1
|
Koh RH, Kim J, Kim JU, Kim SL, Rajendran AK, Lee SS, Lee H, Kim JH, Jeong JH, Hwang Y, Bae JW, Hwang NS. Bioceramic-mediated chondrocyte hypertrophy promotes calcified cartilage formation for rabbit osteochondral defect repair. Bioact Mater 2024; 40:306-317. [PMID: 38978806 PMCID: PMC11228467 DOI: 10.1016/j.bioactmat.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
Osteochondral tissue is a highly specialized and complex tissue composed of articular cartilage and subchondral bone that are separated by a calcified cartilage interface. Multilayered or gradient scaffolds, often in conjunction with stem cells and growth factors, have been developed to mimic the respective layers for osteochondral defect repair. In this study, we designed a hyaline cartilage-hypertrophic cartilage bilayer graft (RGD/RGDW) with chondrocytes. Previously, we demonstrated that RGD peptide-modified chondroitin sulfate cryogel (RGD group) is chondro-conductive and capable of hyaline cartilage formation. Here, we incorporated whitlockite (WH), a Mg2+-containing calcium phosphate, into RGD cryogel (RGDW group) to induce chondrocyte hypertrophy and form collagen X-rich hypertrophic cartilage. This is the first study to use WH to produce hypertrophic cartilage. Chondrocytes-laden RGDW cryogel exhibited significantly upregulated expression of hypertrophy markers in vitro and formed ectopic hypertrophic cartilage in vivo, which mineralized into calcified cartilage in bone microenvironment. Subsequently, RGD cryogel and RGDW cryogel were combined into bilayer (RGD/RGDW group) and implanted into rabbit osteochondral defect, where RGD layer supports hyaline cartilage regeneration and bioceramic-containing RGDW layer promotes calcified cartilage formation. While the RGD group (monolayer) formed hyaline-like neotissue that extends into the subchondral bone, the RGD/RGDW group (bilayer) regenerated hyaline cartilage tissue confined to its respective layer and promoted osseointegration for integrative defect repair.
Collapse
Affiliation(s)
- Rachel H Koh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
| | - Junhee Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
| | - Jeong-Uk Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
| | - Seunghyun L Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, South Korea
| | - Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
| | - Seunghun S Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 10326, South Korea
| | - Heesoo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
| | - Joo Hyun Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, South Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, 31538, South Korea
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, South Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, 31538, South Korea
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, South Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, 31538, South Korea
| | - Jong Woo Bae
- Department of Orthopaedic Surgery, Konkuk University Chungju Hospital, Konkuk University School of Medicine, Chungju, 27376, South Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, South Korea
- BioMAX Institute, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
2
|
Zhou R, Fu W, Vasylyev D, Waxman SG, Liu CJ. Ion channels in osteoarthritis: emerging roles and potential targets. Nat Rev Rheumatol 2024; 20:545-564. [PMID: 39122910 DOI: 10.1038/s41584-024-01146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
Osteoarthritis (OA) is a highly prevalent joint disease that causes substantial disability, yet effective approaches to disease prevention or to the delay of OA progression are lacking. Emerging evidence has pinpointed ion channels as pivotal mediators in OA pathogenesis and as promising targets for disease-modifying treatments. Preclinical studies have assessed the potential of a variety of ion channel modulators to modify disease pathways involved in cartilage degeneration, synovial inflammation, bone hyperplasia and pain, and to provide symptomatic relief in models of OA. Some of these modulators are currently being evaluated in clinical trials. This review explores the structures and functions of ion channels, including transient receptor potential channels, Piezo channels, voltage-gated sodium channels, voltage-dependent calcium channels, potassium channels, acid-sensing ion channels, chloride channels and the ATP-dependent P2XR channels in the osteoarthritic joint. The discussion spans channel-targeting drug discovery and potential clinical applications, emphasizing opportunities for further research, and underscoring the growing clinical impact of ion channel biology in OA.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Wenyu Fu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Dmytro Vasylyev
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Li J, Ke H, Lei X, Zhang J, Wen Z, Xiao Z, Chen H, Yao J, Wang X, Wei Z, Zhang H, Pan W, Shao Y, Zhao Y, Xie D, Zeng C. Controlled-release hydrogel loaded with magnesium-based nanoflowers synergize immunomodulation and cartilage regeneration in tendon-bone healing. Bioact Mater 2024; 36:62-82. [PMID: 38440323 PMCID: PMC10909705 DOI: 10.1016/j.bioactmat.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
Tendon-bone interface injuries pose a significant challenge in tissue regeneration, necessitating innovative approaches. Hydrogels with integrated supportive features and controlled release of therapeutic agents have emerged as promising candidates for the treatment of such injuries. In this study, we aimed to develop a temperature-sensitive composite hydrogel capable of providing sustained release of magnesium ions (Mg2+). We synthesized magnesium-Procyanidin coordinated metal polyphenol nanoparticles (Mg-PC) through a self-assembly process and integrated them into a two-component hydrogel. The hydrogel was composed of dopamine-modified hyaluronic acid (Dop-HA) and F127. To ensure controlled release and mitigate the "burst release" effect of Mg2+, we covalently crosslinked the Mg-PC nanoparticles through coordination bonds with the catechol moiety within the hydrogel. This crosslinking strategy extended the release window of Mg2+ concentrations for up to 56 days. The resulting hydrogel (Mg-PC@Dop-HA/F127) exhibited favorable properties, including injectability, thermosensitivity and shape adaptability, making it suitable for injection and adaptation to irregularly shaped supraspinatus implantation sites. Furthermore, the hydrogel sustained the release of Mg2+ and Procyanidins, which attracted mesenchymal stem and progenitor cells, alleviated inflammation, and promoted macrophage polarization towards the M2 phenotype. Additionally, it enhanced collagen synthesis and mineralization, facilitating the repair of the tendon-bone interface. By incorporating multilevel metal phenolic networks (MPN) to control ion release, these hybridized hydrogels can be customized for various biomedical applications.
