1
|
Balukoff NC, Houk G, Gonzalez T, Berton Y, Ronfard V, Pastar I, Tomic-Canic M. Out of this World: Wound Healing on Earth and in Space. J Invest Dermatol 2025:S0022-202X(25)00027-2. [PMID: 39955658 DOI: 10.1016/j.jid.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 02/17/2025]
Abstract
Impaired wound healing is a significant concern for humans in space, where the unique microgravity environment poses challenges to the natural healing processes of the body. Similar to chronic wounds on earth, such as diabetic foot ulcers and venous leg ulcers, wounds inflicted in space exhibit delayed or impaired healing responses. These wounds share common features, including dysregulated cellular signaling, altered cytokine profiles, and impaired tissue regeneration. Little is known about the mechanisms underlying wound healing under microgravity. In this review, we focused on exploring the parallels between wound healing in space and chronic wounds on earth as a fundamental approach for developing effective countermeasures to promote healing and mitigate associated health risks during long-space missions.
Collapse
Affiliation(s)
- Nathan C Balukoff
- Wound Healing and Regenerative Medicine Research Program, Dr Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Garrett Houk
- Wound Healing and Regenerative Medicine Research Program, Dr Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Tammy Gonzalez
- Wound Healing and Regenerative Medicine Research Program, Dr Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
2
|
Zhong S, Zheng L, Wu Y, Sun S, Luo Q, Song G, Lü D, Long M. Rotating culture regulates the formation of HepaRG-derived liver organoids via YAP translocation. BMC Biol 2024; 22:262. [PMID: 39548509 PMCID: PMC11568593 DOI: 10.1186/s12915-024-02062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Liver organoid serves as an alternative model for liver pathophysiology in carbohydrate or lipid metabolism and xenobiotic metabolism transformation. Biomechanical cues including spaceflight mission can affect liver organoid construction and their related functions, but their underlying mechanisms are not fully understood yet. Here, a rotating cell culture device, namely Rotating Flat Chamber (RFC), was specifically designed for adhering cells or cell aggregated to elucidate the effects of altered gravity vector on HepaRG-derived liver organoids construction. RESULTS The organoids so formed under RFC presented the fast growth rate and large projection area. Meanwhile, the expressions of two pluripotency markers of SOX9 and CD44 were enhanced. This finding was positively correlated with the increased YAP expression and nuclear translocation as well as the elevated α4β6-integrin expression. Inhibition of YAP expression and nuclear translocation decreased the expression of SOX9 and CD44 under RFC, thereby attenuating the pluripotency of HepaRG-derived liver organoids. CONCLUSIONS In conclusion, we proposed a novel liver organoid construction method using rotating culture, by which the pluripotency of liver organoids so constructed is mediated by α4β6-integrin and YAP translocation. This work furthered the understanding in how the gravity vector orientation affects the construction of liver organoids and the related mechanotransductive pathways.
Collapse
Affiliation(s)
- Shaoyu Zhong
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Lu Zheng
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Wu
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shujin Sun
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Dongyuan Lü
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Mian Long
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
van den Nieuwenhof DWA, Moroni L, Chou J, Hinkelbein J. Cellular response in three-dimensional spheroids and tissues exposed to real and simulated microgravity: a narrative review. NPJ Microgravity 2024; 10:102. [PMID: 39505879 PMCID: PMC11541851 DOI: 10.1038/s41526-024-00442-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
The rising aging population underscores the need for advances in tissue engineering and regenerative medicine. Alterations in cellular response in microgravity might be pivotal in unraveling the intricate cellular mechanisms governing tissue and organ regeneration. Microgravity could improve multicellular spheroid, tissue, and organ formation. This review summarizes microgravity-induced cellular alterations and highlights the potential of tissue engineering in microgravity for future breakthroughs in space travel, transplantation, drug testing, and personalized medicine.
Collapse
Affiliation(s)
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Engineering, Maastricht University, Maastricht, The Netherlands
| | - Joshua Chou
- University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Jochen Hinkelbein
- Department of Anesthesiology, Intensive Care Medicine and Emergency Medicine, Johannes Wesling Klinikum Minden, University Hospital Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Mozneb M, Arzt M, Mesci P, Martin DMN, Pohlman S, Lawless G, Doraisingam S, Al Neyadi S, Barnawi R, Al Qarni A, Whitson PA, Shoffner J, Stoudemire J, Countryman S, Svendsen CN, Sharma A. Surface tension enables induced pluripotent stem cell culture in commercially available hardware during spaceflight. NPJ Microgravity 2024; 10:97. [PMID: 39402072 PMCID: PMC11473755 DOI: 10.1038/s41526-024-00435-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/06/2024] [Indexed: 10/17/2024] Open
Abstract
Low Earth Orbit (LEO) has emerged as a unique environment for evaluating altered stem cell properties in microgravity. LEO has become increasingly accessible for research and development due to progress in private spaceflight. Axiom Mission 2 (Ax-2) was launched as the second all-private astronaut mission to the International Space Station (ISS). Frozen human induced pluripotent stem cells (hiPSCs) expressing green fluorescent protein (GFP) under the SOX2 promoter, as well as fibroblasts differentiated from SOX2-GFP hiPSCs, were sent to the ISS. Astronauts then thawed and seeded both cell types into commercially available 96-well plates, which provided surface tension that reduced fluid movement out of individual wells and showed that hiPSCs or hiPSC-derived fibroblasts could survive either in suspension or attached to a Matrigel substrate. Furthermore, both cell types could be transfected with red fluorescent protein (RFP)-expressing plasmid. We demonstrate that hiPSCs and hiPSC-fibroblasts can be thawed in microgravity in off-the-shelf, commercially-available cell culture hardware, can associate into 3D spheroids or grow adherently in Matrigel, and can be transfected with DNA. This lays the groundwork for future biomanufacturing experiments in space.
Collapse
Affiliation(s)
- Maedeh Mozneb
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Madelyn Arzt
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | - Stephany Pohlman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - George Lawless
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | - Rayyanah Barnawi
- Axiom Space, Inc., Houston, TX, USA
- Saudi Space Commission, Riyadh, Saudi Arabia
| | - Ali Al Qarni
- Axiom Space, Inc., Houston, TX, USA
- Saudi Space Commission, Riyadh, Saudi Arabia
| | | | | | | | | | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Arun Sharma
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Nie HY, Ge J, Liu KG, Yue Y, Li H, Lin HG, Yan HF, Zhang T, Sun HW, Yang JW, Zhou JL, Cui Y. The effects of microgravity on stem cells and the new insights it brings to tissue engineering and regenerative medicine. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:1-17. [PMID: 38670635 DOI: 10.1016/j.lssr.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 01/06/2024] [Indexed: 04/28/2024]
Abstract
Conventional two-dimensional (2D) cell culture techniques may undergo modifications in the future, as life scientists have widely acknowledged the ability of three-dimensional (3D) in vitro culture systems to accurately simulate in vivo biology. In recent years, researchers have discovered that microgravity devices can address many challenges associated with 3D cell culture. Stem cells, being pluripotent cells, are regarded as a promising resource for regenerative medicine. Recent studies have demonstrated that 3D culture in microgravity devices can effectively guide stem cells towards differentiation and facilitate the formation of functional tissue, thereby exhibiting advantages within the field of tissue engineering and regenerative medicine. Furthermore, We delineate the impact of microgravity on the biological behavior of various types of stem cells, while elucidating the underlying mechanisms governing these alterations. These findings offer exciting prospects for diverse applications.
