1
|
Datta A, Ghosh B, Barik A, Karmarkar G, Sarmah D, Borah A, Saraf S, Yavagal DR, Bhattacharya P. Stem Cell Therapy Modulates Molecular Cues of Vasogenic Edema Following Ischemic Stroke: Role of Sirtuin-1 in Regulating Aquaporin-4 Expression. Stem Cell Rev Rep 2025; 21:797-815. [PMID: 39888572 DOI: 10.1007/s12015-025-10846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Conventional post-stroke edema management strategies are limitedly successful as in multiple cases of hemorrhagic transformation is being reported. Clinically, acute-ischemic-stroke (AIS) intervention by endovascular mesenchymal stem cells (MSCs) have shown benefits by altering various signaling pathways. Our previous studies have reported that intra-arterial administration of 1*105 MSCs (IA-MSCs) were beneficial in alleviating post-stroke edema by modulating PKCδ/MMP9/AQP4 axis and helpful in preserving the integrity of blood-brain-barrier (BBB). However, the role of mitochondrial dysfunction and ROS generation post-AIS cannot be overlooked in context to the alteration of the BBB integrity and edema formation through the activation of inflammatory pathways. The anti-inflammatory activity of IA-MSCs in stroke has been reported to be regulated by sirtuin-1 (SIRT-1). Hence, the relationship between SIRT-1 and AQP4 towards regulation of post-stroke edema needs to be further explored. Therefore, the present study deciphers the molecular events towards AQP4 upregulation, mitochondrial dysfunction and BBB disruption in context to the modulation of SIRT-1/PKCδ/NFκB loop by IA-MSCs administration. METHODS Ovariectomized SD rats were subjected to focal ischemia. SIRT-1 activator, SIRT-1 inhibitor, NFkB inhibitor and IA-MSCs were administered at optimized dose. At 24 h of reperfusion, behavioral tests were performed, and brains were harvested following euthanasia for molecular studies. RESULTS IA-MSCs downregulated AQP4, PKCδ and NFkB expression, and upregulated SIRT-1 expression. SIRT-1 upregulation renders mitochondrial protection via reduction of oxidative stress resulting in BBB protection. CONCLUSION IA-MSCs can modulate SIRT-1 mediated AQP4 expression via mitochondrial ROS reduction and modification of NFkB transcriptional regulation.
Collapse
Affiliation(s)
- Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Bijoyani Ghosh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Anirban Barik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Gautam Karmarkar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Anupom Borah
- Department of Life Science and Bioinformatics, Cellular and Molecular Neurobiology Laboratory, Assam University, Silchar, Assam, India
| | - Shailendra Saraf
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Dileep R Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
2
|
Jia Z, Xu K, Li R, Yang S, Chen L, Zhang Q, Li S, Sun X. The critical role of Sirt1 in ischemic stroke. Front Pharmacol 2025; 16:1425560. [PMID: 40160465 PMCID: PMC11949987 DOI: 10.3389/fphar.2025.1425560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Ischemic stroke, the most prevalent form of stroke, is responsible for the highest disability rates globally and ranks as the primary cause of mortality worldwide. Sirt1, extensively investigated in neurodegenerative disorders, is the most well-known and earliest member of the sirtuins family. However, its mechanism of action during ischemic stroke remains ambiguous. The literature examination revealed the intricate involvement of Sirt1 in regulating both physiological and pathological mechanisms during ischemic stroke. Sirt1 demonstrates deacetylation effects on PGC-1α, HMGB1, FOXOs, and p53. It hinders the activation of NLRP3 inflammasome and NF-κB while also engaging with AMPK. It regulates inflammatory response, oxidative stress, mitochondrial dysfunction, autophagy, pro-death, and necrotic apoptosis. Therefore, the potential of Sirt1 as a therapeutic target for the management of ischemic stroke is promising.
Collapse
Affiliation(s)
- Ziyi Jia
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ke Xu
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ruobing Li
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siyu Yang
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Long Chen
- The Fourth Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qianwen Zhang
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shulin Li
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaowei Sun
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Lei K, Wu R, Wang J, Lei X, Zhou E, Fan R, Gong L. Sirtuins as Potential Targets for Neuroprotection: Mechanisms of Early Brain Injury Induced by Subarachnoid Hemorrhage. Transl Stroke Res 2024; 15:1017-1034. [PMID: 37779164 PMCID: PMC11522081 DOI: 10.1007/s12975-023-01191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a prevalent cerebrovascular disease with significant global mortality and morbidity rates. Despite advancements in pharmacological and surgical approaches, the quality of life for SAH survivors has not shown substantial improvement. Traditionally, vasospasm has been considered a primary contributor to death and disability following SAH, but anti-vasospastic therapies have not demonstrated significant benefits for SAH patients' prognosis. Emerging studies suggest that early brain injury (EBI) may play a crucial role in influencing SAH prognosis. Sirtuins (SIRTs), a group of NAD + -dependent deacylases comprising seven mammalian family members (SIRT1 to SIRT7), have been found to be involved in neural tissue development, plasticity, and aging. They also exhibit vital functions in various central nervous system (CNS) processes, including cognition, pain perception, mood, behavior, sleep, and circadian rhythms. Extensive research has uncovered the multifaceted roles of SIRTs in CNS disorders, offering insights into potential markers for pathological processes and promising therapeutic targets (such as SIRT1 activators and SIRT2 inhibitors). In this article, we provide an overview of recent research progress on the application of SIRTs in subarachnoid hemorrhage and explore their underlying mechanisms of action.
Collapse
Affiliation(s)
- Kunqian Lei
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Rui Wu
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Jin Wang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Xianze Lei
- Department of Neurology, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Erxiong Zhou
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Ruiming Fan
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China.
| | - Lei Gong
- Department of Pharmacy, Institute of Medical Biotechnology, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China.
| |
Collapse
|
4
|
Tan J, Zhu H, Zeng Y, Li J, Zhao Y, Li M. Therapeutic Potential of Natural Compounds in Subarachnoid Haemorrhage. Neuroscience 2024; 546:118-142. [PMID: 38574799 DOI: 10.1016/j.neuroscience.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Subarachnoid hemorrhage (SAH) is a common and fatal cerebrovascular disease with high morbidity, mortality and very poor prognosis worldwide. SAH can induce a complex series of pathophysiological processes, and the main factors affecting its prognosis are early brain injury (EBI) and delayed cerebral ischemia (DCI). The pathophysiological features of EBI mainly include intense neuroinflammation, oxidative stress, neuronal cell death, mitochondrial dysfunction and brain edema, while DCI is characterized by delayed onset ischemic neurological deficits and cerebral vasospasm (CVS). Despite much exploration in people to improve the prognostic outcome of SAH, effective treatment strategies are still lacking. In recent years, numerous studies have shown that natural compounds of plant origin have unique neuro- and vascular protective effects in EBI and DCI after SAH and long-term neurological deficits, which mainly include inhibition of inflammatory response, reduction of oxidative stress, anti-apoptosis, and improvement of blood-brain barrier and cerebral vasospasm. The aim of this paper is to systematically explore the processes of neuroinflammation, oxidative stress, and apoptosis in SAH, and to summarize natural compounds as potential targets for improving the prognosis of SAH and their related mechanisms of action for future therapies.
Collapse
Affiliation(s)
- Jiacong Tan
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Huaxin Zhu
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Yanyang Zeng
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Jiawei Li
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Yeyu Zhao
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Meihua Li
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
5
|
Zhang RB, Ren L, Ding DP, Wang HD, Peng J, Zheng K. Protective Effect of the SIRT1-Mediated NF-κB Signaling Pathway against Necrotizing Enterocolitis in Neonatal Mice. Eur J Pediatr Surg 2023; 33:386-394. [PMID: 36379465 DOI: 10.1055/s-0042-1758157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To discover the mechanism of the sirtuin 1 (SIRT1)-mediated nuclear factor-κB (NF-κB) pathway in the protection against necrotizing enterocolitis (NEC) in neonatal mice. MATERIALS AND METHODS Neonatal mice were treated with EX527 (an inhibitor of SIRT1) and/or pyrrolidine dithiocarbamate (PDTC, an inhibitor of NF-κB). The survival rate of the mice was recorded. Hematoxylin and eosin (HE) staining was performed to observe the pathological changes in the intestines. Furthermore, western blotting, enzyme-linked immunosorbent assay, and real-time quantitative polymerase chain reaction were conducted to measure the protein and gene expression, while corresponding kits were used to detect the levels of oxidative stress indicators. RESULTS PDTC increased the survival rate of NEC mice. When compared with the NEC+ EX527 + PDTC group, the histological NEC score was higher in the NEC + EX527 group but lower in the NEC + PDTC group. SIRT1 expression in the intestines of NEC mice was downregulated, with an increase in p65 nuclear translocation. Additionally, malondialdehyde increased and glutathione peroxidase decreased in the intestines of NEC mice, with the upregulation of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α, as well as the downregulation of ZO-1, occludin, and claudin-4 in the intestines. However, the above changes could be improved by PDTC, which could be further reversed by EX527. CONCLUSION SIRT1 can mitigate inflammation and the oxidative stress response and improve intestinal permeability by mediating the NF-κB pathway, playing an important role in the alleviation of NEC.