Collapse
Affiliation(s)
- Jintao Li
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Haolin Ke
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangcheng Lei
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jiexin Zhang
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Zhicheng Wen
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Zhisheng Xiao
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Huabin Chen
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Juncheng Yao
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xuan Wang
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengnong Wei
- Department of Spine Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Hongrui Zhang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weilun Pan
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yan Shao
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yitao Zhao
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Denghui Xie
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Chun Zeng
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Park CS, Lee JY, Seo KJ, Kim IY, Ju BG, Yune TY. TRPM7 Mediates BSCB Disruption After Spinal Cord Injury by Regulating the mTOR/JMJD3 Axis in Rats. Mol Neurobiol 2024; 61:662-677. [PMID: 37653221 DOI: 10.1007/s12035-023-03617-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
After spinal cord injury (SCI), secondary injuries including blood cells infiltration followed by the production of inflammatory mediators are led by blood-spinal cord barrier (BSCB) breakdown. Therefore, preventing BSCB damage could alleviate the secondary injury progresses after SCI. Recently, we reported that transient receptor potential melastatin 7 channel (TRPM7) expression is increased in vascular endothelial cells after injury and thereby mediates BSCB disruption. However, the mechanism by which TRPM7 regulates BSCB disruption has not been examined yet. In current research, we show that TRPM7 mediates BSCB disruption via mammalian target of rapamycin (mTOR) pathway after SCI in rats. After contusion injury at T9 level of spinal cord, mTOR pathway was activated in the endothelial cells of blood vessels and TRPM7 was involved in the activation of mTOR pathway. BSCB disruption, MMP-2/9 activation, and blood cell infiltration after injury were alleviated by rapamycin, a mTOR signaling inhibitor. Rapamycin also conserved the level of tight junction proteins, which were decreased after SCI. Furthermore, mTOR pathway regulated the expression and activation of histone H3K27 demethylase JMJD3, known as a key epigenetic regulator mediating BSCB damage after SCI. In addition, rapamycin inhibited JMJD3 expression, the loss of tight junction molecules, and MMP-2/9 expression in bEnd.3, a brain endothelial cell line, after oxygen-glucose deprivation/reoxygenation. Thus, our results suggest that TRPM7 contributes to the BSCB disruption by regulating JMJD3 expression through the mTOR pathway after SCI.
Collapse
Affiliation(s)
- Chan Sol Park
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Biomedical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jee Youn Lee
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kyung Jin Seo
- Department of Biomedical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - In Yi Kim
- Department of Biomedical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Bong Gun Ju
- Department of Life Science, Sogang University, Seoul, 04107, Republic of Korea
| | - Tae Young Yune
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Biomedical Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Biomedical Science Institute, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
5
|
Wu J, Cheng X, Wu J, Chen J, Pei X. The development of magnesium-based biomaterials in bone tissue engineering: A review. J Biomed Mater Res B Appl Biomater 2024; 112:e35326. [PMID: 37861271 DOI: 10.1002/jbm.b.35326] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/15/2023] [Accepted: 08/23/2023] [Indexed: 10/21/2023]
Abstract
Bone regeneration is a vital clinical challenge in massive or complicated bone defects. Recently, bone tissue engineering has come to the fore to meet the demand for bone repair with various innovative materials. However, the reported materials usually cannot satisfy the requirements, such as ideal mechanical and osteogenic properties, as well as biocompatibility at the same time. Mg-based biomaterials have considerable potential in bone tissue engineering owing to their excellent mechanical strength and biosafety. Moreover, the biocompatibility and osteogenic activity of Mg-based biomaterials have been the research focuses in recent years. The main limitation faced in the applications of Mg-based biomaterials is rapid degradation, which can produce excessive Mg2+ and hydrogen, affecting the healing of the bone defect. In order to overcome the limitations, researchers have explored several ways to improve the properties of Mg-based biomaterials, including alloying, surface modification with coatings, and synthesizing other composite materials to control the degradation rate upon implantation. This article reviewed the osteogenic mechanism and requirement for appropriate degradation rate and focused on current progress in the biomedical use of Mg-based biomaterials to inspire more clinical applications of Mg in bone regeneration in the future.