Collapse
Affiliation(s)
- Hong-Yun Nie
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jun Ge
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Kai-Ge Liu
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Yuan Yue
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hao Li
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China.
| | - Hai-Guan Lin
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Feng Yan
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Tao Zhang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Wei Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jian-Wu Yang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jin-Lian Zhou
- Department of Pathology, Strategic Support Force Medical Center, Beijing 100101, China
| | - Yan Cui
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China.
| |
Collapse
|
6
|
Ratushnyy AY, Buravkova LB. Microgravity Effects and Aging Physiology: Similar Changes or Common Mechanisms? BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1763-1777. [PMID: 38105197 DOI: 10.1134/s0006297923110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 12/19/2023]
Abstract
Despite the use of countermeasures (including intense physical activity), cosmonauts and astronauts develop muscle atony and atrophy, cardiovascular system failure, osteopenia, etc. All these changes, reminiscent of age-related physiological changes, occur in a healthy person in microgravity quite quickly - within a few months. Adaptation to the lost of gravity leads to the symptoms of aging, which are compensated after returning to Earth. The prospect of interplanetary flights raises the question of gravity thresholds, below which the main physiological systems will decrease their functional potential, similar to aging, and affect life expectancy. An important role in the aging process belongs to the body's cellular reserve - progenitor cells, which are involved in physiological remodeling and regenerative/reparative processes of all physiological systems. With age, progenitor cell count and their regenerative potential decreases. Moreover, their paracrine profile becomes pro-inflammatory during replicative senescence, disrupting tissue homeostasis. Mesenchymal stem/stromal cells (MSCs) are mechanosensitive, and therefore deprivation of gravitational stimulus causes serious changes in their functional status. The review compares the cellular effects of microgravity and changes developing in senescent cells, including stromal precursors.
Collapse
Affiliation(s)
- Andrey Yu Ratushnyy
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia.
| | - Ludmila B Buravkova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia
| |
Collapse
|
7
|
Cui Y, Liu W, Zhao S, Zhao Y, Dai J. Advances in Microgravity Directed Tissue Engineering. Adv Healthc Mater 2023; 12:e2202768. [PMID: 36893386 DOI: 10.1002/adhm.202202768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/28/2023] [Indexed: 03/11/2023]
Abstract
Tissue engineering aims to generate functional biological substitutes to repair, sustain, improve, or replace tissue function affected by disease. With the rapid development of space science, the application of simulated microgravity has become an active topic in the field of tissue engineering. There is a growing body of evidence demonstrating that microgravity offers excellent advantages for tissue engineering by modulating cellular morphology, metabolism, secretion, proliferation, and stem cell differentiation. To date, there have been many achievements in constructing bioartificial spheroids, organoids, or tissue analogs with or without scaffolds in vitro under simulated microgravity conditions. Herein, the current status, recent advances, challenges, and prospects of microgravity related to tissue engineering are reviewed. Current simulated-microgravity devices and cutting-edge advances of microgravity for biomaterials-dependent or biomaterials-independent tissue engineering to offer a reference for guiding further exploration of simulated microgravity strategies to produce engineered tissues are summarized and discussed.
Collapse
Affiliation(s)
- Yi Cui
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, China
| | - Weiyuan Liu
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Shuaijing Zhao
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Yannan Zhao
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jianwu Dai
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| |
Collapse
|
8
|
Zhou JQ, Wan HY, Wang ZX, Jiang N. Stimulating factors for regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells. World J Stem Cells 2023; 15:369-384. [PMID: 37342227 PMCID: PMC10277964 DOI: 10.4252/wjsc.v15.i5.369] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/21/2023] [Accepted: 03/29/2023] [Indexed: 05/26/2023] Open
Abstract
Mesenchymal stem cells (MSCs), distributed in many tissues in the human body, are multipotent cells capable of differentiating in specific directions. It is usually considered that the differentiation process of MSCs depends on specialized external stimulating factors, including cell signaling pathways, cytokines, and other physical stimuli. Recent findings have revealed other underrated roles in the differentiation process of MSCs, such as material morphology and exosomes. Although relevant achievements have substantially advanced the applicability of MSCs, some of these regulatory mechanisms still need to be better understood. Moreover, limitations such as long-term survival in vivo hinder the clinical application of MSCs therapy. This review article summarizes current knowledge regarding the differentiation patterns of MSCs under specific stimulating factors.
Collapse
Affiliation(s)
- Jia-Qi Zhou
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Hao-Yang Wan
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Zi-Xuan Wang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Nan Jiang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
9
|
Xu X, Zhao L, Terry PD, Chen J. Reciprocal Effect of Environmental Stimuli to Regulate the Adipogenesis and Osteogenesis Fate Decision in Bone Marrow-Derived Mesenchymal Stem Cells (BM-MSCs). Cells 2023; 12:1400. [PMID: 37408234 PMCID: PMC10216952 DOI: 10.3390/cells12101400] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
Mesenchymal stem cells derived from bone marrow (BM-MSCs) can differentiate into adipocytes and osteoblasts. Various external stimuli, including environmental contaminants, heavy metals, dietary, and physical factors, are shown to influence the fate decision of BM-MSCs toward adipogenesis or osteogenesis. The balance of osteogenesis and adipogenesis is critical for the maintenance of bone homeostasis, and the interruption of BM-MSCs lineage commitment is associated with human health issues, such as fracture, osteoporosis, osteopenia, and osteonecrosis. This review focuses on how external stimuli shift the fate of BM-MSCs towards adipogenesis or osteogenesis. Future studies are needed to understand the impact of these external stimuli on bone health and elucidate the underlying mechanisms of BM-MSCs differentiation. This knowledge will inform efforts to prevent bone-related diseases and develop therapeutic approaches to treat bone disorders associated with various pathological conditions.
Collapse
Affiliation(s)
- Xinyun Xu
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Ling Zhao
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Paul D. Terry
- Department of Medicine, Graduate School of Medicine, The University of Tennessee, Knoxville, TN 37920, USA;
| | - Jiangang Chen
- Department of Public Health, The University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
10
|
Fu Z, Hou Y, Haugen HJ, Chen X, Tang K, Fang L, Liu Y, Zhang S, Ma Q, Chen L. TiO 2 nanostructured implant surface-mediated M2c polarization of inflammatory monocyte requiring intact cytoskeleton rearrangement. J Nanobiotechnology 2023; 21:1. [PMID: 36593461 PMCID: PMC9809010 DOI: 10.1186/s12951-022-01751-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Microgravity directly disturbs the reorganization of the cytoskeleton, exerting profound effects on the physiological process of macrophages. Although it has been established that macrophage M1/M2 polarization could be manipulated by the surface nanostructure of biomaterial in our previous study under normal gravity, how will inflammatory monocytes (iMos)-derived macrophages respond to diverse nanostructured Ti surfaces under normal gravity or microgravity remains unrevealed. RESULTS In this study, Cytochalasin D, a cytoskeleton relaxant, was employed to establish the simulated microgravity (SMG) environment. Our results showed that human iMos polarized into M2c macrophages on NT5 surface but M1 type on NT20 surface with divergent inflammatory phenotypes according to the profile of macrophage polarization featured molecules under normal gravity. However, such manipulative effects of NTs surfaces on iMos-derived macrophages were strikingly weakened by SMG, characterized by the altered macrophage morphology, changed cytokine secretion profile, and decreased cell polarization capacity. CONCLUSIONS To our knowledge, this is the first metallic implantable material study focusing on the functions of specific monocyte subsets and its crucial role of the cytoskeleton in materials-mediated host immune response, which enriches our mechanism knowledge about the crosstalk between immunocytes and biomaterials. The results obtained in the present study may also provide potential targets and strategies for biomaterial development and clinical treatment via precise immune-regulation under normal gravity and microgravity.