Collapse
Affiliation(s)
- Rui-Bo Zhang
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Lan Ren
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - De-Ping Ding
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Heng-Dong Wang
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Juan Peng
- Department of Blood Transfusion, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Kun Zheng
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| |
Collapse
|
6
|
Chu D, Li X, Qu X, Diwan D, Warner DS, Zipfel GJ, Sheng H. SIRT1 Activation Promotes Long-Term Functional Recovery After Subarachnoid Hemorrhage in Rats. Neurocrit Care 2023; 38:622-632. [PMID: 36224490 PMCID: PMC11531602 DOI: 10.1007/s12028-022-01614-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/19/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND An increase in sirtuin 1 (SIRT1) reportedly attenuates early brain injury, delayed cerebral ischemia, and short-term neurologic deficits in rodent models of subarachnoid hemorrhage (SAH). This study investigates the effect of resveratrol, a SIRT1 activator, on long-term functional recovery in a clinically relevant rat model of SAH. METHODS Thirty male Wistar rats were subjected to fresh arterial blood injection into the prechiasmatic space and randomized to receive 7 days of intraperitoneal resveratrol (20 mg/kg) or vehicle injections. Body weight and rotarod performance were measured on days 0, 3, 7, and 34 post SAH. The neurologic score was assessed 7 and 34 days post SAH. Morris water maze performance was evaluated 29-33 days post SAH. Brain SIRT1 activity and CA1 neuronal survival were also assessed. RESULTS Blood pressure rapidly increased in all SAH rats, and no between-group differences in blood pressure, blood gases, or glucose were detected. SAH induced weight loss during the first 7 days, which gradually recovered in both groups. Neurologic score and rotarod performance were significantly improved after resveratrol treatment at 34 days post SAH (p = 0.01 and 0.04, respectively). Latency to find the Morris water maze hidden platform was shortened (p = 0.02). In the resveratrol group, more CA1 neurons survived following SAH (p = 0.1). An increase in brain SIRT1 activity was confirmed in the resveratrol group (p < 0.05). CONCLUSIONS Treatment with resveratrol for 1 week significantly improved the neurologic score, rotarod performance, and latency to find the Morris water maze hidden platform 34 days post SAH. These findings indicate that SIRT1 activation warrants further investigation as a mechanistic target for SAH therapy.
Collapse
Affiliation(s)
- Dongmei Chu
- Multidisciplinary Neuroprotection Laboratories, Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Box 3094, Durham, NC, 27710, USA
- Department of Pediatrics, The Fifth Central Hospital of Tianjin, Tanggu District, Tianjin, China
| | - Xuan Li
- Multidisciplinary Neuroprotection Laboratories, Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Box 3094, Durham, NC, 27710, USA
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xingguang Qu
- Multidisciplinary Neuroprotection Laboratories, Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Box 3094, Durham, NC, 27710, USA
- Intensive Care Unit, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Deepti Diwan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - David S Warner
- Multidisciplinary Neuroprotection Laboratories, Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Box 3094, Durham, NC, 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Gregory J Zipfel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Huaxin Sheng
- Multidisciplinary Neuroprotection Laboratories, Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Box 3094, Durham, NC, 27710, USA.
| |
Collapse
|
7
|
Zhang Z, Liu C, Zhou X, Zhang X. The Critical Role of Sirt1 in Subarachnoid Hemorrhages: Mechanism and Therapeutic Considerations. Brain Sci 2023; 13:brainsci13040674. [PMID: 37190639 DOI: 10.3390/brainsci13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
The subarachnoid hemorrhage (SAH) is an important cause of death and long-term disability worldwide. As a nicotinamide adenine dinucleotide-dependent deacetylase, silent information regulator 1 (Sirt1) is a multipotent molecule involved in many pathophysiological processes. A growing number of studies have demonstrated that Sirt1 activation may exert positive effects on SAHs by regulating inflammation, oxidative stress, apoptosis, autophagy, and ferroptosis. Thus, Sirt1 agonists may serve as potential therapeutic drugs for SAHs. In this review, we summarized the current state of our knowledge on the relationship between Sirt1 and SAHs and provided an updated overview of the downstream molecules of Sirt1 in SAHs.
Collapse
Affiliation(s)
- Zhonghua Zhang
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Cong Liu
- Department of Ophthalmology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Xiaoming Zhou
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
8
|
Akar A, Öztopuz RÖ, Büyük B, Ovali MA, Aykora D, Malçok ÜA. Neuroprotective Effects of Piceatannol on Olfactory Bulb Injury after Subarachnoid Hemorrhage. Mol Neurobiol 2023; 60:3695-3706. [PMID: 36933146 DOI: 10.1007/s12035-023-03306-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/08/2023] [Indexed: 03/19/2023]
Abstract
Subarachnoid hemorrhage (SAH) accounts for 5% of all stroke cases and is responsible for significant permanent brain and neurological damage within the first few days. Loss of smell is one of those neurological disorders following olfactory bulb injury after SAH. Olfaction plays a critical role in several aspects of life. The primary underlying mechanism of olfactory bulb (OB) injury and loss of smell after SAH remains unknown. Piceatannol (PIC), a natural stilbene, possesses anti-inflammatory and anti-apoptotic effects against various diseases. In this study, we aimed to investigate the potential therapeutic effects of PIC on OB injury following SAH at molecular mechanism based on SIRT1, inflammatory (TNF-α, IL1-β, NF-κB, IL-6, TLR4), and apoptosis (p53, Bax, Bcl-2, caspase-3)-related gene expression markers and histopathology level; 27 male Wistar Albino rats were used in a pre-chiasmatic subarachnoid hemorrhage model. Animals were divided into groups (n = 9): SHAM, SAH, and PIC. Garcia's neurological examination, brain water content, RT-PCR, histopathology, and TUNEL analyses were performed in all experimental groups with OB samples. Our results indicated that PIC administration significantly suppressed inflammatory molecules (TNF-α, IL-6, IL1-β, TLR4, NF-κB, SIRT1) and apoptotic molecules (caspase-3, p53, Bax). We also evaluated edema levels and cell damage in OB injury after SAH. Ameliorative effects of PIC are also observed at the histopathology level. Garcia's neurological score test performed a neurological assessment. This study is the first to demonstrate the neuroprotective effects of PIC on OB injury after SAH. It suggests that PIC would be a potential therapeutic agent for alleviating OB injury after SAH.
Collapse
Affiliation(s)
- Ali Akar
- Faculty of Medicine, Department of Neurosurgery, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Rahime Özlem Öztopuz
- Faculty of Medicine, Department of Biophysics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Başak Büyük
- Faculty of Medicine, Department of Histology and Embryology, İzmir Democracy University, İzmir, Turkey
| | - Mehmet Akif Ovali
- Faculty of Medicine, Department of Physiology, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Damla Aykora
- Faculty of Medicine, Department of Physiology, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Ümit Ali Malçok
- Faculty of Medicine, Department of Neurosurgery, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
| |
Collapse
|
9
|
Jin T, Zhang Y, Botchway BOA, Huang M, Lu Q, Liu X. Quercetin activates the Sestrin2/AMPK/SIRT1 axis to improve amyotrophic lateral sclerosis. Biomed Pharmacother 2023; 161:114515. [PMID: 36913894 DOI: 10.1016/j.biopha.2023.114515] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease with poor prognosis. The intricacies surrounding its pathophysiology could partly account for the lack of effective treatment for ALS. Sestrin2 has been reported to improve metabolic, cardiovascular and neurodegenerative diseases, and is involved in the direct and indirect activation of the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/silent information regulator 1 (SIRT1) axis. Quercetin, as a phytochemical, has considerable biological activities, such as anti-oxidation, anti-inflammation, anti-tumorigenicity, and neuroprotection. Interestingly, quercetin can activate the AMPK/SIRT1 signaling pathway to reduce endoplasmic reticulum stress, and alleviate apoptosis and inflammation. This report examines the molecular relationship between Sestrin2 and AMPK/SIRT1 axis, as well as the main biological functions and research progress of quercetin, together with the correlation between quercetin and Sestrin2/AMPK/SIRT1 axis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tian Jin
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China; Bupa Cromwell Hospital, London, UK
| | - Min Huang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Qicheng Lu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China.
| |
Collapse
|
10
|
Abdelsalam SA, Renu K, Zahra HA, Abdallah BM, Ali EM, Veeraraghavan VP, Sivalingam K, Ronsard L, Ammar RB, Vidya DS, Karuppaiya P, Al-Ramadan SY, Rajendran P. Polyphenols Mediate Neuroprotection in Cerebral Ischemic Stroke-An Update. Nutrients 2023; 15:nu15051107. [PMID: 36904106 PMCID: PMC10005012 DOI: 10.3390/nu15051107] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Stroke is one of the main causes of mortality and disability, and it is due to be included in monetary implications on wellbeing frameworks around the world. Ischemic stroke is caused by interference in cerebral blood flow, leading to a deficit in the supply of oxygen to the affected region. It accounts for nearly 80-85% of all cases of stroke. Oxidative stress has a significant impact on the pathophysiologic cascade in brain damage leading to stroke. In the acute phase, oxidative stress mediates severe toxicity, and it initiates and contributes to late-stage apoptosis and inflammation. Oxidative stress conditions occur when the antioxidant defense in the body is unable to counteract the production and aggregation of reactive oxygen species (ROS). The previous literature has shown that phytochemicals and other natural products not only scavenge oxygen free radicals but also improve the expressions of cellular antioxidant enzymes and molecules. Consequently, these products protect against ROS-mediated cellular injury. This review aims to give an overview of the most relevant data reported in the literature on polyphenolic compounds, namely, gallic acid, resveratrol, quercetin, kaempferol, mangiferin, epigallocatechin, and pinocembrin, in terms of their antioxidant effects and potential protective activity against ischemic stroke.
Collapse
Affiliation(s)
- Salaheldin Abdelraouf Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College & Hospitals, Saveetha University, Chennai 600077, India
| | - Hamad Abu Zahra
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College & Hospitals, Saveetha University, Chennai 600077, India
| | - Kalaiselvi Sivalingam
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Larance Ronsard
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Rebai Ben Ammar
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cedria, Technopole of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia
| | - Devanathadesikan Seshadri Vidya
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia
| | - Palaniyandi Karuppaiya
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - S. Y. Al-Ramadan
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College & Hospitals, Saveetha University, Chennai 600077, India
- Correspondence: ; Tel.: +966-0135899543
| |
Collapse
|
11
|
Li MC, Tian Q, Liu S, Han SM, Zhang W, Qin XY, Chen JH, Liu CL, Guo YJ. The mechanism and relevant mediators associated with neuronal apoptosis and potential therapeutic targets in subarachnoid hemorrhage. Neural Regen Res 2023; 18:244-252. [PMID: 35900398 PMCID: PMC9396483 DOI: 10.4103/1673-5374.346542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a dominant cause of death and disability worldwide. A sharp increase in intracranial pressure after SAH leads to a reduction in cerebral perfusion and insufficient blood supply for neurons, which subsequently promotes a series of pathophysiological responses leading to neuronal death. Many previous experimental studies have reported that excitotoxicity, mitochondrial death pathways, the release of free radicals, protein misfolding, apoptosis, necrosis, autophagy, and inflammation are involved solely or in combination in this disorder. Among them, irreversible neuronal apoptosis plays a key role in both short- and long-term prognoses after SAH. Neuronal apoptosis occurs through multiple pathways including extrinsic, mitochondrial, endoplasmic reticulum, p53 and oxidative stress. Meanwhile, a large number of blood contents enter the subarachnoid space after SAH, and the secondary metabolites, including oxygenated hemoglobin and heme, further aggravate the destruction of the blood-brain barrier and vasogenic and cytotoxic brain edema, causing early brain injury and delayed cerebral ischemia, and ultimately increasing neuronal apoptosis. Even there is no clear and effective therapeutic strategy for SAH thus far, but by understanding apoptosis, we might excavate new ideas and approaches, as targeting the upstream and downstream molecules of apoptosis-related pathways shows promise in the treatment of SAH. In this review, we summarize the existing evidence on molecules and related drugs or molecules involved in the apoptotic pathway after SAH, which provides a possible target or new strategy for the treatment of SAH.