Collapse
Affiliation(s)
- Jiaxin Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinting Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jicenyuan Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Shin M, Mori S, Mizoguchi T, Arai A, Kajiya H, Okamoto F, Bartlett JD, Matsushita M, Udagawa N, Okabe K. Mesenchymal cell TRPM7 expression is required for bone formation via the regulation of chondrogenesis. Bone 2023; 166:116579. [PMID: 36210025 DOI: 10.1016/j.bone.2022.116579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/20/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
Transient receptor potential melastatin-subfamily member 7 (TRPM7) is a bifunctional protein containing a kinase fused to an ion channel permeated with cations, including Ca2+ and Mg2+. Trpm7-null mice show embryonic lethality. Paired related homeobox 1 (Prx1) is expressed in undifferentiated mesenchymal cells such as the progenitor cells of both chondrocytes and osteoblasts involved in limb skeleton formation. Prx1-Cre-dependent Trpm7 mesenchymal-deleted mice were generated to examine the role of TRPM7 in bone development. We found that Prx1-Cre;Trpm7fl/fl mice had shortened bones and impaired trabecular bone formation. Trabecular bone parameters, such as the bone volume (BV/TV), and trabecular number (Tb.N), were decreased in Prx1-Cre;Trpm7fl/fl mice. The cortical bone parameters of cortical bone area (Ct.Ar) and cortical bone thickness (Ct.Th) were also down-regulated in these mice. The bone formation rate in Prx1-Cre;Trpm7fl/fl mice was unchanged, but the hypertrophic area and cell size of the zone were smaller, and the expression of Col2a1, Col10a1 and Mmp13 was downregulated compared with control mice. These findings suggest impaired chondrogenesis in Prx1-Cre;Trpm7fl/fl mice compared to control mice. The receptor activator of nuclear factor-kappa B ligand (RANKL) expression was increased, and RANKL-positive cells and osteoclasts were markedly accumulated in the boundary region between the growth plate and trabecular bone. In contrast, TRPM7 KR mice, which are kinase-dead mutants in which the TRPM7 ion channel function has not been altered, showed no marked differences in trabecular or cortical bone parameters compared to wild-type mice. These findings suggest that TRPM7 is critical as a cation channel rather than as a kinase in bone development via the regulation of chondrogenesis.
Collapse
Affiliation(s)
- Masashi Shin
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan; Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Shihomi Mori
- Section of Oral Surgery, Department of Oral and Maxillofacial Surgery, Fukuoka Dental College, Fukuoka, Japan
| | | | - Atsushi Arai
- Department of Orthodontics, Matsumoto Dental University, Nagano, Japan
| | - Hiroshi Kajiya
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan; Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Fujio Okamoto
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - John D Bartlett
- Division of Biosciences, Ohio State University, College of Dentistry, Columbus, OH, USA
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, University of the Ryukyus, Okinawa, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Nagano, Japan
| | - Koji Okabe
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan.
| |
Collapse
|
7
|
Calcium-Permeable Channels Cooperation for Rheumatoid Arthritis: Therapeutic Opportunities. Biomolecules 2022; 12:biom12101383. [PMID: 36291594 PMCID: PMC9599458 DOI: 10.3390/biom12101383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis is a common autoimmune disease that results from the deposition of antibodies–autoantigens in the joints, leading to long-lasting inflammation. The main features of RA include cartilage damage, synovial invasion and flare-ups of intra-articular inflammation, and these pathological processes significantly reduce patients’ quality of life. To date, there is still no drug target that can act in rheumatoid arthritis. Therefore, the search for novel drug targets has become urgent. Due to their unique physicochemical properties, calcium ions play an important role in all cellular activities and the body has evolved a rigorous calcium signaling system. Calcium-permeable channels, as the main operators of calcium signaling, are widely distributed in cell membranes, endoplasmic reticulum membranes and mitochondrial membranes, and mediate the efflux and entry of Ca2+. Over the last century, more and more calcium-permeable channels have been identified in human cells, and the role of this large family of calcium-permeable channels in rheumatoid arthritis has gradually become clear. In this review, we briefly introduce the major calcium-permeable channels involved in the pathogenesis of RA (e.g., acid-sensitive ion channel (ASIC), transient receptor potential (TRP) channel and P2X receptor) and explain the specific roles and mechanisms of these calcium-permeable channels in the pathogenesis of RA, providing more comprehensive ideas and targets for the treatment of RA.
