1
|
Wang D, Zhang J, Dai H, Tong K, Chen M, Peng J, Huang W. Probable targets and mechanism of ginsenoside Rg1 for non-alcoholic fatty liver disease: a study integrating network pharmacology, molecular docking, and molecular dynamics simulation. J Biomol Struct Dyn 2025; 43:932-945. [PMID: 38038388 DOI: 10.1080/07391102.2023.2289045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/09/2023] [Indexed: 12/02/2023]
Abstract
Ginsenoside Rg1 (GRg1), a key bioactive component of medicinal herbs, has shown beneficial effects on non-alcoholic fatty liver disease (NAFLD) and numerous other conditions. Nevertheless, the specific targets that are actively involved and the potential mechanisms underlying NAFLD treatment remain unclear. This study aimed to elucidate the therapeutic effects and mechanism of GRg1 in alleviating NAFLD using a combined approach of network pharmacology and molecular biology validation. The analysis yielded 294 targets for GRg1 and 1293 associated with NAFLD, resulting in 89 overlapping targets. Through protein-protein interactions (PPI) network topology analysis, 10 key targets were identified. Upon evaluating the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) analysis, GRg1 may exert therapeutic effects on NAFLD by negatively regulating the apoptotic process, insulin and endocrine resistance, the AGE-RAGE signaling pathway in diabetic complications, and the Estrogen, PI3K/Akt, and MAPK pathways. The three differential gene targets for Akt1, EGFR, and IGF1 were identified through the compound-target network in conjunction with the aforementioned methods. The molecular docking and molecular dynamics (MD) simulations showed that AKT1 and EGFR had a strong binding affinity with GRg1. Overall, our findings point to a novel therapeutic strategy involving NAFLD, with further in vivo and in vitro studies promising to deepen our comprehension and validate its potential advantages.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Danni Wang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Zhang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haifeng Dai
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kexin Tong
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingjing Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiayi Peng
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenxiang Huang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Song H, Han MG, Lee R, Park HJ. Neonatal exposure to high D-galactose affects germ cell development in neonatal testes organ culture. Sci Rep 2024; 14:24029. [PMID: 39402149 PMCID: PMC11473950 DOI: 10.1038/s41598-024-74895-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/30/2024] [Indexed: 10/17/2024] Open
Abstract
Excess exogenous supplementation of D-galactose (D-gal), a monosaccharide and reducing sugar, generates reactive oxygen species (ROS), leading to cell damage and death. ROS accumulation is critical in aging. Therefore, D-gal-induced aging mouse models are used in aging studies. Herein, we evaluated D-gal's effect on neonatal testis development using an in vitro organ culture method. Mouse testicular fragments (MTFs) derived from neonatal testes (postnatal day 5) were cultured with 500 mM D-gal for 5 days. D-gal-treated MTFs showed a significantly increased and decreased expression of undifferentiated and differentiated germ cell markers, respectively, with a substantial reduction in meiotic cells. In D-gal-exposed MTFs, expression levels of Sertoli cell markers (Sox9 and Wt1) increased, while those of StAR and 17β-HSD3, whose expressions are abundant in D-Gal treated adult Leydig cells, decreased. Additionally, the enzyme 3 β-HSD1, essential for steroidogenesis in Leydig cells, was significantly reduced in D-gal-exposed MTFs compared to that in controls.D-gal significantly increased the expression of Bad, Bax, and cleaved caspase-3 and -8. Via oxidative stress in MTF. Overall, D-gal negatively regulates germ cell and Leydig cell development in neonatal testes through pro-apoptotic mechanisms and ROS.
Collapse
Affiliation(s)
- Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, KIT, Konkuk University, Seoul, 05029, Republic of Korea
| | - Min-Gi Han
- Department of Stem Cell and Regenerative Biotechnology, KIT, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ran Lee
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si, 26339, Republic of Korea.