Collapse
|
12
|
Wang Q, Yu Q, Wu M. Antioxidant and neuroprotective actions of resveratrol in cerebrovascular diseases. Front Pharmacol 2022; 13:948889. [PMID: 36133823 PMCID: PMC9483202 DOI: 10.3389/fphar.2022.948889] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022] Open
Abstract
Cerebralvascular diseases are the most common high-mortality diseases worldwide. Despite its global prevalence, effective treatments and therapies need to be explored. Given that oxidative stress is an important risk factor involved with cerebral vascular diseases, natural antioxidants and its derivatives can be served as a promising therapeutic strategy. Resveratrol (3, 5, 4′-trihydroxystilbene) is a natural polyphenolic antioxidant found in grape skins, red wine, and berries. As a phytoalexin to protect against oxidative stress, resveratrol has therapeutic value in cerebrovascular diseases mainly by inhibiting excessive reactive oxygen species production, elevating antioxidant enzyme activity, and other antioxidant molecular mechanisms. This review aims to collect novel kinds of literature regarding the protective activities of resveratrol on cerebrovascular diseases, addressing the potential mechanisms underlying the antioxidative activities and mitochondrial protection of resveratrol. We also provide new insights into the chemistry, sources, and bioavailability of resveratrol.
Collapse
Affiliation(s)
- Qing Wang
- Shaanxi Prov Peoples Hospital, Shaanxi Prov Key Lab Infect and Immune Dis, Xian, China
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases and Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Qi Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases and Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- Department of Histology and Embryology, Xi’an Medical University, Xi’an, China
- Department of Pharmacology, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Min Wu
- Shaanxi Prov Peoples Hospital, Shaanxi Prov Key Lab Infect and Immune Dis, Xian, China
- *Correspondence: Min Wu,
| |
Collapse
|
13
|
Tan J, Song R, Luo S, Fu W, Ma Y, Zheng L, He Z. Efficacy of Resveratrol in Experimental Subarachnoid Hemorrhage Animal Models: A Stratified Meta-Analysis. Front Pharmacol 2022; 13:905208. [PMID: 35847035 PMCID: PMC9277348 DOI: 10.3389/fphar.2022.905208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Subarachnoid hemorrhage (SAH) is a serious neurosurgical emergency with extremely high morbidity and mortality rates. Resveratrol (RES), a natural polyphenolic phytoalexin, is broadly presented in a wide variety of plants. Previous research had reasonably revealed its neuroprotective effects on experimental SAH animal models to some extent. But the results were more controversial. Therefore, we conducted a meta-analysis to evaluate the evidence on the effectiveness of RES in improving outcomes in SAH animal models. Methods: A systematic literature review was conducted in PubMed, EMBASE, and Web of Science databases to incorporate experimental control studies on the efficacy of RES on SAH models into our research. The standardized mean difference (SMD) was used to compare the brain water content (BWC) and neurological score (NS) between the treatment and control groups. Results: Overall, 16 articles published from 2014 to 2022 met the inclusion criteria. The meta-analysis of BWC showed a significant difference in favor of RES treatment (SMD: -1.026; 95% CI: -1.380, -0.672; p = 0.000) with significant heterogeneity (Q = 84.97; I2 = 60.0%; p = 0.000). Further stratified analysis was performed for methodological differences, especially dosage, time of treatments, and time-point of outcome assessment. The meta-analysis of NS showed a significant difference in favor of RES treatment (SMD: 1.342; 95% CI: 1.089, 1.595; p = 0.000) with low heterogeneity (Q = 25.58; I2 = 17.9%; p = 0.223). Conclusion: Generally, RES treatment showed an improvement in both pathological and behavioral outcomes in SAH animal models. The results of this study may provide a reference for preclinical and clinical studies in the future to some extent, with great significance for human health.
Collapse
Affiliation(s)
- Jiahe Tan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Song
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Siyue Luo
- Clinical Medicine, The Second Clinical College of Chongqing Medical University, Chongqing, China
| | - Wenqiao Fu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yinrui Ma
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lian Zheng
- Department of Neurosurgery, The Fifth People's Hospital of Chongqing Municipality, Chongqing, China
| | - Zhaohui He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Xu L, Yu Z, Uekusa Y, Kawaguchi S, Kikuchi H, Daitoku K, Minagawa M, Motomura S, Furukawa KI, Oshima Y, Seya K, Imaizumi T. Elucidation of the inhibitory effect of (+)-hopeaphenol on polyinosinic–polycytidylic acid-induced innate immunity activation in human cerebral microvascular endothelial cells. J Pharmacol Sci 2022; 149:147-157. [DOI: 10.1016/j.jphs.2022.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/14/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022] Open
|
15
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
16
|
Chen X, Li Z, Zhang B, Liu T, Yao W, Wan L, Zhang C, Zhang Y. Antinociception role of 14,15-epoxyeicosatrienoic acid in a central post-stroke pain model in rats mediated by anti-inflammation and anti-apoptosis effect. Neurochem Int 2022; 154:105291. [PMID: 35074479 DOI: 10.1016/j.neuint.2022.105291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/24/2021] [Accepted: 01/20/2022] [Indexed: 11/18/2022]
Abstract
Central post stroke pain (CPSP) is an intractable neuropathic pain syndrome that occurs after the acute focal lesion of the central nervous system (CNS) due to a cerebrovascular cause. Epoxyeicosatrienoic acids (EETs) exert many pharmacological effects in vivo and in vitro, such as anti-apoptosis, anti-inflammatory, and anti-oxidative stress. Neuroinflammation and apoptosis are the potential pathophysiological mechanisms of neuropathic pain. This study aimed to investigate whether 14,15-EET has an antinociception effect on CPSP rats through its anti-inflammation and anti-apoptosis mechanisms. Rats were treated with type IV collagenase (CPSP group) or saline (Sham group) via injection with a Hamilton syringe into the ventral posterior lateral nucleus (VPL) according to the stereotaxic coordinates. We first tested the mechanical withdrawal threshold, as well as neuroinflammation- and apoptosis-related protein expressions in the per-lesion site of CPSP and Sham rats. Sprague-Dawley rats were randomly divided into five groups, as follows: vehicle; EET at 0.025, 0.05, and 0.1 μg; and EET (0.1 μg) + EEZE (3.25 ng). EET or and vehicle were administered into VPL nuclei three consecutive days after hemorrhagic stroke. Immunostaining, ELISA, and Western blot were performed to evaluate neuroinflammation and apoptosis. Hemorrhagic stroke induced mechanical allodynia, glial activation, neuroinflammation, and apoptosis-related protein upregulation. However, early treatment with 14,15-EET inhibited glial cell activation, decreased proinflammatory cytokines and apoptosis-related protein, and alleviated the pain behavior of CPSP rats. Our results provided strong evidence that antinociception produced by 14,15-EET is partly mediated by the inhibition of neuroinflammation and apoptosis.
Collapse
Affiliation(s)
- Xuhui Chen
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zuofan Li
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo Zhang
- Department of Anaesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tongtong Liu
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenlong Yao
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Wan
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chuanhan Zhang
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Zhang
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
17
|
Ding Y, Zhang L, Zhou W, Lu H, Gao X, Li J, Liu J, Niu X, Zheng J. Role of cyclin‑dependent kinase 5 in early brain injury following experimental subarachnoid hemorrhage. Exp Ther Med 2021; 23:147. [PMID: 35069828 PMCID: PMC8756392 DOI: 10.3892/etm.2021.11070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/09/2021] [Indexed: 11/26/2022] Open
Abstract
Increasing evidence indicates that early brain injury (EBI) can contribute to poor outcomes following subarachnoid hemorrhage (SAH), and is associated with apoptosis. Cyclin-dependent kinase 5 (Cdk5) is a key mediator of neuronal viability. The role of Cdk5 in several neurological disorders has been elucidated; however, its role in EBI after SAH remains unclear. The present study aimed to explore the involvement of Cdk5 in EBI after SAH. The expression levels of Cdk5, Cdk5 phosphorylated at Tyr15 (Cdk5-pTyr15) and p25 (a Cdk5 activator) were assessed by western blotting, and the cell distribution of Cdk5 was demonstrated by double immunofluorescence. The expression levels of caspase-3 and cytochrome c were evaluated by western blotting to assess the severity of neuronal apoptosis. Nissl and TUNEL staining experiments were performed to observe the effects of roscovitine, a Cdk5 inhibitor, on EBI following SAH. The results indicated that the expression levels of Cdk5, p25 and Cdk5-pTyr15 significantly increased in the rat temporal cortex following SAH. Immunofluorescence staining indicated that Cdk5 was expressed in the neurons and astrocytes of the rat cortex after SAH and that Cdk5 underwent nuclear translocation in neurons. Roscovitine administration effectively inhibited Cdk5 activation. In conclusion, roscovitine treatment significantly mitigated EBI and alleviated cerebral edema following SAH. These findings suggest that Cdk5 is an important target in SAH therapy.