Collapse
Affiliation(s)
- Zhaoyue Fu
- grid.233520.50000 0004 1761 4404Department of Immunology, School of Basic Medicine, Fourth Military Medical University, 169 West Changle Road, Xi’an, 710032 People’s Republic of China
| | - Yongli Hou
- grid.233520.50000 0004 1761 4404Department of Immunology, School of Basic Medicine, Fourth Military Medical University, 169 West Changle Road, Xi’an, 710032 People’s Republic of China
| | - Håvard Jostein Haugen
- grid.5510.10000 0004 1936 8921Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| | - Xutao Chen
- grid.233520.50000 0004 1761 4404Department of Immunology, School of Basic Medicine, Fourth Military Medical University, 169 West Changle Road, Xi’an, 710032 People’s Republic of China
| | - Kang Tang
- grid.233520.50000 0004 1761 4404Department of Immunology, School of Basic Medicine, Fourth Military Medical University, 169 West Changle Road, Xi’an, 710032 People’s Republic of China
| | - Liang Fang
- grid.233520.50000 0004 1761 4404Department of Immunology, School of Basic Medicine, Fourth Military Medical University, 169 West Changle Road, Xi’an, 710032 People’s Republic of China
| | - Yong Liu
- grid.233520.50000 0004 1761 4404The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an, 710032 Shaanxi China
| | - Shu Zhang
- grid.233520.50000 0004 1761 4404The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an, 710032 Shaanxi China
| | - Qianli Ma
- grid.233520.50000 0004 1761 4404Department of Immunology, School of Basic Medicine, Fourth Military Medical University, 169 West Changle Road, Xi’an, 710032 People’s Republic of China ,grid.5510.10000 0004 1936 8921Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| | - Lihua Chen
- grid.233520.50000 0004 1761 4404Department of Immunology, School of Basic Medicine, Fourth Military Medical University, 169 West Changle Road, Xi’an, 710032 People’s Republic of China ,grid.233520.50000 0004 1761 4404The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an, 710032 Shaanxi China
| |
Collapse
|
11
|
Ogneva IV. Single Cell in a Gravity Field. Life (Basel) 2022; 12:1601. [PMID: 36295035 PMCID: PMC9604728 DOI: 10.3390/life12101601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023] Open
Abstract
The exploration of deep space or other bodies of the solar system, associated with a long stay in microgravity or altered gravity, requires the development of fundamentally new methods of protecting the human body. Most of the negative changes in micro- or hypergravity occur at the cellular level; however, the mechanism of reception of the altered gravity and transduction of this signal, leading to the formation of an adaptive pattern of the cell, is still poorly understood. At the same time, most of the negative changes that occur in early embryos when the force of gravity changes almost disappear by the time the new organism is born. This review is devoted to the responses of early embryos and stem cells, as well as terminally differentiated germ cells, to changes in gravity. An attempt was made to generalize the data presented in the literature and propose a possible unified mechanism for the reception by a single cell of an increase and decrease in gravity based on various deformations of the cortical cytoskeleton.
Collapse
Affiliation(s)
- Irina V Ogneva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia
| |
Collapse
|
12
|
Long-term osteogenic differentiation of human bone marrow stromal cells in simulated microgravity: novel proteins sighted. Cell Mol Life Sci 2022; 79:536. [PMID: 36181557 PMCID: PMC9526692 DOI: 10.1007/s00018-022-04553-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022]
Abstract
Microgravity-induced bone loss is a major concern for space travelers. Ground-based microgravity simulators are crucial to study the effect of microgravity exposure on biological systems and to address the limitations posed by restricted access to real space. In this work, for the first time, we adopt a multidisciplinary approach to characterize the morphological, biochemical, and molecular changes underlying the response of human bone marrow stromal cells to long-term simulated microgravity exposure during osteogenic differentiation. Our results show that osteogenic differentiation is reduced while energy metabolism is promoted. We found novel proteins were dysregulated under simulated microgravity, including CSC1-like protein, involved in the mechanotransduction of pressure signals, and PTPN11, SLC44A1 and MME which are involved in osteoblast differentiation pathways and which may become the focus of future translational projects. The investigation of cell proteome highlighted how simulated microgravity affects a relatively low number of proteins compared to time and/or osteogenic factors and has allowed us to reconstruct a hypothetical pipeline for cell response to simulated microgravity. Further investigation focused on the application of nanomaterials may help to increase understanding of how to treat or minimize the effects of microgravity.
Collapse
|
13
|
Mian A, Aamir Mian M. Space Medicine: Inspiring a new generation of physicians. Postgrad Med J 2022:7150864. [PMID: 37137531 DOI: 10.1136/pmj-2022-141875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/18/2022] [Indexed: 11/03/2022]
Abstract
Space medicine is critical in enabling safe human exploration of space. The discipline focuses on supporting human survival, health, and performance in the austere environment of space. It is set to grow ever more important as significant transitions in the standard of space operations in the suborbital, low earth orbit (LEO) and beyond LEO domains will take place in the coming years. NASA along with their international and commercial partners have committed to returning to the Moon through the Artemis missions in this decade with the aim of achieving a permanent sustainable human presence on the lunar surface. Additionally, the development of reusable rockets is set to increase the number and frequency of humans going to space by making space travel more accessible. Commercial spaceflight and missions beyond LEO present many new challenges which space medicine physicians and researchers will need to address. Space medicine operates at the frontier of exploration, engineering, science and medicine. Aviation and Space Medicine (ASM) is the latest specialty to be recognised by the Royal College of Physicians and the General Medical Council in the UK. In this paper, we provide an introduction to space medicine, review the effects of spaceflight on human physiology and health along with countermeasures, medical and surgical issues in space, the varied roles of the ASM physician, challenges to UK space medicine practice and related research, and finally we explore the current representation of space medicine within the undergraduate curriculum.
Collapse
Affiliation(s)
- Areeb Mian
- Department of Surgery, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
14
|
Fujisawa K, Nishimura Y, Sakuragi A, Duponselle J, Matsumoto T, Yamamoto N, Murata T, Sakaida I, Takami T. Evaluation of the Effects of Microgravity on Activated Primary Human Hepatic Stellate Cells. Int J Mol Sci 2022; 23:ijms23137429. [PMID: 35806434 PMCID: PMC9266956 DOI: 10.3390/ijms23137429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 01/27/2023] Open
Abstract
In recent years, research has been conducted to develop new medical treatments by simulating environments existing in space, such as zero-gravity. In this study, we evaluated the cell proliferation and gene expression of activated primary human hepatic stellate cells (HHSteCs) under simulated microgravity (SMG). Under SMG, cell proliferation was slower than in 1 G, and the evaluation of gene expression changes on day 1 of SMG by serial analysis of gene expression revealed the presence of Sirtuin, EIF2 signaling, hippo signaling, and epithelial adherence junction signaling. Moreover, reactive oxygen species were upregulated under SMG, and when N-acetyl-cystein was added, no difference in proliferation between SMG and 1 G was observed, suggesting that the oxidative stress generated by mitochondrial dysfunction caused a decrease in proliferation. Upstream regulators such as smad3, NFkB, and FN were activated, and cell-permeable inhibitors such as Ly294002 and U0126 were inhibited. Immunohistochemistry performed to evaluate cytoskeletal changes showed that more β-actin was localized in the cortical layer under SMG.
Collapse
Affiliation(s)
- Koichi Fujisawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube 755-8505, Japan; (K.F.); (Y.N.); (A.S.); (T.M.); (I.S.)
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yuto Nishimura
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube 755-8505, Japan; (K.F.); (Y.N.); (A.S.); (T.M.); (I.S.)
| | - Akino Sakuragi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube 755-8505, Japan; (K.F.); (Y.N.); (A.S.); (T.M.); (I.S.)
| | - Jolien Duponselle
- Departement of Dermatology, University Hospital of Ghent, C. Heymanslaan 10, 9000 Ghent, Belgium;
| | - Toshihiko Matsumoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube 755-8505, Japan; (K.F.); (Y.N.); (A.S.); (T.M.); (I.S.)
| | - Naoki Yamamoto
- Health Administration Center, Yamaguchi University, Minami Kogushi 1-1-1, Ube 755-0046, Yamaguchi, Japan;
| | - Tomoaki Murata
- Institute of Laboratory Animals, Science Research Center, Yamaguchi University, Yamaguchi 755-8505, Japan;
| | - Isao Sakaida
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube 755-8505, Japan; (K.F.); (Y.N.); (A.S.); (T.M.); (I.S.)
| | - Taro Takami
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube 755-8505, Japan; (K.F.); (Y.N.); (A.S.); (T.M.); (I.S.)