Collapse
|
8
|
Savadipour A, Nims RJ, Katz DB, Guilak F. Regulation of chondrocyte biosynthetic activity by dynamic hydrostatic pressure: the role of TRP channels. Connect Tissue Res 2022; 63:69-81. [PMID: 33494617 PMCID: PMC10061443 DOI: 10.1080/03008207.2020.1871475] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Chondrocytes perceive and respond to mechanical loading as signals that regulate their metabolism. Joint loading exposes chondrocytes to multiple modes of mechanical stress, including hydrostatic pressure; however, the mechanisms by which chondrocytes sense physiologically relevant levels of hydrostatic pressure are not well understood. We hypothesized that hydrostatic pressure is transduced to an intracellular signal through mechanosensitive membrane ion channels of chondrocytes. The goals of this study were to examine the effect of hydrostatic loading on the development of engineered cartilage tissue and the contribution of mechanosensitive ion channels on these hydrostatic loading effects. METHODS Using a 3D model of porcine chondrocytes in agarose, we applied specific chemical inhibitors to determine the role of transient receptor potential (TRP) ion channels TRPV1, TRPV4, TRPC3, and TRPC1 in transducing hydrostatic pressure. RESULTS Hydrostatic loading caused a frequency and magnitude-dependent decrease in sulfated glycosaminoglycans (S-GAG), without changes in DNA content. Inhibiting TRPC3 and TRPV4 decreased S-GAG content; however, only the inhibition of TRPV1 partially attenuated the hydrostatic loading-induced reduction in S-GAG content. CONCLUSIONS Our findings indicate that TRPV1 may serve as a transducer of hydrostatic pressure in chondrocytes, and provide further support for the role of TRPV4 in regulating chondrocyte anabolism, as well as initial evidence implicating TRPC3 in chondrogenesis. These findings add to our further understanding of the chondrocyte "channelome" and suggest that a range of ion channels mediate the transduction of different biophysical stimuli such as hydrostatic pressure, membrane stretch, or osmotic stress.
Collapse
Affiliation(s)
- Alireza Savadipour
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Robert J Nims
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Dakota B Katz
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| |
Collapse
|
9
|
Andriulė I, Pangonytė D, Almanaitytė M, Patamsytė V, Kuprytė M, Karčiauskas D, Mubagwa K, Mačianskienė R. Evidence for the expression of TRPM6 and TRPM7 in cardiomyocytes from all four chamber walls of the human heart. Sci Rep 2021; 11:15445. [PMID: 34326388 PMCID: PMC8322396 DOI: 10.1038/s41598-021-94856-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
The expression of the channels-enzymes TRPM6 and TRPM7 in the human heart remains poorly defined, and TRPM6 is generally considered not to be expressed in cardiomyocytes. We examined their expression at protein and mRNA levels using right atrial samples resected from patients (n = 72) with or without ischemic heart disease (IHD) and samples from all chamber walls of explanted human hearts (n = 9). TRPM6 and TRPM7 proteins were detected using immunofluorescence on isolated cardiomyocytes, ELISA on tissue homogenates, and immunostaining of cardiac tissue, whereas their mRNAs were detected by RT-qPCR. Both TRPM6 and TRPM7 were present in all chamber walls, with TRPM7 being more abundant. TRPM6 was co-expressed with TRPM7. The expression levels were dependent on cell incubation conditions (presence or absence of divalent cations, pH of the extracellular milieu, presence of TRP channel inhibitors 2-aminoethoxydiphenyl-borate and carvacrol). These drugs reduced TRPM7 immunofluorescence but increased that of TRPM6. TRPM6 and TRPM7 expression was increased in tissues from IHD patients. This is the first demonstration of the presence and co-expression of TRPM6 and TRPM7 in cardiomyocytes from all chamber walls of the human heart. The increased TRPM6 and TRPM7 expression in IHD suggests that the chanzymes are involved in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Inga Andriulė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dalia Pangonytė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Mantė Almanaitytė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vaiva Patamsytė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Milda Kuprytė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dainius Karčiauskas
- Department of Cardiac, Thoracic and Vascular Surgery, Hospital of Lithuanian University of Health Sciences Kauno Klinikos, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Kanigula Mubagwa
- Department of Cardiovascular Sciences, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Department of Basic Sciences, Faculty of Medicine, Université Catholique de Bukavu, Bukavu, DR, Congo
| | - Regina Mačianskienė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| |