Collapse
Affiliation(s)
- Yu Ding
- Department of Neurosurgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu 223800, P.R. China
| | - Liexiang Zhang
- Department of Neurosurgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu 223800, P.R. China
| | - Wei Zhou
- Department of Neurosurgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu 223800, P.R. China
| | - Hai Lu
- Department of Neurosurgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu 223800, P.R. China
| | - Xingde Gao
- Department of Neurosurgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu 223800, P.R. China
| | - Jian Li
- Department of Neurosurgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu 223800, P.R. China
| | - Jingde Liu
- Department of Neurosurgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu 223800, P.R. China
| | - Xiaowang Niu
- Department of Neurosurgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu 223800, P.R. China
| | - Jing Zheng
- Department of Neurosurgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu 223800, P.R. China
| |
Collapse
|
18
|
Diwan D, Vellimana AK, Aum DJ, Clarke J, Nelson JW, Lawrence M, Han BH, Gidday JM, Zipfel GJ. Sirtuin 1 Mediates Protection Against Delayed Cerebral Ischemia in Subarachnoid Hemorrhage in Response to Hypoxic Postconditioning. J Am Heart Assoc 2021; 10:e021113. [PMID: 34622677 PMCID: PMC8751859 DOI: 10.1161/jaha.121.021113] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Many therapies designed to prevent delayed cerebral ischemia (DCI) and improve neurological outcome in aneurysmal subarachnoid hemorrhage (SAH) have failed, likely because of targeting only one element of what has proven to be a multifactorial disease. We previously demonstrated that initiating hypoxic conditioning before SAH (hypoxic preconditioning) provides powerful protection against DCI. Here, we expanded upon these findings to determine whether hypoxic conditioning delivered at clinically relevant time points after SAH (hypoxic postconditioning) provides similarly robust DCI protection. Methods and Results In this study, we found that hypoxic postconditioning (8% O2 for 2 hours) initiated 3 hours after SAH provides strong protection against cerebral vasospasm, microvessel thrombi, and neurological deficits. By pharmacologic and genetic inhibition of SIRT1 (sirtuin 1) using EX527 and global Sirt1-/- mice, respectively, we demonstrated that this multifaceted DCI protection is SIRT1 mediated. Moreover, genetic overexpression of SIRT1 using Sirt1-Tg mice, mimicked the DCI protection afforded by hypoxic postconditioning. Finally, we found that post-SAH administration of resveratrol attenuated cerebral vasospasm, microvessel thrombi, and neurological deficits, and did so in a SIRT1-dependent fashion. Conclusions The present study indicates that hypoxic postconditioning provides powerful DCI protection when initiated at clinically relevant time points, and that pharmacologic augmentation of SIRT1 activity after SAH can mimic this beneficial effect. We conclude that conditioning-based therapies administered after SAH hold translational promise for patients with SAH and warrant further investigation.
Collapse
Affiliation(s)
- Deepti Diwan
- Department of Neurological Surgery Washington University School of Medicine St. Louis MO
| | - Ananth K Vellimana
- Department of Neurological Surgery Washington University School of Medicine St. Louis MO
| | - Diane J Aum
- Department of Neurological Surgery Washington University School of Medicine St. Louis MO
| | - Julian Clarke
- Department of Neurological Surgery Washington University School of Medicine St. Louis MO
| | - James W Nelson
- Department of Neurological Surgery Washington University School of Medicine St. Louis MO
| | - Molly Lawrence
- Department of Neurological Surgery Washington University School of Medicine St. Louis MO
| | - Byung Hee Han
- Department of Pharmacology A.T. Still University of Health SciencesKirksville College of Osteopathic Medicine Kirksville MO
| | - Jeffrey M Gidday
- Departments of Ophthalmology, Physiology, Biochemistry, and Neuroscience Louisiana State University New Orleans LA
| | - Gregory J Zipfel
- Department of Neurological Surgery Washington University School of Medicine St. Louis MO.,Department of Neurology Washington University School of Medicine St. Louis MO
| |
Collapse
|
19
|
Hao W, Hao C, Wu C, Xu Y, Wu S, Lu X, Yang J, Jin C. Aluminum impairs cognitive function by activating DDX3X-NLRP3-mediated pyroptosis signaling pathway. Food Chem Toxicol 2021; 157:112591. [PMID: 34614429 DOI: 10.1016/j.fct.2021.112591] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Aluminum is a kind of chemical contaminants in food which can induce neurotoxicity. Aluminum exposure is closely related to neurodegenerative diseases (ND), in which neuroinflammation might involve. However, the molecular mechanism of aluminum-induced neuroinflammation through pyroptosis is not fully clarified yet. MATERIAL AND METHODS The mice model of subacute exposure to aluminum chloride (AlCl3) was established. BV2 microglia cells was treated with AlCl3 in vitro. Resveratrol (Rsv) was adopted as intervention agent. RESULTS Our results showed that aluminum induced cognitive impairment, destroying blood brain barrier (BBB), and causing nerve injury in mice. Meanwhile, aluminum could stimulate nucleotide oligomerization domain-like receptor family pyrin domain containing protein 3 (NLRP3) inflammasome assembly and activate caspase-1 (CASP1), inducing gasdermin D (GSDMD)-mediated pyroptosis signaling, releasing cytokines IL-1β and IL-18, further promoting the activation of glial cells to magnify neuroinflammatory response. Moreover, DEAD-box helicase 3 X-linked (DDX3X) and stress granule RasGAP SH3-domain-binding protein 1 (G3BP1) both participated in neuroinflammation induced by aluminum. When co-treated with Rsv, these injuries were alleviated to some extent. CONCLUSION Aluminum exposure could induce nerve cell pyroptosis and neuroinflammation by DDX3X-NLRP3 inflammasome signaling pathway, which could be rescued via Rsv activating sirtuin 1 (SIRT1).
Collapse
Affiliation(s)
- Wudi Hao
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Chenyu Hao
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Chengrong Wu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Yuqing Xu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China.
| |
Collapse
|
20
|
Apelin-13 attenuates injury following ischemic stroke by targeting matrix metalloproteinases (MMP), endothelin- B receptor, occludin/claudin-5 and oxidative stress. J Chem Neuroanat 2021; 118:102015. [PMID: 34454018 DOI: 10.1016/j.jchemneu.2021.102015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
Oxidative stress, an adverse consequence of brain ischemia-reperfusion injury (IRI), activates matrix metalloproteinase enzymes which cause to destruction of extracellular matrix and tight junction proteins. Oxidative stress during stroke increases serum endothelin-1 and endothelin B receptor (ETBR) expression. Apelin-13, an endogenous peptide, is expressed in numerous tissues that regulate diverse physiological and pathological processes. This study aimed to investigate the effect of intravenous (IV) injection of apelin-13 on cerebral vasogenic edema due to brain IRI. Animals were divided into sham, ischemia, and treat groups. IRI model was induced by middle cerebral artery occlusion (MCAO) for 60 min followed by 23 h reperfusion. Apelin-13 was injected into the tail vein 5 min before reperfusion. Neurological defects were evaluated with longa test. Brain water content and BBB permeability were assessed according to cerebral dry-wet weight and brain Evans blue extraction. Malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) were measured using the colorimetric method. Expression of occludin and claudin-5, matrix metalloproteinase- 2 and 9 (MMP-2 & 9) and, ETBR were evaluated using Western blot. Brain IRI was associated with BBB breakdowns and vasogenic edema. Apelin-13 significantly reduced BBB permeability and vasogenic edema. Apelin-13 significantly attenuated IRI-related oxidative stress. Apelin-13 decreased expression of mmp-2, 9 and ETBR, prevented from decrement of occludin and claudin-5 expersion, which protected BBB integrity and reduced vasogenic edema. In conclusion, our results have suggested that an IV injection of apelin-13 could somehow reduce vasogenic edema via targeting oxidative stress and ETBR expression.
Collapse
|
21
|
Kim YK, Song J. Therapeutic Applications of Resveratrol in Hepatic Encephalopathy through Its Regulation of the Microbiota, Brain Edema, and Inflammation. J Clin Med 2021; 10:jcm10173819. [PMID: 34501267 PMCID: PMC8432232 DOI: 10.3390/jcm10173819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatic encephalopathy is a common complication in patients with liver cirrhosis and portosystemic shunting. Patients with hepatic encephalopathy present a variety of clinical features, including neuropsychiatric manifestations, cognitive dysfunction, impaired gut barrier function, hyperammonemia, and chronic neuroinflammation. These pathogeneses have been linked to various factors, including ammonia-induced oxidative stress, neuronal cell death, alterations in the gut microbiome, astrocyte swelling, and blood-brain barrier disruptions. Many researchers have focused on identifying novel therapeutics and prebiotics in the hope of improving the treatment of these conditions. Resveratrol is a natural polyphenic compound and is known to exert several pharmacological effects, including antioxidant, anti-inflammatory, and neuroprotective activities. Recent studies suggest that resveratrol contributes to improving the neuropathogenic effects of liver failure. Here, we review the current evidence describing resveratrol's effects in neuropathogenesis and its impact on the gut-liver axis relating to hepatic encephalopathy. We highlight the hypothesis that resveratrol exerts diverse effects in hepatic encephalopathy and suggest that these effects are likely mediated by changes to the gut microbiota, brain edema, and neuroinflammation.
Collapse
Affiliation(s)
- Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Korea;
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Korea
- Correspondence: ; Tel.: +82-61-379-2706; Fax: +82-61-375-5834
| |
Collapse
|
22
|
Sarkaki A, Rashidi M, Ranjbaran M, Asareh Zadegan Dezfuli A, Shabaninejad Z, Behzad E, Adelipour M. Therapeutic Effects of Resveratrol on Ischemia-Reperfusion Injury in the Nervous System. Neurochem Res 2021; 46:3085-3102. [PMID: 34365594 DOI: 10.1007/s11064-021-03412-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 01/07/2023]
Abstract
Resveratrol is a phenol compound produced by some plants in response to pathogens, infection, or physical injury. It is well-known that resveratrol has antioxidant and protective roles in damages potentially caused by cancer or other serious disorders. Thus, it is considered as a candidate agent for the prevention and treatment of human diseases. Evidence has confirmed other bioactive impacts of resveratrol, including cardioprotective, anti-tumorigenic, anti-inflammatory, phytoestrogenic, and neuroprotective effects. Ischemia-reperfusion (IR) can result in various disorders, comprising myocardial infarction, stroke, and peripheral vascular disease, which may continue to induce debilitating conditions and even mortality. In virtue of chronic ischemia or hypoxia, cells switch to anaerobic metabolism, giving rise to some dysfunctions in mitochondria. As the result of lactate accumulation, adenosine triphosphate levels and pH decline in cells. This condition leads cells to apoptosis, necrosis, and autophagy. However, restoring oxygen level upon reperfusion after ischemia by producing reactive oxygen species is an outcome of mitochondrial dysfunction. Considering the neuroprotective effect of resveratrol and neuronal injury that comes from IR, we focused on the mechanism(s) involved in IR injury in the nervous system and also on the functions of resveratrol in the protection, inhibition, and treatment of this injury.