- Correspondence: ; Tel.: +81-836-22-2887
| |
Collapse
|
15
|
Ning K, Liu S, Yang B, Wang R, Man G, Wang DE, Xu H. Update on the Effects of Energy Metabolism in Bone Marrow Mesenchymal Stem Cells Differentiation. Mol Metab 2022; 58:101450. [PMID: 35121170 PMCID: PMC8888956 DOI: 10.1016/j.molmet.2022.101450] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/16/2022] [Accepted: 01/27/2022] [Indexed: 11/29/2022] Open
Abstract
Background As common progenitor cells of osteoblasts and adipocytes, bone marrow mesenchymal (stromal) stem cells (BMSCs) play key roles in bone homeostasis, tissue regeneration, and global energy homeostasis; however, the intrinsic mechanism of BMSC differentiation is not well understood. Plasticity in energy metabolism allows BMSCs to match the divergent demands of osteo-adipogenic differentiation. Targeting BMSC metabolic pathways may provide a novel therapeutic perspective for BMSC differentiation unbalance related diseases. Scope of review This review covers the recent studies of glucose, fatty acids, and amino acids metabolism fuel the BMSC differentiation. We also discuss recent findings about energy metabolism in BMSC differentiation. Major conclusions Glucose, fatty acids, and amino acids metabolism provide energy to fuel BMSC differentiation. Moreover, some well-known regulators including environmental stress, hormone drugs, and biological and pathological factors may also influence BMSC differentiation by altering metabolism. This offers insight to the significance of metabolism on BMSC fate determination and provides the possibility of treating diseases related to BMSC differentiation, such as obesity and osteoporosis, from a metabolic perspective.
Collapse
|
16
|
Baran R, Marchal S, Garcia Campos S, Rehnberg E, Tabury K, Baselet B, Wehland M, Grimm D, Baatout S. The Cardiovascular System in Space: Focus on In Vivo and In Vitro Studies. Biomedicines 2021; 10:59. [PMID: 35052739 PMCID: PMC8773383 DOI: 10.3390/biomedicines10010059] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 12/13/2022] Open
Abstract
On Earth, humans are subjected to a gravitational force that has been an important determinant in human evolution and function. During spaceflight, astronauts are subjected to several hazards including a prolonged state of microgravity that induces a myriad of physiological adaptations leading to orthostatic intolerance. This review summarises all known cardiovascular diseases related to human spaceflight and focusses on the cardiovascular changes related to human spaceflight (in vivo) as well as cellular and molecular changes (in vitro). Upon entering microgravity, cephalad fluid shift occurs and increases the stroke volume (35-46%) and cardiac output (18-41%). Despite this increase, astronauts enter a state of hypovolemia (10-15% decrease in blood volume). The absence of orthostatic pressure and a decrease in arterial pressures reduces the workload of the heart and is believed to be the underlying mechanism for the development of cardiac atrophy in space. Cellular and molecular changes include altered cell shape and endothelial dysfunction through suppressed cellular proliferation as well as increased cell apoptosis and oxidative stress. Human spaceflight is associated with several cardiovascular risk factors. Through the use of microgravity platforms, multiple physiological changes can be studied and stimulate the development of appropriate tools and countermeasures for future human spaceflight missions in low Earth orbit and beyond.
Collapse
Affiliation(s)
- Ronni Baran
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark; (R.B.); (D.G.)
| | - Shannon Marchal
- Department of Astronomy, Catholic University of Leuven, 3000 Leuven, Belgium;
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.R.); (K.T.); (B.B.)
| | - Sebastian Garcia Campos
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (S.G.C.); (M.W.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Emil Rehnberg
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.R.); (K.T.); (B.B.)
- Department of Molecular Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.R.); (K.T.); (B.B.)
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.R.); (K.T.); (B.B.)
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (S.G.C.); (M.W.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark; (R.B.); (D.G.)
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (S.G.C.); (M.W.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Sarah Baatout
- Department of Astronomy, Catholic University of Leuven, 3000 Leuven, Belgium;
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.R.); (K.T.); (B.B.)
- Department of Molecular Biotechnology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
17
|
Interaction Network Provides Clues on the Role of BCAR1 in Cellular Response to Changes in Gravity. COMPUTATION 2021. [DOI: 10.3390/computation9080081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
When culturing cells in space or under altered gravity conditions on Earth to investigate the impact of gravity, their adhesion and organoid formation capabilities change. In search of a target where the alteration of gravity force could have this impact, we investigated p130cas/BCAR1 and its interactions more thoroughly, particularly as its activity is sensitive to applied forces. This protein is well characterized regarding its role in growth stimulation and adhesion processes. To better understand BCAR1′s force-dependent scaffolding of other proteins, we studied its interactions with proteins we had detected by proteome analyses of MCF-7 breast cancer and FTC-133 thyroid cancer cells, which are both sensitive to exposure to microgravity and express BCAR1. Using linked open data resources and our experiments, we collected comprehensive information to establish a semantic knowledgebase and analyzed identified proteins belonging to signaling pathways and their networks. The results show that the force-dependent phosphorylation and scaffolding of BCAR1 influence the structure, function, and degradation of intracellular proteins as well as the growth, adhesion and apoptosis of cells similarly to exposure of whole cells to altered gravity. As BCAR1 evidently plays a significant role in cell responses to gravity changes, this study reveals a clear path to future research performing phosphorylation experiments on BCAR1.
Collapse
|
18
|
Braddock M. From Target Identification to Drug Development in Space: Using the Microgravity Assist. Curr Drug Discov Technol 2021; 17:45-56. [PMID: 30648510 DOI: 10.2174/1570163816666190112150014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 12/19/2022]
Abstract
The unique nature of microgravity encountered in space provides an opportunity for drug discovery and development that cannot be replicated on Earth. From the production of superior protein crystals to the identification and validation of new drug targets to microarray analyses of transcripts attenuated by microgravity, there are numerous examples which demonstrate the benefit of exploiting the space environment. Moreover, studies conducted on Space Shuttle missions, the International Space Station and other craft have had a direct benefit for drug development programmes such as those directed against reducing bone and muscle loss or increasing bone formation. This review will highlight advances made in both drug discovery and development and offer some future insight into how drug discovery and associated technologies may be further advanced using the microgravity assist.
Collapse
Affiliation(s)
- Martin Braddock
- Sherwood Observatory, Mansfield and Sutton Astronomical Society, Coxmoor Road, Sutton-in-Ashfield, Nottinghamshire, NG17 5LF, United Kingdom
| |
Collapse
|
19
|
Riwaldt S, Corydon TJ, Pantalone D, Sahana J, Wise P, Wehland M, Krüger M, Melnik D, Kopp S, Infanger M, Grimm D. Role of Apoptosis in Wound Healing and Apoptosis Alterations in Microgravity. Front Bioeng Biotechnol 2021; 9:679650. [PMID: 34222218 PMCID: PMC8248797 DOI: 10.3389/fbioe.2021.679650] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Functioning as the outermost self-renewing protective layer of the human organism, skin protects against a multitude of harmful biological and physical stimuli. Consisting of ectodermal, mesenchymal, and neural crest-derived cell lineages, tissue homeostasis, and signal transduction are finely tuned through the interplay of various pathways. A health problem of astronauts in space is skin deterioration. Until today, wound healing has not been considered as a severe health concern for crew members. This can change with deep space exploration missions and commercial spaceflights together with space tourism. Albeit the molecular process of wound healing is not fully elucidated yet, there have been established significant conceptual gains and new scientific methods. Apoptosis, e.g., programmed cell death, enables orchestrated development and cell removal in wounded or infected tissue. Experimental designs utilizing microgravity allow new insights into the role of apoptosis in wound healing. Furthermore, impaired wound healing in unloading conditions would depict a significant challenge in human-crewed exploration space missions. In this review, we provide an overview of alterations in the behavior of cutaneous cell lineages under microgravity in regard to the impact of apoptosis in wound healing. We discuss the current knowledge about wound healing in space and simulated microgravity with respect to apoptosis and available therapeutic strategies.
