (IPF). METHODS In this study, Chou's 5-steps rule was performed to explore the potential active compound and mechanism of SPS on IPF. Compound-target network, target- pathway network, herb-target network and the core gene target interaction network were established and analyzed. A total of 296 compounds and 69 candidate therapeutic targets of SPS in treating IPF were obtained. Network analysis revealed that the main active compounds were flavonoids (such as apigenin, quercetin, naringenin, luteolin), other clusters (such as ginsenoside Rh2, diosgenin, tanshinone IIa), which might also play significant roles. SPS regulated multiple IPF relative genes, which affect fibrosis (PTGS2, KDR, FGFR1, TGFB, VEGFA, MMP2/9) and inflammation (PPARG, TNF, IL13, IL4, IL1B, etc.). CONCLUSION In conclusion, anti-pulmonary fibrosis effect of SPS might be related to the regulation of inflammation and pro-fibrotic signaling pathways. These findings revealed that the potential active compounds and mechanisms of SPS on IPF were a benefit to further study.
Collapse
Affiliation(s)
- Yeqing Chen
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Xinsheng Fan
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| |
Collapse
|
10
|
Alkaloids from Nelumbinis Plumula (AFNP) ameliorate aortic remodeling via RhoA/ROCK pathway. Biomed Pharmacother 2019; 112:108651. [DOI: 10.1016/j.biopha.2019.108651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 12/21/2022] Open
|
11
|
Wu X, Liu Y, An J, Li J, Lv W, Geng S, Zhang Y. Piperlongumine inhibits angiotensin II-induced extracellular matrix expression in cardiac fibroblasts. J Cell Biochem 2018; 119:10358-10364. [PMID: 30145839 DOI: 10.1002/jcb.27379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/02/2018] [Indexed: 12/12/2022]
Abstract
Piperlongumine (PL), a single component isolated from Piper longum, has been reported to possess anti-inflammatory, antibacterial, antiangiogenic, antioxidant, antitumor, and antidiabetic activities. However, its role in cardiac fibrosis remains to be clarified. Therefore, we determined the effects of PL on cardiac fibroblasts (CFs) proliferation, and extracellular matrix (ECM) production under angiotensin II (Ang II) conditions, and further investigated the underlying molecular mechanism. Our data revealed that PL inhibited the proliferation and migration of CFs induced by Ang II. In addition, PL blocked the transformation of CFs to myofibroblasts induced by Ang II, as well as decreased cellular reactive oxygen species (ROS) production and malondialdehyde level in Ang II-stimulated CFs. Furthermore, PL significantly suppressed the Ang II-increased phosphorylation of extracellular regulated protein kinase 1/2 (ERK1/2) in CFs. Taken together, the results of the current study demonstrated that PL inhibits Ang II-induced cell proliferation, migration, and ECM expression in CFs through the inactivation of the ERR1/2 signaling pathway. These data strongly suggest that PL may be a promising therapeutic candidate for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Xianchuang Wu
- Department of Pharmacy, Huaihe Hospital, Henan University, Kaifeng, China
| | - Yuxin Liu
- Department of Pharmacy, Huaihe Hospital, Henan University, Kaifeng, China
| | - Jihong An
- Department of Pharmacy, Huaihe Hospital, Henan University, Kaifeng, China
| | - Jiahuan Li
- College of University, Henan University, Kaifeng, China
| | - Weiling Lv
- Department of Pharmacy, Huaihe Hospital, Henan University, Kaifeng, China
| | - Shengnan Geng
- College of University, Henan University, Kaifeng, China
| | - Yongzhou Zhang
- Department of Pharmacy, Huaihe Hospital, Henan University, Kaifeng, China
| |
Collapse
|
12
|
Yao Y, Li Y, Zeng X, Ye Z, Li X, Zhang L. Losartan Alleviates Renal Fibrosis and Inhibits Endothelial-to-Mesenchymal Transition (EMT) Under High-Fat Diet-Induced Hyperglycemia. Front Pharmacol 2018; 9:1213. [PMID: 30420805 PMCID: PMC6215973 DOI: 10.3389/fphar.2018.01213] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/05/2018] [Indexed: 12/17/2022] Open
Abstract
The endothelial-to-mesenchymal transition (EMT) of glomerular vascular endothelial cells is considered to be pivotal in diabetic nephropathy (DN). The risk of DN can be decreased by losartan, but the potential molecular mechanism(s) are not fully understood. Extensive data show that the EMT occurs in proximal tubular endothelial cells resulting in an endothelial phenotype switch (fibrotic matrix accumulation), consequently enhancing the development of renal interstitial fibrosis. Here, we found that losartan significantly ameliorated DN-induced renal fibrosis progression via inhibition of the EMT in mice. In vivo experiments suggested that losartan significantly alleviated microalbuminuria and pathologic changes under high-fat diet-induced hyperglycemia. Immunohistochemistry indicated that losartan suppressed the EMT in glomeruli. In addition, losartan decreased oxidative stress damage and inhibited the transforming growth factor (TGF)-β1/Smad pathway. Furthermore, consistent changes were detected in vitro where losartan markedly inhibited the EMT and TGF-β1/Smad pathway induced by high glucose in glomerular endothelial cells. Together, these results suggested that losartan could alleviate the EMT in glomeruli via inhibition of oxidative stress damage and the TGF-β1/Smad signaling pathway under hyperglycemia.
Collapse
Affiliation(s)
- Yufeng Yao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofei Zeng
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Zheng Ye
- College of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xia Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangdong, China
| | - Lu Zhang
- Wenhua College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Kim JK, Park SU. An update on the biological and pharmacological activities of diosgenin. EXCLI JOURNAL 2018; 17:24-28. [PMID: 29383016 PMCID: PMC5780621 DOI: 10.17179/excli2017-894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/13/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Jae Kwang Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| |
Collapse
|
14
|
Ramos-Enríquez MA, Iglesias-Arteaga MA. Synthesis of novel hybrid steroid dimers by BF 3·Et 2O-catalyzed aldol condensation of 2-formyl-estradiol diacetate and steroid sapogenins. Steroids 2017; 128:46-49. [PMID: 29066328 DOI: 10.1016/j.steroids.2017.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 12/27/2022]
Abstract
BF3·Et2O-catalyzed aldol condensation of steroid sapogenins with 2-formyl-estradiol diacetate afforded two novel classes of steroid dimers in which an estrogenic core is attached to the spirostanic side chain of an steroid sapogenin through an exocyclic double bond in position C-23, or through a spiro centre in C-22.
Collapse
Affiliation(s)
- Manuel A Ramos-Enríquez
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, CDMX, Mexico
| | - Martín A Iglesias-Arteaga
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, CDMX, Mexico.
| |
Collapse
|