Collapse
Affiliation(s)
- Alireza Sarkaki
- Department of Physiology, School of Medicine, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Rashidi
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mina Ranjbaran
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aram Asareh Zadegan Dezfuli
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Shabaninejad
- Department of Nanotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ebrahim Behzad
- Neurology Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Adelipour
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
23
|
Gao S, Tang YY, Jiang L, Lan F, Li X, Zhang P, Zou W, Chen YJ, Tang XQ. H 2S Attenuates Sleep Deprivation-Induced Cognitive Impairment by Reducing Excessive Autophagy via Hippocampal Sirt-1 in WISTAR RATS. Neurochem Res 2021; 46:1941-1952. [PMID: 33914232 DOI: 10.1007/s11064-021-03314-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/05/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
Sleep deprivation (SD) is widespread in society causing serious damage to cognitive function. Hydrogen sulfide (H2S), the third gas signal molecule, plays important regulatory role in learning and memory functions. Inhibition of excessive autophagy and upregulation of silent information regulator 1 (Sirt-1) have been reported to prevent cognitive dysfunction. Therefore, this present work was to address whether H2S attenuates the cognitive impairment induced by SD in Wistar rats and whether the underlying mechanisms involve in inhibition of excessive autophagy and upregulation of Sirt-1. After treatment with SD for 72 h, the cognitive function of Wistar rats was evaluated by Y-maze, new object recognition, object location, and Morris water maze tests. The results shown that SD-caused cognitive impairment was reversed by treatment with NaHS (a donor of H2S). NaHS also prevented SD-induced hippocampal excessive autophagy, as evidenced by the decrease in autophagosomes, the down-regulation of Beclin1, and the up-regulation of p62 in the hippocampus of SD-exposed Wistar rats. Furthermore, Sirtinol, an inhibitor of Sirt-1, reversed the inhibitory roles of NaHS in SD-induced cognitive impairment and excessive hippocampal autophagy in Wistar rats. Taken together, our results suggested that H2S improves the cognitive function of SD-exposed rats by inhibiting excessive hippocampal autophagy in a hippocampal Sirt-1-dependent way.
Collapse
Affiliation(s)
- Shan Gao
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China
| | - Yi-Yun Tang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China
| | - Li Jiang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, 336 E Dongfeng Road, Hengyang, 421001, Hunan, P. R. China
| | - Fang Lan
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, 336 E Dongfeng Road, Hengyang, 421001, Hunan, P. R. China
- Institute of Neurology, the First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, P. R. China
| | - Xiang Li
- Department of Anesthesiology, the First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, P. R. China
| | - Ping Zhang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China.
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, 336 E Dongfeng Road, Hengyang, 421001, Hunan, P. R. China.
| | - Wei Zou
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, 336 E Dongfeng Road, Hengyang, 421001, Hunan, P. R. China
| | - Yong-Jun Chen
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, 336 E Dongfeng Road, Hengyang, 421001, Hunan, P. R. China
| | - Xiao-Qing Tang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China.
- Institute of Neurology, the First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, P. R. China.
| |
Collapse
|
24
|
Demyanenko S, Sharifulina S. The Role of Post-Translational Acetylation and Deacetylation of Signaling Proteins and Transcription Factors after Cerebral Ischemia: Facts and Hypotheses. Int J Mol Sci 2021; 22:ijms22157947. [PMID: 34360712 PMCID: PMC8348732 DOI: 10.3390/ijms22157947] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Histone deacetylase (HDAC) and histone acetyltransferase (HAT) regulate transcription and the most important functions of cells by acetylating/deacetylating histones and non-histone proteins. These proteins are involved in cell survival and death, replication, DNA repair, the cell cycle, and cell responses to stress and aging. HDAC/HAT balance in cells affects gene expression and cell signaling. There are very few studies on the effects of stroke on non-histone protein acetylation/deacetylation in brain cells. HDAC inhibitors have been shown to be effective in protecting the brain from ischemic damage. However, the role of different HDAC isoforms in the survival and death of brain cells after stroke is still controversial. HAT/HDAC activity depends on the acetylation site and the acetylation/deacetylation of the main proteins (c-Myc, E2F1, p53, ERK1/2, Akt) considered in this review, that are involved in the regulation of cell fate decisions. Our review aims to analyze the possible role of the acetylation/deacetylation of transcription factors and signaling proteins involved in the regulation of survival and death in cerebral ischemia.
Collapse
Affiliation(s)
- Svetlana Demyanenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, pr. Stachki 194/1, 344090 Rostov-on-Don, Russia
| | - Svetlana Sharifulina
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, pr. Stachki 194/1, 344090 Rostov-on-Don, Russia
- Neuroscience Center HiLife, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, 00014 Helsinki, Finland
| |
Collapse
|
25
|
Amoo M, Henry J, Pender N, Brennan P, Campbell M, Javadpour M. Blood-brain barrier permeability imaging as a predictor for delayed cerebral ischaemia following subarachnoid haemorrhage. A narrative review. Acta Neurochir (Wien) 2021; 163:1457-1467. [PMID: 33404877 DOI: 10.1007/s00701-020-04670-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/01/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Aneurysmal subarachnoid haemorrhage is associated with significant morbidity and mortality due to the myriad of complications contributing to early brain injury and delayed cerebral ischaemia. There is increasing interest in the exploration of the association between blood-brain barrier integrity and risks of delayed cerebral ischaemia and poor outcomes. Despite recent advances in cerebral imaging, radiographic imaging of blood-brain barrier disruption, as a biomarker for outcome prediction, has not been adopted in clinical practice. METHODS We performed a narrative review by searching for articles describing molecular changes or radiological identification of changes in BBB permeability following subarachnoid haemorrhage (SAH) on MEDLINE. Preclinical studies were analysed if reported structural changes and clinical studies were included if they investigated for radiological markers of BBB disruption and its correlation with delayed cerebral ischaemia. RESULTS There is ample preclinical evidence to suggest that there are structural changes in BBB permeability following SAH. The available clinical literature has demonstrated correlations between permeability imaging and outcomes following aneurysmal subarachnoid haemorrhage (aSAH). CONCLUSION Radiological biomarkers offer a potential non-invasive prognostication tool and may also allow early identifications of patients who may be at risk of DCI.
Collapse
|
26
|
Role of SIRT1 in Isoflurane Conditioning-Induced Neurovascular Protection against Delayed Cerebral Ischemia Secondary to Subarachnoid Hemorrhage. Int J Mol Sci 2021; 22:ijms22084291. [PMID: 33924243 PMCID: PMC8074752 DOI: 10.3390/ijms22084291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/19/2022] Open
Abstract
We recently reported that isoflurane conditioning provided multifaceted protection against subarachnoid hemorrhage (SAH)-induced delayed cerebral ischemia (DCI), and this protection was through the upregulation of endothelial nitric oxide synthase (eNOS). SIRT1, an NAD-dependent deacetylase, was shown to be one of the critical regulators of eNOS. The aim of our current study is to examine the role of SIRT1 in isoflurane conditioning-induced neurovascular protection against SAH-induced DCI. Mice were divided into four groups: sham, SAH, or SAH with isoflurane conditioning (with and without EX-527). Experimental SAH via endovascular perforation was performed. Anesthetic conditioning was performed with isoflurane 2% for 1 h, 1 h after SAH. EX-527, a selective SIRT1 inhibitor, 10 mg/kg was injected intraperitoneally immediately after SAH in the EX-527 group. SIRT1 mRNA expression and activity levels were measured. Vasospasm, microvessel thrombosis, and neurological outcome were assessed. SIRT1 mRNA expression was downregulated, and no difference in SIRT1 activity was noted after isoflurane exposure. Isoflurane conditioning with and without EX-527 attenuated vasospasm, microvessel thrombosis and improved neurological outcomes. Our data validate our previous findings that isoflurane conditioning provides strong protection against both the macro and micro vascular deficits induced by SAH, but this protection is likely not mediated through the SIRT1 pathway.
Collapse
|
27
|
Differential role of SIRT1/MAPK pathway during cerebral ischemia in rats and humans. Sci Rep 2021; 11:6339. [PMID: 33737560 PMCID: PMC7973546 DOI: 10.1038/s41598-021-85577-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Cerebral ischemia (CI) is a severe cause of neurological dysfunction and mortality. Sirtuin-1 (Silent information regulator family protein 1, SIRT1), an oxidized nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase, plays an important role in protection against several neurodegenerative disorders. The present study aims to investigate the protective role of SIRT1 after CI in experimental young and aged rats and humans. Also, the study examines the possible regulatory mechanisms of neuronal death in CI settings. Immunoblotting and immunohistochemistry were used to evaluate changes in the expression of SIRT1, JNK/ERK/MAPK/AKT signaling, and pro-apoptotic caspase-3 in experimental rats and CI patients. The study findings demonstrated that, in aged experimental rats, SIRT1 activation positively influenced JNK and ERK phosphorylation and modulated neuronal survival in AKT-dependent manner. Further, the protection conferred by SIRT1 was effectively reversed by JNK inhibition and increased pro-apoptotic caspase-3 expression. In young experimental rats, SIRT1 activation decreased the phosphorylation of stress-induced JNK, ERK, caspase-3, and increased the phosphorylation of AKT after CI. Inhibition of SIRT1 reversed the protective effect of resveratrol. More importantly, in human patients, SIRT1 expression, phosphorylation of JNK/ERK/MAPK/AKT signaling and caspase-3 were up-regulated. In conclusion, SIRT1 could possibly be involved in the modulation of JNK/ERK/MAPK/AKT signaling pathway in experimental rats and humans after CI.