Collapse
Affiliation(s)
- Stefan Riwaldt
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Aarhus, Denmark
| | - Desiré Pantalone
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Petra Wise
- The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto-von-Guericke University, Magdeburg, Germany
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto-von-Guericke University, Magdeburg, Germany
| | - Daniela Melnik
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Sascha Kopp
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto-von-Guericke University, Magdeburg, Germany
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto-von-Guericke University, Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
20
|
Abstract
Due to the ability to differentiate into variety of cell types, mesenchymal stem cells (MSCs) hold promise as source in cell-based therapy for treating injured tissue and degenerative diseases. The potential use of MSCs to replace or repair damaged tissues may depend on the efficient differentiation protocols to derive specialized cells without any negative side effects. Identification of appropriate cues that support the lineage-specific differentiation of stem cells is critical for tissue healing and cellular therapy. Recently, a number of stimuli have been utilized to direct the differentiation of stem cells. Biochemical stimuli such as small molecule, growth factor and miRNA have been traditionally used to regulate the fate of stem cells. In recent years, many studies have reported that biophysical stimuli including cyclic mechanical strain, fluid shear stress, microgravity, electrical stimulation, matrix stiffness and topography can also be sensed by stem cells through mechanical receptors, thus affecting the stem cell behaviors including their differentiation potential. In this paper, we review all the most recent literature on the application of biochemical and biophysical cues on regulating MSC differentiation. An extensive literature search was done using electronic database (Medline/Pubmed). Although there are still some challenges that need to be taken into consideration before translating these methods into clinics, biochemical and biophysical stimulation appears to be an attractive method to manipulate the lineage commitment of MSCs.
Collapse
|
21
|
Green MJ, Aylott JW, Williams P, Ghaemmaghami AM, Williams PM. Immunity in Space: Prokaryote Adaptations and Immune Response in Microgravity. Life (Basel) 2021; 11:life11020112. [PMID: 33540536 PMCID: PMC7912908 DOI: 10.3390/life11020112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
Immune dysfunction has long been reported by medical professionals regarding astronauts suffering from opportunistic infections both during their time in space and a short period afterwards once back on Earth. Various species of prokaryotes onboard these space missions or cultured in a microgravity analogue exhibit increased virulence, enhanced formation of biofilms, and in some cases develop specific resistance for specific antibiotics. This poses a substantial health hazard to the astronauts confined in constant proximity to any present bacterial pathogens on long space missions with a finite number of resources including antibiotics. Furthermore, some bacteria cultured in microgravity develop phenotypes not seen in Earth gravity conditions, providing novel insights into bacterial evolution and avenues for research. Immune dysfunction caused by exposure to microgravity may increase the chance of bacterial infection. Immune cell stimulation, toll-like receptors and pathogen-associated molecular patterns can all be altered in microgravity and affect immunological crosstalk and response. Production of interleukins and other cytokines can also be altered leading to immune dysfunction when responding to bacterial infection. Stem cell differentiation and immune cell activation and proliferation can also be impaired and altered by the microgravity environment once more adding to immune dysfunction in microgravity. This review elaborates on and contextualises these findings relating to how bacteria can adapt to microgravity and how the immune system subsequently responds to infection.
Collapse
Affiliation(s)
- Macauley J. Green
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (M.J.G.); (J.W.A.)
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (P.W.); (A.M.G.)
| | - Jonathan W. Aylott
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (M.J.G.); (J.W.A.)
| | - Paul Williams
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (P.W.); (A.M.G.)
| | - Amir M. Ghaemmaghami
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (P.W.); (A.M.G.)
| | - Philip M. Williams
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (M.J.G.); (J.W.A.)
- Correspondence:
| |
Collapse
|
22
|
Willey JS, Britten RA, Blaber E, Tahimic CG, Chancellor J, Mortreux M, Sanford LD, Kubik AJ, Delp MD, Mao XW. The individual and combined effects of spaceflight radiation and microgravity on biologic systems and functional outcomes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:129-179. [PMID: 33902391 PMCID: PMC8274610 DOI: 10.1080/26896583.2021.1885283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Both microgravity and radiation exposure in the spaceflight environment have been identified as hazards to astronaut health and performance. Substantial study has been focused on understanding the biology and risks associated with prolonged exposure to microgravity, and the hazards presented by radiation from galactic cosmic rays (GCR) and solar particle events (SPEs) outside of low earth orbit (LEO). To date, the majority of the ground-based analogues (e.g., rodent or cell culture studies) that investigate the biology of and risks associated with spaceflight hazards will focus on an individual hazard in isolation. However, astronauts will face these challenges simultaneously Combined hazard studies are necessary for understanding the risks astronauts face as they travel outside of LEO, and are also critical for countermeasure development. The focus of this review is to describe biologic and functional outcomes from ground-based analogue models for microgravity and radiation, specifically highlighting the combined effects of radiation and reduced weight-bearing from rodent ground-based tail suspension via hind limb unloading (HLU) and partial weight-bearing (PWB) models, although in vitro and spaceflight results are discussed as appropriate. The review focuses on the skeletal, ocular, central nervous system (CNS), cardiovascular, and stem cells responses.
Collapse
Affiliation(s)
| | | | - Elizabeth Blaber
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute
| | | | | | - Marie Mortreux
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center
| | - Larry D. Sanford
- Department of Radiation Oncology, Eastern Virginia Medical School
| | - Angela J. Kubik
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute
| | - Michael D. Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University
| | - Xiao Wen Mao
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University
| |
Collapse
|
23
|
Elkhenany H, Elkodous MA, Newby SD, El-Derby AM, Dhar M, El-Badri N. Tissue Engineering Modalities and Nanotechnology. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-3-030-55359-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Oss-Ronen L, Redden RA, Lelkes PI. Enhanced Induction of Definitive Endoderm Differentiation of Mouse Embryonic Stem Cells in Simulated Microgravity. Stem Cells Dev 2020; 29:1275-1284. [PMID: 32731794 DOI: 10.1089/scd.2020.0097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Directed in vitro differentiation of pluripotent stem cells toward definitive endoderm (DE) offers great research and therapeutic potential since these cells can further differentiate into cells of the respiratory and gastrointestinal tracts, as well as associated organs such as pancreas, liver, and thyroid. We hypothesized that culturing mouse embryonic stem cells (mESCs) under simulated microgravity (SMG) conditions in rotary bioreactors (BRs) will enhance the induction of directed DE differentiation. To test our hypothesis, we cultured the cells for 6 days in two-dimensional monolayer colony cultures or as embryoid bodies (EBs) in either static conditions or, dynamically, in the rotary BRs. We used flow cytometry and quantitative polymerase chain reaction to analyze the expression of marker proteins and genes, respectively, for pluripotency (Oct3/4) and mesendodermal (Brachyury T), endodermal (FoxA2, Sox17, CxCr4), and mesodermal (Vimentin, Meox1) lineages. Culture in the form of EBs in maintenance media in the presence of leukemia inhibitory factor, in static or SMG conditions, induced expression of some of the differentiation markers, suggesting heterogeneity of the cells. This is in line with previous studies showing that differentiation is initiated as cells are aggregated into EBs even without supplementing differentiation factors to the media. Culturing EBs in static conditions in differentiation media (DM) in the presence of activin A reduced Oct3/4 expression and significantly increased Brachyury T and CxCr4 expression, but downregulated FoxA2 and Sox17. However, culturing in SMG BRs in DM upregulated Brachyury T and all of the DE markers and reduced Oct3/4 expression, indicating the advantage of dynamic cultures in BRs to specifically enhance directed DE differentiation. Given the potential discrepancies between the SMG conditions on earth and actual microgravity conditions, as observed in other studies, future experiments in space flight are required to validate the effects of reduced gravity on mESC differentiation.