Collapse
|
10
|
TRPM7-Mediated Calcium Transport in HAT-7 Ameloblasts. Int J Mol Sci 2021; 22:ijms22083992. [PMID: 33924361 PMCID: PMC8069123 DOI: 10.3390/ijms22083992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
TRPM7 plays an important role in cellular Ca2+, Zn2+ and Mg2+ homeostasis. TRPM7 channels are abundantly expressed in ameloblasts and, in the absence of TRPM7, dental enamel is hypomineralized. The potential role of TRPM7 channels in Ca2+ transport during amelogenesis was investigated in the HAT-7 rat ameloblast cell line. The cells showed strong TRPM7 mRNA and protein expression. Characteristic TRPM7 transmembrane currents were observed, which increased in the absence of intracellular Mg2+ ([Mg2+]i), were reduced by elevated [Mg2+]i, and were inhibited by the TRPM7 inhibitors NS8593 and FTY720. Mibefradil evoked similar currents, which were suppressed by elevated [Mg2+]i, reducing extracellular pH stimulated transmembrane currents, which were inhibited by FTY720. Naltriben and mibefradil both evoked Ca2+ influx, which was further enhanced by the acidic intracellular conditions. The SOCE inhibitor BTP2 blocked Ca2+ entry induced by naltriben but not by mibefradil. Thus, in HAT-7 cells, TRPM7 may serves both as a potential modulator of Orai-dependent Ca2+ uptake and as an independent Ca2+ entry pathway sensitive to pH. Therefore, TRPM7 may contribute directly to transepithelial Ca2+ transport in amelogenesis.
Collapse
|
11
|
Ma G, Yang Y, Chen Y, Wei X, Ding J, Zhou RP, Hu W. Blockade of TRPM7 Alleviates Chondrocyte Apoptosis and Articular Cartilage Damage in the Adjuvant Arthritis Rat Model Through Regulation of the Indian Hedgehog Signaling Pathway. Front Pharmacol 2021; 12:655551. [PMID: 33927631 PMCID: PMC8076952 DOI: 10.3389/fphar.2021.655551] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
Articular cartilage damage with subsequent impairment of joint function is a common feature of articular diseases, in particular, rheumatoid arthritis and osteoarthritis. While articular cartilage injury mediated by chondrocyte apoptosis is a known major pathological feature of arthritis, the specific mechanisms remain unclear at present. Transient receptor potential melastatin-like seven channel (TRPM7) is reported to play an important regulatory role in apoptosis. This study focused on the effects of TRPM7 on arthritic chondrocyte injury and its underlying mechanisms of action. Sodium nitroprusside (SNP)-induced rat primary chondrocyte apoptosis and rat adjuvant arthritis (AA) were used as in vitro and in vivo models, respectively. Blockage of TRPM7 with 2-APB or specific siRNA resulted in increased chondrocyte viability and reduced toxicity of SNP. Moreover, treatment with 2-APB enhanced the Bcl-2/Bax ratio and reduced cleaved PARP and IL-6, MMP-13 and ADAMTS-5 expression in SNP-treated chondrocytes. Activation of Indian Hedgehog with purmorphamine reversed the protective effects of 2-APB on SNP-induced chondrocyte apoptosis. Blockage of TRPM7 with 2-APB relieved the clinical signs of AA in the rat model and reduced the arthritis score and paw swelling. Similar to findings in SNP-treated chondrocytes, 2-APB treatment increased the Bcl-2/Bax ratio and suppressed cleaved PARP, IL-6, MMP-13, ADAMTS-5, TRPM7, and Indian hedgehog expression in articular cartilage of AA rats. Our collective findings suggest that blockade of TRPM7 could effectively reduce chondrocyte apoptosis and articular cartilage damage in rats with adjuvant arthritis through regulation of the Indian Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Ganggang Ma
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yang Yang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xin Wei
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jie Ding
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, China
| |
Collapse
|
12
|
Zhao S, Xie K, Guo Y, Tan J, Wu J, Yang Y, Fu P, Wang L, Jiang W, Hao Y. Fabrication and Biological Activity of 3D-Printed Polycaprolactone/Magnesium Porous Scaffolds for Critical Size Bone Defect Repair. ACS Biomater Sci Eng 2020; 6:5120-5131. [PMID: 33455263 DOI: 10.1021/acsbiomaterials.9b01911] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polycaprolactone (PCL) is widely used in bone tissue engineering due to its biocompatibility and mechanical strength. However, PCL is not biologically active and shows poor hydrophilicity, making it difficult for new bones to bind tightly to its surface. Magnesium (Mg), an important component of natural bone, exhibits good osteo-inductivity and biological activity. Therefore, porous PCL/Mg scaffolds, including pure PCL, PCL/5%Mg, PCL/10%Mg, and PCL/15%Mg, were prepared to elucidate whether the porous structure of scaffolds and the bioactivity of PCL may be enhanced via 3D printing and incorporation of Mg powder. Compared with the control group (pure PCL only), the