Collapse
|
28
|
Parrella E, Gussago C, Porrini V, Benarese M, Pizzi M. From Preclinical Stroke Models to Humans: Polyphenols in the Prevention and Treatment of Stroke. Nutrients 2020; 13:nu13010085. [PMID: 33383852 PMCID: PMC7823436 DOI: 10.3390/nu13010085] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Polyphenols are an important family of molecules of vegetal origin present in many medicinal and edible plants, which represent important alimentary sources in the human diet. Polyphenols are known for their beneficial health effects and have been investigated for their potential protective role against various pathologies, including cancer, brain dysfunctions, cardiovascular diseases and stroke. The prevention of stroke promoted by polyphenols relies mainly on their effect on cardio- and cerebrovascular systems. However, a growing body of evidence from preclinical models of stroke points out a neuroprotective role of these molecules. Notably, in many preclinical studies, the polyphenolic compounds were effective also when administered after the stroke onset, suggesting their possible use in promoting recovery of patients suffering from stroke. Here, we review the effects of the major polyphenols in cellular and in vivo models of both ischemic and hemorrhagic stroke in immature and adult brains. The results from human studies are also reported.
Collapse
|
29
|
Liu L, Liu C, Fang L. AMPK‑SIRT1 pathway dysfunction contributes to neuron apoptosis and cognitive impairment induced by sevoflurane. Mol Med Rep 2020; 23:56. [PMID: 33200801 PMCID: PMC7706003 DOI: 10.3892/mmr.2020.11694] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
The anesthetic sevoflurane (Sev) is widely used because of its low blood-gas partition coefficient and lack of pungency. However, the application of Sevmay lead to cognitive impairment later in life. Previous results have indicated that exposure to Sev-induced neuronal apoptosis and cognitive dysfunction in a rat model, but much work remains to elucidate the mechanism. In the present study, inhibition in the AMP-activated protein kinase/Sirtuin 1 (AMPK/SIRT1) signaling pathway and a decrease in AMPK/SIRT1 activity was found to occur concomitantly in neuronal apoptosis induced by Sev. AICAR, an activator of AMPK, was able to suppress Sev-induced neuronal apoptosis and SIRT1 activity reduction in vitro. Further animal studies also showed that AICAR treatment blocked the deleterious cognition and AMPK/SIRT1 activity reduction in the cognition impairment rats induced by Sev. Taken together, it was concluded that the AMPK/SIRT1 signaling pathway mediates neuronal apoptosis and cognition impairment induced by Sev. The study provides evidence that AMPK activation ameliorates Sev-induced cognitive deficits.
Collapse
Affiliation(s)
- Liwei Liu
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Chao Liu
- Institute of Cardiovascular Diseases, Tianjin Chest Hospital, Tianjin 300457, P.R. China
| | - Lin Fang
- Department of Thyroid and Breast Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
30
|
Vellimana AK, Aum DJ, Diwan D, Clarke JV, Nelson JW, Lawrence M, Han BH, Gidday JM, Zipfel GJ. SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage. Exp Neurol 2020; 334:113484. [PMID: 33010255 DOI: 10.1016/j.expneurol.2020.113484] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND PURPOSE Vasospasm and delayed cerebral ischemia (DCI) contribute significantly to the morbidity/mortality associated with aneurysmal subarachnoid hemorrhage (SAH). While considerable research effort has focused on preventing or reversing vasospasm, SAH-induced brain injury occurs in response to a multitude of concomitantly acting pathophysiologic mechanisms. In this regard, the pleiotropic epigenetic responses to conditioning-based therapeutics may provide an ideal SAH therapeutic strategy. We previously documented the ability of hypoxic preconditioning (PC) to attenuate vasospasm and neurological deficits after SAH, in a manner that depends on the activity of endothelial nitric oxide synthase. The present study was undertaken to elucidate whether the NAD-dependent protein deacetylase sirtuin isoform SIRT1 is an upstream mediator of hypoxic PC-induced protection, and to assess the efficacy of the SIRT1-activating polyphenol Resveratrol as a pharmacologic preconditioning therapy. METHODS Wild-type C57BL/6J mice were utilized in the study and subjected to normoxia or hypoxic PC. Surgical procedures included induction of SAH via endovascular perforation or sham surgery. Multiple endpoints were assessed including cerebral vasospasm, neurobehavioral deficits, SIRT1 expression via quantitative real-time PCR for mRNA, and western blot for protein quantification. Pharmacological agents utilized in the study include EX-527 (SIRT1 inhibitor), and Resveratrol (SIRT1 activator). RESULTS Hypoxic PC leads to rapid and sustained increase in cerebral SIRT1 mRNA and protein expression. SIRT1 inhibition blocks the protective effects of hypoxic PC on vasospasm and neurological deficits. Resveratrol pretreatment dose-dependently abrogates vasospasm and attenuates neurological deficits following SAH - beneficial effects that were similarly blocked by pharmacologic inhibition of SIRT1. CONCLUSION SIRT1 mediates hypoxic preconditioning-induced protection against neurovascular dysfunction after SAH. Resveratrol mimics this neurovascular protection, at least in part, via SIRT1. Activation of SIRT1 is a promising, novel, pleiotropic therapeutic strategy to combat DCI after SAH.
Collapse
Affiliation(s)
- Ananth K Vellimana
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Diane J Aum
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Deepti Diwan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Julian V Clarke
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James W Nelson
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Molly Lawrence
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Byung Hee Han
- Department of Pharmacology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, Kirksville, MO 63501, USA
| | - Jeffrey M Gidday
- Departments of Ophthalmology, Physiology, Biochemistry, and Neuroscience, Louisiana State University, New Orleans, Louisiana, USA
| | - Gregory J Zipfel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
31
|
Gareev I, Beylerli O, Aliev G, Pavlov V, Izmailov A, Zhang Y, Liang Y, Yang G. The Role of Long Non-Coding RNAs in Intracranial Aneurysms and Subarachnoid Hemorrhage. Life (Basel) 2020; 10:155. [PMID: 32825276 PMCID: PMC7555693 DOI: 10.3390/life10090155] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/06/2020] [Accepted: 08/15/2020] [Indexed: 12/14/2022] Open
Abstract
Intracranial aneurysms (IAs) represent the most complex and relevant problem of modern neurology and neurosurgery. They serve as one of the main causes of non-traumatic subarachnoid hemorrhage (SAH), causing up to 85% of all cases of intracranial hemorrhage, which is associated with frequent disability and high mortality among patients. Unfortunately, the molecular mechanisms of the development and rupture of IAs are still under study. Long non-coding RNAs (lncRNAs) are non-coding RNAs that typically have a length of more than 200 nucleotides. It is known that lncRNAs regulate many processes, such as transcription, translation, cell differentiation, regulation of gene expression, and regulation of the cell cycle. In recent years, a lot of evidence has established their role in human diseases from oncology to cardiovascular disease. Recent studies have shown that lncRNAs may be involved in the pathogenesis of IAs. The study of lncRNAs and its targets in various pathological conditions of a person is a rapidly developing field, and it is likely that the knowledge obtained from these studies regarding the pathogenesis of intracranial aneurysms will have the potential to use lncRNAs in therapy, as well as in the diagnosis and prediction of high aneurysms risk of rupture.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, 450008 Ufa, Republic of Bashkortostan, Russia; (I.G.); (O.B.); (V.P.)
| | - Ozal Beylerli
- Bashkir State Medical University, 450008 Ufa, Republic of Bashkortostan, Russia; (I.G.); (O.B.); (V.P.)
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
- Research Institute of Human Morphology, Russian Academy of Medical Science, 117418 Moscow, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russia
- GALLY International Research Institute, San Antonio, TX 78229, USA
| | - Valentin Pavlov
- Bashkir State Medical University, 450008 Ufa, Republic of Bashkortostan, Russia; (I.G.); (O.B.); (V.P.)
| | - Adel Izmailov
- Regional Clinical Oncology Center, 450054 Ufa, Republic of Bashkortostan, Russia;
| | - Yiwei Zhang
- Harbin Medical University, Harbin 150081, China; or
| | - Yanchao Liang
- Department of Neurosurgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China;
- Institute of Brain Science, Harbin Medical University, Harbin 150001, China
| | - Guang Yang
- Department of Neurosurgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China;
- Institute of Brain Science, Harbin Medical University, Harbin 150001, China
| |
Collapse
|
32
|
Yang Q, Zhou Y, Sun Y, Luo Y, Shen Y, Shao A. Will Sirtuins Be Promising Therapeutic Targets for TBI and Associated Neurodegenerative Diseases? Front Neurosci 2020; 14:791. [PMID: 32848564 PMCID: PMC7411228 DOI: 10.3389/fnins.2020.00791] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury (TBI), a leading cause of morbidity worldwide, induces mechanical, persistent structural, and metabolic abnormalities in neurons and other brain-resident cells. The key pathological features of TBI include neuroinflammation, oxidative stress, excitotoxicity, and mitochondrial dysfunction. These pathological processes persist for a period of time after TBIs. Sirtuins are evolutionarily conserved nicotinamide-adenine dinucleotide (NAD+)-dependent deacetylases and mono-ADP-ribosyl transferases. The mammalian sirtuin family has seven members, referred to as Sirtuin (SIRT) 1-7. Accumulating evidence suggests that SIRT1 and SIRT3 play a neuroprotective role in TBI. Although the evidence is scant, considering the involvement of SIRT2, 4-7 in other brain injury models, they may also intervene in similar pathophysiology in TBI. Neurodegenerative diseases are generally accepted sequelae of TBI. It was found that TBI and neurodegenerative diseases have many similarities and overlaps in pathological features. Besides, sirtuins play some unique roles in some neurodegenerative diseases. Therefore, we propose that sirtuins might be a promising therapeutic target for both TBI and associated neurodegenerative diseases. In this paper, we review the neuroprotective effects of sirtuins on TBI as well as related neurodegeneration and discuss the therapeutic potential of sirtuin modulators.