Collapse
Affiliation(s)
- Liat Oss-Ronen
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania, USA
| | - Robert A Redden
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania, USA
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
25
|
Avitabile E, Fusco L, Minardi S, Orecchioni M, Zavan B, Yilmazer A, Rauner M, Pippia P, Tasciotti E, Delogu LG. Bioinspired Scaffold Action Under the Extreme Physiological Conditions of Simulated Space Flights: Osteogenesis Enhancing Under Microgravity. Front Bioeng Biotechnol 2020; 8:722. [PMID: 32733868 PMCID: PMC7362936 DOI: 10.3389/fbioe.2020.00722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022] Open
Abstract
Prolonged exposure to microgravity (MG) during long-duration space flights is known to induce severe dysregulation of osteoblast functions connected to a significant bone loss, similar to the condition induced by osteoporosis. Hence, we here present MG as a promising model to challenge the effectiveness of new scaffolds designed for bone regeneration in counteracting bone loss. To this end, we carried out an integrative study aimed to evaluate, in the extreme condition of Random Positioning Machine-simulated MG, the osteoinductive potential of nanocrystalline magnesium-doped hydroxyapatite/type I collagen composite scaffold (MHA/Coll), that we previously demonstrated to be an excellent tool for bone tissue engineering. Initially, to test the osteoinductive properties of our bioinspired-scaffold, MHA/Coll structure was fully characterized under MG condition and compared to its static counterpart. Human bone marrow-derived mesenchymal stem cells were used to investigate the scaffold biocompatibility and ability to promote osteogenic differentiation after long-duration exposure to MG (up to 21 days). The results demonstrate that the nanostructure of MHA/Coll scaffold can alleviate MG-induced osteoblast dysfunction, promoting cell differentiation along the osteogenic lineage, with a consequent reduction in the expression of the surface markers CD29, CD44, and CD90. Moreover, these findings were corroborated by the ability of MHA/Coll to induce the expression of genes linked to osteogenesis, including alkaline phosphatase and osteocalcin. This study confirmed MHA/Coll capabilities in promoting osteogenesis even in extreme long-term condition of MG, suggesting MG as an effective challenging model to apply in future studies to validate the ability of advanced scaffolds to counteract bone loss, facilitating their application in translational Regenerative Medicine and Tissue Engineering.
Collapse
Affiliation(s)
| | - Laura Fusco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy.,Fondazione Istituto di Ricerca pediatrica Cittá della Speranza, Padua, Italy.,Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Silvia Minardi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Marco Orecchioni
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Barbara Zavan
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
| | - Acelya Yilmazer
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey.,Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Martina Rauner
- Department of Medicine III, Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Proto Pippia
- Department of Physiological, Biochemical and Cellular Science, University of Sassari, Sassari, Italy
| | - Ennio Tasciotti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Lucia Gemma Delogu
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy.,Fondazione Istituto di Ricerca pediatrica Cittá della Speranza, Padua, Italy.,Department of Biomedical Science, University of Padua, Padua, Italy
| |
Collapse
|
26
|
Sperm Motility of Mice under Simulated Microgravity and Hypergravity. Int J Mol Sci 2020; 21:ijms21145054. [PMID: 32709012 PMCID: PMC7404272 DOI: 10.3390/ijms21145054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/25/2020] [Accepted: 07/14/2020] [Indexed: 01/03/2023] Open
Abstract
For deep space exploration, reproductive health must be maintained to preserve the species. However, the mechanisms underlying the effect of changes in gravity on male germ cells remain poorly understood. The aim of this study was to determine the effect of simulated micro- and hypergravity on mouse sperm motility and the mechanisms of this change. For 1, 3 and 6 h, mouse sperm samples isolated from the caudal epididymis were subjected to simulated microgravity using a random position machine and 2g hypergravity using a centrifuge. The experimental samples were compared with static and dynamic controls. The sperm motility and the percentage of motile sperm were determined using microscopy and video analysis, cell respiration was determined by polarography, the protein content was assessed by Western blotting and the mRNA levels were determined using qRT-PCR. The results indicated that hypergravity conditions led to more significant changes than simulated microgravity conditions: after 1 h, the speed of sperm movement decreased, and after 3 h, the number of motile cells began to decrease. Under the microgravity model, the speed of movement did not change, but the motile spermatozoa decreased after 6 h of exposure. These changes are likely associated with a change in the structure of the microtubule cytoskeleton, and changes in the energy supply are an adaptive reaction to changes in sperm motility.
Collapse
|
27
|
Khan AU, Qu R, Fan T, Ouyang J, Dai J. A glance on the role of actin in osteogenic and adipogenic differentiation of mesenchymal stem cells. Stem Cell Res Ther 2020; 11:283. [PMID: 32678016 PMCID: PMC7364498 DOI: 10.1186/s13287-020-01789-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/13/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have the capacity to differentiate into multiple lineages including osteogenic and adipogenic lineages. An increasing number of studies have indicated that lineage commitment by MSCs is influenced by actin remodeling. Moreover, actin has roles in determining cell shape, nuclear shape, cell spreading, and cell stiffness, which eventually affect cell differentiation. Osteogenic differentiation is promoted in MSCs that exhibit a large spreading area, increased matrix stiffness, higher levels of actin polymerization, and higher density of stress fibers, whereas adipogenic differentiation is prevalent in MSCs with disrupted actin networks. In addition, the mechanical properties of F-actin empower cells to sense and transduce mechanical stimuli, which are also reported to influence differentiation. Various biomaterials, mechanical, and chemical interventions along with pathogen-induced actin alteration in the form of polymerization and depolymerization in MSC differentiation were studied recently. This review will cover the role of actin and its modifications through the use of different methods in inducing osteogenic and adipogenic differentiation.
Collapse
Affiliation(s)
- Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Tingyu Fan
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Huang P, Russell AL, Lefavor R, Durand NC, James E, Harvey L, Zhang C, Countryman S, Stodieck L, Zubair AC. Feasibility, potency, and safety of growing human mesenchymal stem cells in space for clinical application. NPJ Microgravity 2020; 6:16. [PMID: 32529028 PMCID: PMC7264338 DOI: 10.1038/s41526-020-0106-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Growing stem cells on Earth is very challenging and limited to a few population doublings. The standard two-dimensional (2D) culture environment is an unnatural condition for cell growth. Therefore, culturing stem cells aboard the International Space Station (ISS) under a microgravity environment may provide a more natural three-dimensional environment for stem cell expansion and organ development. In this study, human-derived mesenchymal stem cells (MSCs) grown in space were evaluated to determine their potential use for future clinical applications on Earth and during long-term spaceflight. MSCs were flown in Plate Habitats for transportation to the ISS. The MSCs were imaged every 24-48 h and harvested at 7 and 14 days. Conditioned media samples were frozen at -80 °C and cells were either cryopreserved in 5% dimethyl sulfoxide, RNAprotect, or paraformaldehyde. After return to Earth, MSCs were characterized to establish their identity and cell cycle status. In addition, cell proliferation, differentiation, cytokines, and growth factors' secretion were assessed. To evaluate the risk of malignant transformation, the space-grown MSCs were subjected to chromosomal, DNA damage, and tumorigenicity assays. We found that microgravity had significant impact on the MSC capacity to secrete cytokines and growth factors. They appeared to be more potent in terms of immunosuppressive capacity compared to their identical ground control. Chromosomal, DNA damage, and tumorigenicity assays showed no evidence of malignant transformation. Therefore, it is feasible and potentially safe to grow MSCs aboard the ISS for potential future clinical applications.
Collapse
Affiliation(s)
- Peng Huang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL USA.,Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL USA
| | - Athena L Russell
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL USA.,Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL USA
| | - Rebecca Lefavor
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL USA.,Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL USA
| | - Nisha C Durand
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL USA.,Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL USA
| | - Elle James
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL USA.,Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL USA
| | - Larry Harvey
- Center for Applied Space Technologies, Merritt Island, FL USA
| | - Cuiping Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL USA.,Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL USA
| | - Stefanie Countryman
- BioServe Space Technologies, University of Colorado Boulder, Boulder, CO USA
| | - Louis Stodieck
- BioServe Space Technologies, University of Colorado Boulder, Boulder, CO USA
| | - Abba C Zubair
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL USA.,Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL USA
| |
Collapse
|
29
|
Abstract
The impact of spaceflight on the immune system has been investigated extensively during spaceflight missions and in model experiments conducted on Earth. Data suggest that the spaceflight environment may affect the development of acquired immunity, and immune responses. Herein we summarize and discuss the influence of the spaceflight environment on acquired immunity. Bone marrow and the thymus, two major primary lymphoid organs, are evidently affected by gravitational change during spaceflight. Changes in the microenvironments of these organs impair lymphopoiesis, and thereby may indirectly impinge on acquired immunity. Acquired immune responses may also be disturbed by gravitational fluctuation, stressors, and space radiation both directly and in a stress hormone-dependent manner. These changes may affect acquired immune responses to pathogens, allergens, and tumors.