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si, 26339, Republic of Korea.
| |
Collapse
|
3
|
Zhang P, Zhang H, Ma C, Lv Q, Yu H, Zhang Q. Effect of ginseng stem leaf extract on the production performance, meat quality, antioxidant status, immune function, and lipid metabolism of broilers. Front Vet Sci 2024; 11:1463613. [PMID: 39301282 PMCID: PMC11410782 DOI: 10.3389/fvets.2024.1463613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Introduction The present study explores the effect of ginseng stem leaf (GSL) extract on the production performance, meat quality, antioxidant status, immune function, and lipid metabolism of white feathered broilers. Methods There were 6 replicates in each group, with 10 broilers in each replicate. In the 42 day trial, 300 AA broilers were randomly divided into five groups: control group (CON), 1.25% GSL extract group (GSL-L), 2.5% GSL group (GSL-M), 5% GSL group (GSL-H), and 45 mg/kg chlortetracycline group (CTC). Results The results showed that different doses of GSL extract could improve the body weight, feed to gain ratio (F/G), average daily feed intake (ADFI), average daily gain (ADG), and meat quality of broilers. Compared with the control group, the addition of different doses of GSL improved the antioxidant and immune abilities of broilers to varying degrees, and the effect of GSL extract was significant in the GSL-H group (p < 0.05). In addition, medium and high doses of GSL extract significantly reduced the blood triglyceride (TG) and total cholesterol (TC) contents of broilers (p < 0.05). Discussion Adding GSL extract to the feed has a positive impact on the body weight, meat quality, antioxidant capacity, immunity, and blood lipids of broilers.
Collapse
Affiliation(s)
- Peng Zhang
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Haoyue Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chuanjie Ma
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Qiufeng Lv
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Haiyang Yu
- Liaoning Zhongqing Xinze Biotechnology Co. Ltd., Huludao, China
| | - Qiang Zhang
- Liaoning Zhongqing Xinze Biotechnology Co. Ltd., Huludao, China
| |
Collapse
|
4
|
Kumar P, Verma A, Ashique S, Bhowmick M, Mohanto S, Singh A, Gupta M, Gupta A, Haider T. Unlocking the role of herbal cosmeceutical in anti-ageing and skin ageing associated diseases. Cutan Ocul Toxicol 2024; 43:211-226. [PMID: 39024063 DOI: 10.1080/15569527.2024.2380326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
The process of skin ageing is a natural biological phenomenon characterised by the emergence of wrinkles, age spots, sagging skin, and dryness over time. The increasing significance of skin in physical attractiveness has heightened skincare concerns. Anti-ageing cosmetics play a pivotal role in nurturing the skin, enhancing its quality, and promoting overall health. Today, cosmetics have evolved beyond mere aesthetics and are now integral to individual wellness. The contemporary quest for perpetual youth has intensified, prompting a deeper exploration into the skin ageing process. This comprehensive exploration delves into various elements involved in skin ageing, encompassing cells such as stem and endothelial cells, blood vessels, soft tissues, and signalling pathways. The molecular basis of skin ageing, including biochemical factors like reactive oxygen species, damaged DNA, free radicals, ions, and proteins (mRNA), is scrutinised alongside relevant animal models. The article critically analyzes the outcomes of utilising herbal components, emphasising their advantageous anti-ageing properties. The factors contributing to skin ageing, mechanistic perspectives, management approaches involving herbal cosmeceutical, and associated complications (especially cardiovascular diseases, Parkinson's, Alzheimer's, etc.) are succinctly addressed. In addition, the manuscript further summarises the recent patented innovations and toxicity of the herbal cosmeceuticals for anti-ageing and ageing associated disorders. Despite progress, further research is imperative to unlock the full potential of herbal components as anti-ageing agents.