Collapse
Affiliation(s)
- Qianjie Yang
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuting Sun
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Luo
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Bai M, Lu C, An L, Gao Q, Xie W, Miao F, Chen X, Pan Y, Wang Q. SIRT1 relieves Necrotizing Enterocolitis through inactivation of Hypoxia-inducible factor (HIF)-1a. Cell Cycle 2020; 19:2018-2027. [PMID: 32657204 DOI: 10.1080/15384101.2020.1788251] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a major cause of mortality and morbidity in newborns, characterized by inflammatory intestinal necrosis. Sirtuin-1 (SIRT1), a NAD-dependent deacetylase, is involved in multiple biological functions. It has been reported that SIRT1 was downregulated in NEC tissues. However, the precise role of SIRT1 in NEC progress remains unknown. In this study, we found that SIRT1 was decreased in serum samples of NEC patients, associated with an inflammation response. an in vitro model was established by using LPS-induced NEC-like cell in this study. The results indicate that overexpression of SIRT1 inhibited the cell apoptosis induced by LPS. Besides, overexpression of SIRT1 suppressed the high expression of proinflammatory factors (IL-6, IL-8, and TNF-α), the decrease of transepithelial electrical resistance (TEER), and the decline expression of tight junction proteins (ZO-1, ZO-2, and Claudin-4) induced by LPS in Caco-2 cells. What is more, serum HIF-1α was increased in NEC patients. SIRT1 overexpression suppressed the expression and activity of HIF-1a, while knockdown of SIRT1 made the opposite effect. In summary, this study indicates that overexpression of SIRT1 alleviates the inflammation response and intestinal epithelial barrier dysfunction through regulating the expression and inactivation of HIF-1a.
Collapse
Affiliation(s)
- Ming Bai
- Department of Urology, Xi'an children's hospital , Xi'an, Shaanxi, China
| | - Chaoxiang Lu
- Department of General Surgery, Xi'an children's hospital, Xi'an Shaanxi Province , China
| | - Lu An
- Department of Pathology, Xi'an children's hospital , Xi'an, Shaanxi, China
| | - Qi Gao
- Department of General Surgery, Xi'an children's hospital, Xi'an Shaanxi Province , China
| | - Weike Xie
- Department of General Surgery, Xi'an children's hospital, Xi'an Shaanxi Province , China
| | - Feng Miao
- Department of General Surgery, Xi'an children's hospital, Xi'an Shaanxi Province , China
| | - Xiaofeng Chen
- Department of General Surgery, Xi'an children's hospital, Xi'an Shaanxi Province , China
| | - Yongkang Pan
- Department of General Surgery, Xi'an children's hospital, Xi'an Shaanxi Province , China
| | - Qi Wang
- Department of General Surgery, Xi'an children's hospital, Xi'an Shaanxi Province , China
| |
Collapse
|
34
|
Teertam SK, Jha S, Prakash Babu P. Up-regulation of Sirt1/miR-149-5p signaling may play a role in resveratrol induced protection against ischemia via p53 in rat brain. J Clin Neurosci 2020; 72:402-411. [PMID: 31866350 DOI: 10.1016/j.jocn.2019.11.043] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/30/2019] [Indexed: 12/19/2022]
Abstract
Micro-RNA(miRNA) are well studied small noncoding RNA, which plays a diverse role in the regulation of vital elements in cell survival and apoptosis. However, the functional significance of miRNAs after the pathogenesis of ischemic stroke remains unclear. The present study is designed to investigate the regulatory role of miR-149-5p on Sirtuin-1/p53 axis during ischemic-reperfusion-induced injury. Middle cerebral artery occlusion (MCAO) was performed by nylon monofilament for 60 min. Resveratrol was administered via intraperitoneal (IP) route, 30 min before the MCAO. Our study demonstrated that the miR-149-5p levels were markedly decreased at 24 h after ischemic-reperfusion (I/R) injury. Further, we observed decreased p53 protein expression and increased miR-149-5p activity on sirtuin1 (Sirt1) activation with resveratrol after 24 h following MCAO. Moreover, immunohistochemistry studies found that resveratrol treatment significantly decreased the immunoreactivity of p53 and caspase-3 on activation of Sirt1/miR149-5p axis. In conclusion, our findings suggest that miR-149-5p could play a regulatory role in neuronal cell death via Sirt1/p53 axis, which offers a new target for novel therapeutic interventions during acute ischemic stroke.
Collapse
Affiliation(s)
- Sireesh Kumar Teertam
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500 046 TS, India
| | - Shekhar Jha
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500 046 TS, India
| | - Phanithi Prakash Babu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500 046 TS, India.
| |
Collapse
|
35
|
Wang T, Duan YM, Fu Q, Liu T, Yu JC, Sui ZY, Huang L, Wen GQ. IM-12 activates the Wnt-β-catenin signaling pathway and attenuates rtPA-induced hemorrhagic transformation in rats after acute ischemic stroke. Biochem Cell Biol 2019; 97:702-708. [PMID: 31770017 DOI: 10.1139/bcb-2018-0384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hemorrhagic transformation (HT) is a devastating complication for patients with acute ischemic stroke (AIS) who are treated with tissue plasminogen activator (tPA). HT is associated with high morbidity and mortality, but no effective treatments are currently available to reduce the risk of HT. Therefore, methods to prevent HT are urgently needed. In this study, we used IM-12, an inhibitor of glycogen synthase kinase 3β (GSK-3β), to evaluate the role of the Wnt-β-catenin signaling pathway in recombinant tPA (rtPA)-induced HT. Sprague-Dawley rats were subjected to a middle cerebral artery occlusion (MCAO) model of ischemic stroke, and then were either administered rtPA, rtPA combined with IM-12, or the vehicle at 4 h after stroke was induced. Our results indicate that rats subjected to HT had more severe neurological deficits, brain edema, and blood-brain barrier (BBB) breakdown, and had a greater infarction volume than the control group. Rats treated with IM-12 had improved outcomes compared with those of rats treated with rtPA alone. Moreover, IM-12 increased the protein expression of β-catenin and downstream proteins while suppressing the expression of GSK-3β. These results suggest that IM-12 reduces rtPA-induced HT and attenuates BBB disruption, possibly through activation of the Wnt-β-catenin signaling pathway, and provides a potential therapeutic strategy for preventing tPA-induced HT after AIS.
Collapse
Affiliation(s)
- Ting Wang
- Department of Neurology, Hainan General Hospital Affiliated to University of South China, Haikou 570311, Hainan Province, China
| | - Yu-Mei Duan
- Department of Neurology, Hainan General Hospital Affiliated to University of South China, Haikou 570311, Hainan Province, China
| | - Qiao Fu
- Department of Rehabilitation Medicine, Hainan General Hospital, Haikou 570311, Hainan Province, China
| | - Tao Liu
- Department of Neurology, Hainan General Hospital, Haikou 570311, Hainan Province, China
| | - Jin-Cheng Yu
- Department of Rehabilitation Medicine, Hainan General Hospital, Haikou 570311, Hainan Province, China
| | - Zhi-Yan Sui
- Department of Neurology, Hainan General Hospital, Haikou 570311, Hainan Province, China
| | - Li Huang
- Department of Neurology, Hainan General Hospital, Haikou 570311, Hainan Province, China
| | - Guo-Qiang Wen
- Department of Neurology, Hainan General Hospital, Haikou 570311, Hainan Province, China
| |
Collapse
|
36
|
Irisin alleviates pulmonary epithelial barrier dysfunction in sepsis-induced acute lung injury via activation of AMPK/SIRT1 pathways. Biomed Pharmacother 2019; 118:109363. [PMID: 31545277 DOI: 10.1016/j.biopha.2019.109363] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/04/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Alveolar epithelial barrier dysfunction in response to inflammatory reaction contributes to pulmonary edema in acute lung injury(ALI).Irisin,a newly-found myokine,exerts the anti-inflammatory effects. This study aims to investigate the protective effects of irisin on lipopolysaccharide (LPS)-induced ALIin vivo and in vitro, and to explore its underlying mechanism. METHODS Male SD rats and A549 cells were divided into 4 groups: control group, LPS group, Irisin pretreated group, and Irisin/Compound C(a special inhibitor of AMPK)-treated group. The ALI model was established by intravenous injection of LPS in rats, and LPS challenge in A549 cells. Pulmonary specimens were harvested for microscopic examination of the pathological changes, and the expression of AMPK,SIRT1,NF-κB, p66Shc and caspase-3 in lung tissues. The pulmonary permeability were examined by wet/dry lung weight ratio(W/D) and lung permeability index(LPI). The apoptotic index, and the expression of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), monocyte chemoattractant activating protein-1 (MCP-1), tight junctions (occludin,ZO-1) were determined both in lung tissue and A549 cells. RESULTS Irisin alleviated lung histological changes and decreased pulmonary microvascular permeability in LPS-induced rats. Irisin up-regulated the expression of occludin, ZO-1,AMPK,SIRT1, down-regulated the expression of TNF-α,IL-1β,MCP-1,NF-κB, p66Shc caspase-3, and decreased the apoptotic index in LPS-induced rats and A549 cells. All these protective effects of irisin could be reversed by Compound C. CONCLUSION Irisin improved LPS-induced alveolar epithelial barrier dysfunction via suppressing inflammation and apoptosis, and this protective effect might be mediated by activating AMPK/SIRT1 pathways.
Collapse
|
37
|
Tellone E, Galtieri A, Ficarra S. Reviewing Biochemical Implications of Normal and Mutated Huntingtin in Huntington's Disease. Curr Med Chem 2019; 27:5137-5158. [PMID: 31223078 DOI: 10.2174/0929867326666190621101909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/08/2019] [Accepted: 05/22/2019] [Indexed: 12/17/2022]
Abstract
Huntingtin (Htt) is a multi-function protein of the brain. Normal Htt shows a common alpha-helical structure but conformational changes in the form with beta strands are the principal cause of Huntington's disease. Huntington's disease is a genetic neurological disorder caused by a repeated expansion of the CAG trinucleotide, causing instability in the N-terminal of the gene coding for the Huntingtin protein. The mutation leads to the abnormal expansion of the production of the polyglutamine tract (polyQ) resulting in the form of an unstable Huntingtin protein commonly referred to as mutant Huntingtin. Mutant Huntingtin is the cause of the complex neurological metabolic alteration of Huntington's disease, resulting in both the loss of all the functions of normal Huntingtin and the genesis of abnormal interactions due to the presence of this mutation. One of the problems arising from the misfolded Huntingtin is the increase in oxidative stress, which is common in many neurological diseases such as Alzheimer's, Parkinson's, Amyotrophic Lateral Sclerosis and Creutzfeldt-Jakob disease. In the last few years, the use of antioxidants had a strong incentive to find valid therapies for defence against neurodegenerations. Although further studies are needed, the use of antioxidant mixtures to counteract neuronal damages seems promising.