Collapse
|
30
|
Cheng J, Zhao ZW, Wen JR, Wang L, Huang LW, Yang YL, Zhao FN, Xiao JY, Fang F, Wu J, Miao YL. Status, challenges, and future prospects of stem cell therapy in pelvic floor disorders. World J Clin Cases 2020; 8:1400-1413. [PMID: 32368533 PMCID: PMC7190946 DOI: 10.12998/wjcc.v8.i8.1400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 02/05/2023] Open
Abstract
Pelvic floor disorders (PFDs) represent a group of common and frequently-occurring diseases that seriously affect the life quality of women, generally including stress urinary incontinence and pelvic organ prolapse. Surgery has been used as a treatment for PFD, but almost 30% of patients require subsequent surgery due to a high incidence of postoperative complications and high recurrence rates. Therefore, investigations of new therapeutic strategies are urgently needed. Stem cells possess strong multi-differentiation, self-renewal, immunomodulation, and angiogenesis abilities and they are able to differentiate into various cell types of pelvic floor tissues and thus provide a potential therapeutic approach for PFD. Recently, various studies using different autologous stem cells have achieved promising results by improving the pelvic ligament and muscle regeneration and conferring the tissue elasticity and strength to the damaged tissue in PFD, as well as reduced inflammatory reactions, collagen deposition, and foreign body reaction. However, with relatively high rates of complications such as bladder stone formation and wound infections, further studies are necessary to investigate the role of stem cells as maintainers of tissue homeostasis and modulators in early interventions including therapies using new stem cell sources, exosomes, and tissue-engineering combined with stem cell-based implants, among others. This review describes the types of stem cells and the possible interaction mechanisms in PFD treatment, with the hope of providing more promising stem cell treatment strategies for PFD in the future.
Collapse
Affiliation(s)
- Juan Cheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, West China Campus, Sichuan University, Chengdu 610041, Sichuan Province, China
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Zhi-Wei Zhao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ji-Rui Wen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ling Wang
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li-Wei Huang
- West China School of Stomatology Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yan-Lin Yang
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Feng-Nian Zhao
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jing-Yue Xiao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Fei Fang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jiang Wu
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ya-Li Miao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, West China Campus, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
31
|
Treatment with Minocycline Suppresses Microglia Activation and Reverses Neural Stem Cells Loss after Simulated Microgravity. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7348745. [PMID: 32382569 PMCID: PMC7196960 DOI: 10.1155/2020/7348745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 01/20/2023]
Abstract
The present study aimed to investigate the effect of microglia on simulated microgravity-induced hippocampal neurogenesis reduction and the possible mechanism underlying. Adult rats were treated with tail suspension for different times and the changes of neural stem cells (NSCs) were examined by immunohistochemistry. Then, minocycline was used to inhibit the activation of microglia, and the numbers of microglia and NSCs were detected after microgravity. Additionally, liquid protein chip analysis was applied to detect proinflammatory factors in hippocampus in order to find out the cytokines responsible for microglia activation after microgravity. The results revealed that microgravity increased the numbers of Iba1+ cells and decreased the numbers of BrdU+ and DCX+ cells in hippocampus but did not affect the ratio of NeuN+/BrdU+ cells to the total number of BrdU+ cells. After treated with minocycline, activated microglia were suppressed and the reduction of NSCs induced by microgravity recovered. Besides, compared with the control, higher concentrations of INF-γ and TNF-α were detected in the rats treated with microgravity. Our study provides the first evidence that microglia-mediated inflammation plays an important part in microgravity-induced neurogenesis reduction in hippocampus, and INF-γ and TNF-α secreted by microglia might be the key factors in this process.
Collapse
|
32
|
Stem Cell Culture Under Simulated Microgravity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1298:105-132. [PMID: 32424490 DOI: 10.1007/5584_2020_539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Challenging environment of space causes several pivotal alterations in living systems, especially due to microgravity. The possibility of simulating microgravity by ground-based systems provides research opportunities that may lead to the understanding of in vitro biological effects of microgravity by eliminating the challenges inherent to spaceflight experiments. Stem cells are one of the most prominent cell types, due to their self-renewal and differentiation capabilities. Research on stem cells under simulated microgravity has generated many important findings, enlightening the impact of microgravity on molecular and cellular processes of stem cells with varying potencies. Simulation techniques including clinostat, random positioning machine, rotating wall vessel and magnetic levitation-based systems have improved our knowledge on the effects of microgravity on morphology, migration, proliferation and differentiation of stem cells. Clarification of the mechanisms underlying such changes offers exciting potential for various applications such as identification of putative therapeutic targets to modulate stem cell function and stem cell based regenerative medicine.
Collapse
|
33
|
Tissue Chips in Space: Modeling Human Diseases in Microgravity. Pharm Res 2019; 37:8. [PMID: 31848830 DOI: 10.1007/s11095-019-2742-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Microphysiological systems (MPS), also known as "organs-on-chips" or "tissue chips," leverage recent advances in cell biology, tissue engineering, and microfabrication to create in vitro models of human organs and tissues. These systems offer promising solutions for modeling human physiology and disease in vitro and have multiple applications in areas where traditional cell culture and animal models fall short. Recently, the National Center for Advancing Translational Sciences (NCATS) at the National Institutes of Health (NIH) and the International Space Station (ISS) U.S. National Laboratory have coordinated efforts to facilitate the launch and use of these MPS platforms onboard the ISS. Here, we provide an introduction to the NIH Tissue Chips in Space initiative and an overview of the coordinated efforts between NIH and the ISS National Laboratory. We also highlight the current progress in addressing the scientific and technical challenges encountered in the development of these ambitious projects. Finally, we describe the potential impact of the Tissue Chips in Space program for the MPS field as well as the wider biomedical and health research communities.
Collapse
|
34
|
Ben Menachem- Zidon O, Gropp M, Ben Shushan E, Reubinoff B, Shveiky D. Systemically transplanted mesenchymal stem cells induce vascular-like structure formation in a rat model of vaginal injury. PLoS One 2019; 14:e0218081. [PMID: 31194823 PMCID: PMC6563972 DOI: 10.1371/journal.pone.0218081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
The beneficial effect of mesenchymal stem cells (MSCs) on wound healing is mostly attributed to a trophic effect that promotes angiogenesis. Whether MSCs can contribute to the formation of new blood vessels by direct differentiation is still controversial. Pelvic floor dysfunction (PFD) is a group of disorders that negatively affect the quality of women's lives. Traditional vaginal surgical repair provides disappointing anatomical outcome. Stem cell transplantation may be used to supplement surgery and improve its outcome. Here we aimed to examine the engraftment, survival, differentiation and angiogenic effect of transplanted MSCs in a vaginal injury rat model. MSCs were obtained from the bone marrow of Sprague Drawley (SD) rats, expanded and characterized in vitro. The MSCs expressed CD90 and CD29, did not express CD45, CD34, CD11b and CD31 and could differentiate into osteogenic, chondrogenic and adipogenic lineages. Cells were labeled with either PKH-26 or GFP and transplanted systemically or locally to female SD rats, just after a standardized vaginal incision was made. Engraftment after local transplantation was less efficient at all-time points compared to systemic administration. In the systemically transplanted animal group, MSCs migrated to the injury site and were present in the healed vagina for at least 30 days. Both systemic and local MSCs transplantation promoted host angiogenesis. Systemically transplanted MSCs created new vascular-like structures by direct differentiation into endothelium. These findings pave the way to further studies of the potential role of MSCs transplantation in improving surgical outcome in women with PFD.