hydrophilicity of composite PCL/Mg scaffolds was greatly increased, resulting in the scaffolds having decreased water contact angles. Tests for adhesion and proliferation of rat bone marrow mesenchymal stem cells (rBMSCs) indicated that the PCL/10%Mg scaffold showed superior compatibility. Furthermore, as indicated by alkaline phosphatase (ALP) activity and semiquantitative analysis of alizarin red staining, PCL/10%Mg scaffolds exhibited significantly stronger osteogenic activity than the other scaffolds. Animal experiments demonstrated that PCL/10%Mg scaffolds displayed pro-osteogenic effects at an early stage (4 weeks) and produced more new bone mass 8-12 weeks following implantation, compared with the control group. Visceral and blood parameter analyses indicated that PCL/10%Mg scaffolds did not exert any noticeable toxic effects. PCL/10%Mg composite scaffolds were found to promote bone defect repair at an early stage with good cytocompatibility. This finding revealed a new concept in designing bone tissue materials, which showed potential as a clinical treatment for bone defects.
Collapse
Affiliation(s)
- Shuang Zhao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Kai Xie
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yu Guo
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jia Tan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Junxiang Wu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yangzi Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Penghuai Fu
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wenbo Jiang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
13
|
Xie J, Cheng CS, Zhu XY, Shen YH, Song LB, Chen H, Chen Z, Liu LM, Meng ZQ. Magnesium transporter protein solute carrier family 41 member 1 suppresses human pancreatic ductal adenocarcinoma through magnesium-dependent Akt/mTOR inhibition and bax-associated mitochondrial apoptosis. Aging (Albany NY) 2020; 11:2681-2698. [PMID: 31076559 PMCID: PMC6535063 DOI: 10.18632/aging.101940] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/24/2019] [Indexed: 01/26/2023]
Abstract
The aim of this study was to identify the function of the Mg2+ transporter protein solute carrier family 41 member 1 SLC41A1 in pancreatic ductal adenocarcinoma and the underlying mechanisms. A total of 27 solute carrier proteins were differentially expressed in pancreatic ductal adenocarcinoma. Three of these proteins were correlated with clinical outcomes in patients, among which SLC41A1 was downregulated in tumour. Overexpression of SLC41A1 suppressed orthotopic tumour growth in a mouse model and reduced the cell proliferation, colony formation, and invasiveness of KP3 and Panc-1 cells, which may have been associated with the increased population of apoptotic-prone cells. Overexpression of SLC41A1 reduced the mitochondrial membrane potential, induced Bax while suppressed Bcl-2 expression. Suppression of Bax abrogated the tumour-suppressive effects of SLC41A1. Furthermore, overexpression of SLC41A1 promoted Mg2+ efflux and suppressed Akt/mTOR activity, which is the upstream regulator of Bax and Bcl-2. An increase in Akt activity and supplementation with Mg2+ abolished SLC41A1-induced tumour suppression. The results of this study suggest that SLC41A1 may be a potential target for the treatment of pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Jing Xie
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Xiao Yan Zhu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Ye Hua Shen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Li Bin Song
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Hao Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Lu Ming Liu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Zhi Qiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
14
|
Ma Y, Liu Y, Ma Y, Jiang N, Wang L, Wang B, Niu W, Hu Y, Lin Q, Yu B. Mangiferin Relieves Lipopolysaccharide-Induced Injury by Up-Regulating miR-181a via Targeting PTEN in ATDC5 Cells. Front Pharmacol 2020; 11:137. [PMID: 32210798 PMCID: PMC7066527 DOI: 10.3389/fphar.2020.00137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/31/2020] [Indexed: 01/17/2023] Open
Abstract