Collapse
Affiliation(s)
- Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Antonio Galtieri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
38
|
Chen DZ, Wang WW, Chen YL, Yang XF, Zhao M, Yang YY. miR‑128 is upregulated in epilepsy and promotes apoptosis through the SIRT1 cascade. Int J Mol Med 2019; 44:694-704. [PMID: 31173166 DOI: 10.3892/ijmm.2019.4223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/20/2019] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to examine the functional and molecular effects of miR‑128 in epilepsy, in order to investigate its potential protective mechanisms. Firstly, miR‑128 expression in rats with lithium chloride‑induced epilepsy was demonstrated to be increased compared with the control rats. Subsequently, results from an in vitro epilepsy model demonstrated that overexpression of miR‑128 promoted nerve cell apoptosis, increased the protein expression of tumor protein p53, BCL2 associated X (Bax) and Cytochrome c, and enhanced caspase‑3/9 activity, whereas it suppressed the protein expression of sirtuin 1 (SIRT1). In addition, these alterations may be reversed by the downregulation of miR‑128. Furthermore, treatment with CAY10602, a SIRT1 agonist, reduced the effects of miR‑128 on nerve cells in vitro. Treatment with pifithrin‑β hydrobromide, a p53 inhibitor, was additionally able to mitigate the effects of miR‑128 in vitro. In conclusion, the present findings indicated that anti‑miR‑128 may exert neuroprotective effects in epilepsy, through the SIRT1/p53/Bax/Cytochrome c/caspase signaling pathway.
Collapse
Affiliation(s)
- De-Zhe Chen
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Wei-Wei Wang
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Yan-Ling Chen
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Xia-Feng Yang
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Min Zhao
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Yan-Yan Yang
- Department of Neurology, Taishan Medical University, Taian, Shandong 271016, P.R. China
| |
Collapse
|
39
|
Shao D, Wu Z, Bai S, Fu G, Zou Z. The function of miRNA‑153 against isoflurane‑induced neurotoxicity via Nrf2/ARE cytoprotection. Mol Med Rep 2019; 19:4001-4010. [PMID: 30896808 PMCID: PMC6471563 DOI: 10.3892/mmr.2019.10056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 08/17/2018] [Indexed: 12/28/2022] Open
Abstract
The present study aimed to investigate the function of micro (mi)RNA‑153 against isoflurane‑induced neurotoxicity and its mechanism. In isoflurane‑induced mice, miRNA‑153 expression was downregulated compared with in the control group. Downregulation of miRNA‑153 induced neurocyte apoptosis, reduced cell growth and promoted oxidative stress in an in vitro model. Overexpression of miRNA‑153 reduced oxidative stress, promoted cell growth and inhibited neurocyte apoptosis within an in vitro model. Downregulation of miRNA‑153 suppressed nuclear erythroid‑2 related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway, which was induced via the overexpression of miRNA‑153 in vitro. The Nrf2 agonist, dimethyl fumarate (2.5 µM), induced the Nrf2/ARE signaling pathway and reduced oxidative stress to induce neurocyte apoptosis in vitro following treatment with anti‑miRNA‑153. The results of the present study suggested the function of miRNA‑153 against neurotoxicity via Nrf2/ARE‑mediated cytoprotection.
Collapse
Affiliation(s)
- Dong Shao
- Department of Anesthesiology, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Zhouquan Wu
- Department of Anesthesiology, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Shuying Bai
- Department of Anesthesiology, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Guowei Fu
- Department of Anesthesiology, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Zhiqing Zou
- Department of Anesthesiology, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
40
|
Sheng W, Lu Y, Mei F, Wang N, Liu ZZ, Han YY, Wang HT, Zou S, Xu H, Zhang X. Effect of Resveratrol on Sirtuins, OPA1, and Fis1 Expression in Adult Zebrafish Retina. ACTA ACUST UNITED AC 2018; 59:4542-4551. [PMID: 30208422 DOI: 10.1167/iovs.18-24539] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Weiwei Sheng
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Queen Mary School of Nanchang University, Nanchang, China
| | - Ye Lu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
| | - Feng Mei
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
| | - Ning Wang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
| | - Zhi-Zhi Liu
- Institute of Life Science of Nanchang University, Nanchang, China
- School of Life Sciences of Nanchang University, Nanchang, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China
| | - Ying-Ying Han
- Institute of Life Science of Nanchang University, Nanchang, China
- School of Life Sciences of Nanchang University, Nanchang, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China
| | - Han-Tsing Wang
- Institute of Life Science of Nanchang University, Nanchang, China
- School of Life Sciences of Nanchang University, Nanchang, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China
| | - Suqi Zou
- Institute of Life Science of Nanchang University, Nanchang, China
- School of Life Sciences of Nanchang University, Nanchang, China
| | - Hong Xu
- Institute of Life Science of Nanchang University, Nanchang, China
- School of Life Sciences of Nanchang University, Nanchang, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China
| |
Collapse
|
41
|
Rancan L, Paredes SD, García C, González P, Rodríguez-Bobada C, Calvo-Soto M, Hyacinthe B, Vara E, Tresguerres JAF. Comparison of the Effect of Melatonin Treatment before and after Brain Ischemic Injury in the Inflammatory and Apoptotic Response in Aged Rats. Int J Mol Sci 2018; 19:ijms19072097. [PMID: 30029514 PMCID: PMC6073988 DOI: 10.3390/ijms19072097] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022] Open
Abstract
Aging is associated with an increase in stroke risk. Melatonin, a potent free radical scavenger and broad spectrum antioxidant, has been shown to counteract inflammation and apoptosis in brain injury. However, little is known on the possible protective effects of melatonin in aged individuals affected by brain ischemia. Also, using melatonin before or after an ischemic stroke may result in significantly different molecular outcomes. The objective of the present study was to compare the effects of pre-ischemia vs. post-ischemia melatonin administration in an ischemic lesion in the cortex and hippocampus of senescent Wistar rats. An obstruction of the middle cerebral artery (MCA) to 18-month-old animals was performed. In general, animals treated with melatonin from 24 h prior to surgery until 7 days after the surgical procedure (PrevT) experienced a significant decrease in the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), glial fibrillary acidic protein (GFAP), Bcl-2-associated death promoter (BAD), and Bcl-2-associated X protein (BAX) in both cortex and hippocampus, while hippocampal levels of sirtuin 1 (SIRT1) and B-cell lymphoma 2 (Bcl-2) increased. Treatment of animals with melatonin only after surgery (AT) resulted in similar effects, but to a lesser extent than in the PrevT group. In any case, melatonin acted as a valuable therapeutic agent protecting aged animals from the harmful effects of cerebral infarction.
Collapse
Affiliation(s)
- Lisa Rancan
- Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Sergio D Paredes
- Department of Physiology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Cruz García
- Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Pablo González
- Research Unit, Hospital Clínico San Carlos, 28040 Madrid, Spain.
| | | | - Mario Calvo-Soto
- Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Bryan Hyacinthe
- Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Elena Vara
- Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Jesús A F Tresguerres
- Department of Physiology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
42
|
Guo D, Xie J, Zhao J, Huang T, Guo X, Song J. Resveratrol protects early brain injury after subarachnoid hemorrhage by activating autophagy and inhibiting apoptosis mediated by the Akt/mTOR pathway. Neuroreport 2018; 29:368-379. [PMID: 29360689 PMCID: PMC5851673 DOI: 10.1097/wnr.0000000000000975] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/19/2017] [Indexed: 11/25/2022]
Abstract
Early brain injury (EBI) plays a key role in determining the prognosis of patients suffering from subarachnoid hemorrhage (SAH). Resveratrol, a natural polyphenol, serves a neuroprotection function on EBI after SAH. However, the potential mechanism of resveratrol on EBI remains to be elucidated. Akt, also known as protein kinase B, and mammalian target of rapamycin (mTOR), the downstream protein of Akt, play key roles in cell survival and apoptosis, cell cycle regulation, and cellular protein homeostasis. In the present study, we examined the effect of resveratrol on EBI and their potential relationship with the Akt/mTOR pathway, autophagy, and apoptosis. Rats received intraperitoneal administration of resveratrol or vehicle immediately after establishing SAH model. We found that mortality and brain edema were significantly lower, whereas the neurological score was higher for resveratrol-treated rats. HE staining showed that resveratrol significantly reduced the neuronal pyknosis and swelling in the resveratrol-treated rats compared with SAH rats. The results were assessed by western blot, reverse transcription-PCR , and immunohistochemistry and immunofluorescence at 24 h after injury to determine changes in the expression of the Akt/mTOR signaling pathway, autophagy, and apoptosis proteins. Western blot analysis showed that the expression of beclin-1, LC3-II, LC3-II/LC3-I, and Bcl-2 was increased in resveratrol-treated rats, whereas the expression of p-Akt, p-mTOR, p62, cleaved caspase-3, caspase-9, and Bcl-2-associated X protein was decreased. Immunohistochemistry analysis of beclin-1, LC3-B treated with resveratrol alone or in combination with 3-methyladenine (autophagy inhibitor) suggested that resveratrol induced the autophagy process and the inhibitor blocked the occurrence of autophagy, and also increased the number of terminal deoxynucleotidyl transferase-mediated digoxigenin-DUTP-biotin nick-end labeling (+) cells. Taken together, these findings indicate that resveratrol exerts neuroprotective effects on EBI after SAH by regulating autophagy and apoptosis mediated by the Akt/mTOR pathway.
Collapse
Affiliation(s)
- Dan Guo
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an
| | - Jiangtao Xie
- Department of Neurosurgery, The Central Hospital of Xianyang, Xianyang, Shaanxi, China
| | - Junjie Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an
| | - Tingqin Huang
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an
| | - Xiaoye Guo
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an
| | - Jinning Song
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an
| |
Collapse
|