Collapse
Affiliation(s)
- Ofra Ben Menachem- Zidon
- The Hadassah Human Embryonic Stem Cell Research Center, Goldyne Savad Institute of Gene Therapy, Hadassah - Hebrew University Hospital, Jerusalem, Israel
| | - Michal Gropp
- The Hadassah Human Embryonic Stem Cell Research Center, Goldyne Savad Institute of Gene Therapy, Hadassah - Hebrew University Hospital, Jerusalem, Israel
| | - Etti Ben Shushan
- The Hadassah Human Embryonic Stem Cell Research Center, Goldyne Savad Institute of Gene Therapy, Hadassah - Hebrew University Hospital, Jerusalem, Israel
| | - Benjamin Reubinoff
- The Hadassah Human Embryonic Stem Cell Research Center, Goldyne Savad Institute of Gene Therapy, Hadassah - Hebrew University Hospital, Jerusalem, Israel
- Department of Obstetrics and Gynecology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - David Shveiky
- Department of Obstetrics and Gynecology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
35
|
Grigoryan EN, Radugina EA. Behavior of Stem-Like Cells, Precursors for Tissue Regeneration in Urodela, Under Conditions of Microgravity. Stem Cells Dev 2019; 28:423-437. [PMID: 30696352 DOI: 10.1089/scd.2018.0220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We summarize data from our experiments on stem-like cell-dependent regeneration in amphibians in microgravity. Considering its deleterious effect on many tissues, we asked whether microgravity is compatible with reparative processes, specifically activation and proliferation of source cells. Experiments were conducted using tailed amphibians, which combine profound regenerative capabilities with high robustness, allowing an in vivo study of lens, retina, limb, and tail regeneration in challenging settings of spaceflight. Microgravity promoted stem-like cell proliferation to a varying extent (up to 2-fold), and it seemed to speed up source cell dedifferentiation, as well as sequential differentiation in retina, lens, and limb, leading to formation of bigger and more developed regenerates than in 1g controls. It also promoted proliferation and hypertrophy of Müller glial cells, eliciting a response similar to reactive gliosis. A significant increase in stem-like cell proliferation was mostly beneficial for regeneration and only in rare cases caused moderate tissue growth abnormalities. It is important that microgravity yielded a lasting effect even if applied before operations. We hypothesize on the potential mechanisms of gravity-dependent changes in stem-like cell behavior, including fibroblast growth factor 2 signaling pathway and heat shock proteins, which were affected in our experimental settings. Taken together, our data indicate that microgravity does not disturb the natural regenerative potential of newt stem-like cells, and, depending on the system, even stimulates their dedifferentiation, proliferation, and differentiation. We discuss these data along with publications on mammalian stem cell behavior in vitro and invertebrate regeneration in vivo in microgravity. In vivo data are very scarce and require further research using contemporary methods of cell behavior analysis to elucidate mechanisms of stem cell response to altered gravity. They are relevant for both practical applications, such as managing human reparative responses in spaceflight, and fundamental understanding of stem cell biology.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - Elena A Radugina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
36
|
Costa-Almeida R, Carvalho DTO, Ferreira MJS, Pesqueira T, Monici M, van Loon JJWA, Granja PL, Gomes ME. Continuous Exposure to Simulated Hypergravity-Induced Changes in Proliferation, Morphology, and Gene Expression of Human Tendon Cells. Stem Cells Dev 2018; 27:858-869. [PMID: 29649412 DOI: 10.1089/scd.2017.0206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Gravity influences physical and biological processes, especially during development and homeostasis of several tissues in the human body. Studies under altered gravity have been receiving great attention toward a better understanding of microgravity-, hypogravity (<1 g)-, or hypergravity (>1 g)-induced alterations. In this work, the influence of simulated hypergravity over human tendon-derived cells (hTDCs) was studied at 5, 10, 15, and 20 g for 4 or 16 h, using a large diameter centrifuge. Main results showed that 16 h of simulated hypergravity limited cell proliferation. Cell area was higher in hTDCs cultured at 5, 10, and 15 g for 16 h, in comparison to 1 g control. Actin filaments were more pronounced in hTDCs cultured at 5 and 10 g for 16 h. Focal adhesion kinase (FAK) was mainly expressed in focal adhesion sites upon hypergravity stimulation, in comparison to perinuclear localization in control cells after 16 h; and FAK number/cell increased with increasing g-levels. A tendency toward an upregulation of tenogenic markers was observed; scleraxis (SCX), tenascin C (TNC), collagen type III (COL3A1), and decorin (DCN) were significantly upregulated in hTDCs cultured at 15 g and COL3A1 and DCN were significantly upregulated in hTDCs cultured at 20 g. Overall, simulated hypergravity affected the behavior of hTDCs, with more pronounced effects in the long-term period (16 h) of stimulation.
Collapse
Affiliation(s)
- Raquel Costa-Almeida
- 1 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho , Guimarães, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Daniel T O Carvalho
- 3 FEUP-Faculdade de Engenharia da Universidade do Porto , Porto, Portugal .,4 ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto , Porto, Portugal .,5 i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto, Portugal .,6 INEB-Instituto de Engenharia Biomédica, Universidade do Porto , Porto, Portugal
| | - Miguel J S Ferreira
- 3 FEUP-Faculdade de Engenharia da Universidade do Porto , Porto, Portugal .,4 ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto , Porto, Portugal .,5 i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto, Portugal .,6 INEB-Instituto de Engenharia Biomédica, Universidade do Porto , Porto, Portugal
| | - Tamagno Pesqueira
- 1 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho , Guimarães, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Monica Monici
- 7 ASA Campus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence , Florence, Italy
| | - Jack J W A van Loon
- 8 Department of Oral and Maxillofacial Surgery/Oral Pathology, VU-University Medical Center , Amsterdam, the Netherlands .,9 ESTEC, TEC-MMG-Lab, European Space Agency (ESA) , Noordwijk, the Netherlands
| | - Pedro L Granja
- 3 FEUP-Faculdade de Engenharia da Universidade do Porto , Porto, Portugal .,4 ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto , Porto, Portugal .,5 i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto, Portugal .,6 INEB-Instituto de Engenharia Biomédica, Universidade do Porto , Porto, Portugal
| | - Manuela E Gomes
- 1 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho , Guimarães, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal .,10 The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho , Barco, Guimarães, Portugal
| |
Collapse
|
37
|
Costa-Almeida R, Granja PL, Gomes ME. Gravity, Tissue Engineering, and the Missing Link. Trends Biotechnol 2018; 36:343-347. [DOI: 10.1016/j.tibtech.2017.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 10/18/2022]
|
38
|
Lapa C, Arias-Loza P, Hayakawa N, Wakabayashi H, Werner RA, Chen X, Shinaji T, Herrmann K, Pelzer T, Higuchi T. Whitening and Impaired Glucose Utilization of Brown Adipose Tissue in a Rat Model of Type 2 Diabetes Mellitus. Sci Rep 2017; 7:16795. [PMID: 29196742 PMCID: PMC5711946 DOI: 10.1038/s41598-017-17148-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
Brown adipose tissue (BAT) is an attractive therapeutic target to combat diabetes and obesity due to its ability to increase glucose expenditure. In a genetic rat model (ZDF fa/fa) of type-2 diabetes and obesity, we aimed to investigate glucose utilization of BAT by 18F-FDG PET imaging. Male Zucker diabetic fatty (ZDF) and Male Zucker lean (ZL) control rats were studied at 13 weeks. Three weeks prior to imaging, ZDF rats were randomized into a no-restriction (ZDF-ND) and a mild calorie restriction (ZDF-CR) group. Dynamic 18F-FDG PET using a dedicated small animal PET system was performed under hyperinsulinemic-euglycemic clamp. 18F-FDG PET identified intense inter-scapular BAT glucose uptake in all ZL control rats, while no focally increased 18F-FDG uptake was detected in all ZDF-ND rats. Mild but significant improved BAT tracer uptake was identified after calorie restriction in diabetic rats (ZDF-CR). The weight of BAT tissue and fat deposits were significantly increased in ZDF-CR and ZDF-ND rats as compared to ZL controls, while UCP-1 and mitochondrial concentrations were significantly decreased. Whitening and severely impaired insulin-stimulated glucose uptake in BAT was confirmed in a rat model of type-2 diabetes. Additionally, calorie restriction partially restored the impaired BAT glucose uptake.
Collapse
Affiliation(s)
- Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Paula Arias-Loza
- Department of Internal Medicine I, Division of Cardiology, University Hospital Würzburg, Würzburg, Germany
| | - Nobuyuki Hayakawa
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany.,The Russell H Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine, Baltimore, MD, United States
| | - Xinyu Chen
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Tetsuya Shinaji
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Theo Pelzer
- Department of Internal Medicine I, Division of Cardiology, University Hospital Würzburg, Würzburg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany. .,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany. .,Department of Bio-Medical Imaging, National Cerebral and Cardiovascular Center, Suita, Japan.
| |
Collapse
|