Background Mangiferin (MF) was reported to possess anti-inflammatory activity. This investigation tried to probe into the underlying mechanism of MF in osteoarthritis. Methods ATDC5 cells were pretreated with series concentrations of MF (0.1, 1, 5, 10, 15, 20 μM) for 2 h and then were exposed to lipopolysaccharide (LPS) (5 μg/ml) for 12 h to construct the inflammatory injury model. The cell viability, productions of pro-inflammatory cytokines and enzymes were respectively measured by employing CCK-8 assay, western blot, ELISA, and quantitative reverse-transcription (qRT)-PCR. miR-181a expression was altered by employing cell transfection. Dichloro-dihydro-fluorescein diacetate (DCFH-DA) method was employed for detection of reactive oxygen species (ROS) generation. Dual luciferase activity assay was conducted for analyzing the relationship between miR-181a and PTEN. The underlying mechanism was determined by employing western blot. Results High doses of MF treatment (15 and 20 μM) noticeably induced inflammatory injury exhibiting as increased the productions of pro-inflammatory cytokines, enzymes and ROS, activated NF-κB pathway and deactivated PTEN/PI3K/AKT pathway in ATDC5 cells. Besides, MF treatment notably remitted LPS-induced inflammatory injury through deactivation of NF-κB pathway and activation of PTEN/PI3K/AKT pathway. PTEN was a target of miR-181a. Inhibition of miR-181a remarkably reversed MF-triggered impacts on ATDC5 cells. Conclusion MF attenuated LPS-induced inflammatory damage through miR-181a/PTEN axis and thereby inhibiting NF-κB pathway and activating PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yunfei Ma
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Liu
- Department of Orthopaedic Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Yunyan Ma
- Department of Obstetrics, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Nan Jiang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Wang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bowei Wang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanting Niu
- Tissue Engineering Laboratories, VA Boston Healthcare System, Boston, MA, United States.,Department of Orthopedics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yanjun Hu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingrong Lin
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Zou ZG, Rios FJ, Montezano AC, Touyz RM. TRPM7, Magnesium, and Signaling. Int J Mol Sci 2019; 20:E1877. [PMID: 30995736 PMCID: PMC6515203 DOI: 10.3390/ijms20081877] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed chanzyme that possesses an ion channel permeable to the divalent cations Mg2+, Ca2+, and Zn2+, and an α-kinase that phosphorylates downstream substrates. TRPM7 and its homologue TRPM6 have been implicated in a variety of cellular functions and is critically associated with intracellular signaling, including receptor tyrosine kinase (RTK)-mediated pathways. Emerging evidence indicates that growth factors, such as EGF and VEGF, signal through their RTKs, which regulate activity of TRPM6 and TRPM7. TRPM6 is primarily an epithelial-associated channel, while TRPM7 is more ubiquitous. In this review we focus on TRPM7 and its association with growth factors, RTKs, and downstream kinase signaling. We also highlight how interplay between TRPM7, Mg2+ and signaling kinases influences cell function in physiological and pathological conditions, such as cancer and preeclampsia.
Collapse
Affiliation(s)
- Zhi-Guo Zou
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | - Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
16
|
Qian N, Ichimura A, Takei D, Sakaguchi R, Kitani A, Nagaoka R, Tomizawa M, Miyazaki Y, Miyachi H, Numata T, Kakizawa S, Nishi M, Mori Y, Takeshima H. TRPM7 channels mediate spontaneous Ca 2+ fluctuations in growth plate chondrocytes that promote bone development. Sci Signal 2019; 12:12/576/eaaw4847. [PMID: 30967513 DOI: 10.1126/scisignal.aaw4847] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
During endochondral ossification of long bones, the proliferation and differentiation of chondrocytes cause them to be arranged into layered structures constituting the epiphyseal growth plate, where they secrete the cartilage matrix that is subsequently converted into trabecular bone. Ca2+ signaling has been implicated in chondrogenesis in vitro. Through fluorometric imaging of bone slices from embryonic mice, we demonstrated that live growth plate chondrocytes generated small, cell-autonomous Ca2+ fluctuations that were associated with weak and intermittent Ca2+ influx. Several genes encoding Ca2+-permeable channels were expressed in growth plate chondrocytes, but only pharmacological inhibitors of transient receptor potential cation channel subfamily M member 7 (TRPM7) reduced the spontaneous Ca2+ fluctuations. The TRPM7-mediated Ca2+ influx was likely activated downstream of basal phospholipase C activity and was potentiated upon cell hyperpolarization induced by big-conductance Ca2+-dependent K+ channels. Bones from embryos in which Trpm7 was conditionally knocked out during ex vivo culture exhibited reduced outgrowth and displayed histological abnormalities accompanied by insufficient autophosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the growth plate. The link between TRPM7-mediated Ca2+ fluctuations and CaMKII-dependent chondrogenesis was further supported by experiments with chondrocyte-specific Trpm7 knockout mice. Thus, growth plate chondrocytes generate spontaneous, TRPM7-mediated Ca2+ fluctuations that promote self-maturation and bone development.
Collapse
Affiliation(s)
- Nianchao Qian
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan
| | - Atsuhiko Ichimura
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan.,Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Kyoto University, Kyoto 606-8501, Japan
| | - Daisuke Takei
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan
| | - Reiko Sakaguchi
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 615-8510, Japan
| | - Akihiro Kitani
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan
| | - Ryohei Nagaoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan
| | - Masato Tomizawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan
| | - Yuu Miyazaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Tomohiro Numata
- Graduate School of Medical Sciences, Fukuoka University, Fukuoka 814-0180, Japan.,Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Sho Kakizawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan
| | - Miyuki Nishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan.,Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yasuo Mori
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hiroshi Takeshima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan.
| |
Collapse
|
17
|
Liu L, Wu N, Wang Y, Zhang X, Xia B, Tang J, Cai J, Zhao Z, Liao Q, Wang J. TRPM7 promotes the epithelial-mesenchymal transition in ovarian cancer through the calcium-related PI3K / AKT oncogenic signaling. J Exp Clin Cancer Res 2019; 38:106. [PMID: 30819230 PMCID: PMC6396458 DOI: 10.1186/s13046-019-1061-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/27/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The epithelial-mesenchymal transition (EMT) is crucial for metastasis and positively regulated by calcium-related signaling. The melastatin-related transient receptor potential 7 (TRPM7) regulates a non-selective cation channel and promotes cancer metastasis. However, the mechanisms underlying the action of TRPM7 in ovarian cancer are unclear. METHODS The expression of TRPM7 and EMT markers (Vimentin, N-cadherin, Twist and E-cadherin) in ovarian cancer samples was detected. TRPM7was knockdown by shRNA in Ovarian cancer cell lines to examine calcium [Ca2+]i, EMT markers and PI3K/AKT markers. Various cellular assays, such as invasion and migration, were performed in vitro, and further confirmed in vivo. RESULTS TRPM7 expression is negatively correlated with E-cadherin, but positively with N-cadherin, Vimentin and Twist expression in ovarian cancer samples. TRPM7 depletion inhibited the migration and invasion in SKOV3 and OVCAR3 cells. In addition, TRPM7 silencing decreased the lung metastasis of SKOV3 tumors and prolonged the survival of tumor-bearing mice. Similar to that of TRPM7 silencing, treatment with MK886, a potent 5-lipoxygenase inhibitor to reduce TRPM7 expression, and/or BAPTA-AM, an intracellular calcium chelator, significantly mitigated the Epidermal growth factor (EGF) or Insulin-like growth factors (IGF)-stimulated migration, invasion, and the EMT in ovarian cancer cells by decreasing the levels of intracellular calcium [Ca2+]i. Furthermore, treatment with LY2904002, a PI3K inhibitor, also inhibited the migration, invasion, and treatment with both LY2904002 and BAPTA-AM further enhanced their inhibition in ovarian cancer cells. Moreover, treatment with BAPTA-AM mitigated the IGF-stimulated migration, invasion, particularly in TRPM7-silenced ovarian cancer cells. Finally, TRPM7 silencing attenuated the PI3K/AKT activation, which was enhanced by BAPTA-AM, MK886 or LY2904002 treatment in ovarian cancer cells. CONCLUSIONS TRPM7 silencing inhibited the EMT and metastasis of ovarian cancer by attenuating the calcium-related PI3k/AKT activation. Our findings suggest that TRPM7 may be a therapeutic target for intervention of ovarian cancer.
Collapse
Affiliation(s)
- Lu Liu
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
- University of South China, Hengyang, 421001 People’s Republic of China
| | - Nayiyuan Wu
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| | - Ying Wang
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| | - Xiaoyun Zhang
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| | - Bing Xia
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| | - Jie Tang
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| | - Jingting Cai
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| | - Zitong Zhao
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| | - Qianjin Liao
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| | - Jing Wang
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| |
Collapse
|
18
|
Yu X, Huang W, Zhao D, Yang K, Tan L, Zhang X, Li J, Zhang M, Zhang S, Liu T, Wu B, Qu M, Duan R, Yuan Y. Study of engineered low-modulus Mg/PLLA composites as potential orthopaedic implants: An in vitro and in vivo study. Colloids Surf B Biointerfaces 2019; 174:280-290. [DOI: 10.1016/j.colsurfb.2018.10.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 01/05/2023]
|