Collapse
Affiliation(s)
- Prashant Kumar
- SRM University Delhi-NCR Campus, Ghaziabad, UPttarpradesh, India
| | - Anurag Verma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, UPttarpradesh, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, India
| | - Mithun Bhowmick
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Anita Singh
- Department of Pharmaceutical Sciences, Kumaun University Campus, Bhimtal, Uttarakhand, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Abhishek Gupta
- Department of Pharmacognosy and phytochemistry, Hygia Institute of Pharmaceutical Education & Research, Lucknow, Uttar Pradesh, India
| | - Tanweer Haider
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, India
| |
Collapse
|
5
|
Kumar P, Verma A, Ashique S, Bhowmick M, Mohanto S, Singh A, Gupta M, Gupta A, Haider T. Unlocking the role of herbal cosmeceutical in anti-ageing and skin ageing associated diseases. Cutan Ocul Toxicol 2024; 43:211-226. [DOI: https:/doi.org/10.1080/15569527.2024.2380326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 04/05/2025]
Affiliation(s)
- Prashant Kumar
- SRM University Delhi-NCR Campus, Ghaziabad, UPttarpradesh, India
| | - Anurag Verma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, UPttarpradesh, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, India
| | - Mithun Bhowmick
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Anita Singh
- Department of Pharmaceutical Sciences, Kumaun University Campus, Bhimtal, Uttarakhand, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Abhishek Gupta
- Department of Pharmacognosy and phytochemistry, Hygia Institute of Pharmaceutical Education & Research, Lucknow, Uttar Pradesh, India
| | - Tanweer Haider
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, India
| |
Collapse
|
6
|
Xie Q, Zhang X, Zhou Q, Xu Y, Sun L, Wen Q, Wang W, Chen Q. Antioxidant and anti-inflammatory properties of ginsenoside Rg1 for hyperglycemia in type 2 diabetes mellitus: systematic reviews and meta-analyses of animal studies. Front Pharmacol 2023; 14:1179705. [PMID: 37745069 PMCID: PMC10514510 DOI: 10.3389/fphar.2023.1179705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/02/2023] [Indexed: 09/26/2023] Open
Abstract
Background: According to existing laboratory data, ginsenoside Rg1 may help cure diabetes and its complications by reducing oxidative stress (OS) and managing inflammation. However, this conclusion lacks reliability and is unclear. As a result, the purpose of this systematic review and meta-analysis was to evaluate the antioxidant and anti-inflammatory effects of ginsenoside Rg1 in the treatment of diabetes and its complications. Methods: We searched for relevant studies published through December 2022, including electronic bibliographic databases such as PubMed, EMBASE, Web of Science, CNKI, and Wanfang. The SYstematic Review Center for Laboratory Animal Experimentation Risk of Bias (SYRCLE RoB) tool was used to conduct a meta-analysis to assess the methodological quality of animal research. The meta-analysis was conducted using RevMan5.4 software, following the Cochrane Handbook for Systematic Reviews of Interventions. This study is registered in the International Systems Review Prospective Registry (PROSPERO) as CRD42023386830. Results: Eighteen eligible studies involving 401 animals were included. Ginsenoside Rg1 was significantly correlated with blood glucose (BG), insulin levels, body weight, superoxide dismutase (SOD), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) levels. In addition, according to subgroup analysis, the hypoglycemic, anti-inflammatory, and antioxidant effects of ginsenoside Rg1 in type 2 diabetic animals were not affected by experimental species, modeling, experimental drug dosage, or course of treatment. Conclusion: This meta-analysis presents a summary of the hypoglycemic effects of ginsenoside Rg1, which are achieved through anti-inflammatory and antioxidant mechanisms. These findings provide evidence-based support for the medical efficacy of ginsenoside Rg1. Specifically, ginsenoside Rg1 reduced MDA levels and restored SOD activity to exert its antioxidant activity. It had a positive effect on the reduction of IL-6 and TNF-α levels. However, the inclusion of studies with low methodological quality and the presence of publication bias may undermine the validity of the results. Further investigation with a more rigorous experimental design and comprehensive studies is necessary to fully understand the specific glycemic mechanisms of ginsenosides. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, identifier https://CRD42023386830.
Collapse
Affiliation(s)
- Qian Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoran Zhang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumei Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lisha Sun
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Wen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Wang
- School of Biomedical Sciences, Mianyang Normal University, Mianyang, China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Chen Z, Zhu Y, Lu M, Yu L, Tan S, Ren T. Effects of Rosa roxburghii Tratt glycosides and quercetin on D-galactose-induced aging mice model. J Food Biochem 2022; 46:e14425. [PMID: 36125966 DOI: 10.1111/jfbc.14425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 01/13/2023]
Abstract
To investigate the effects of RRT (Rosa roxburghii Tratt) glucosides and quercetin on oxidative stress and chronic inflammation in D-galactose-induced aging mice, 90 mice (8 weeks old) were randomly divided into the normal group (NC), aging model group (D-gal), isoquercitrin group (D-gal+isoquercitrin), quercitrin group (D-gal+quercitrin), quercetin group (D-gal+quercetin) and positive control group (D-gal+Metformin). The aging model was established by subcutaneous injection of D-galactose (100 mg/kg). After 42 days of the administration, antioxidant and inflammatory indexes were measured, HE staining was used to investigate pathological changes in liver and brain tissue, and Western blot was used to determine the protein abundance of nuclear factor E2-related factor (Nrf2) and heme oxygenase (HO-1) in the brain. The results showed that, when compared to the NC group, the D-gal group had a significantly lower brain, liver, kidney, and spleen indexes; the contents of MDA, L-1β, IL-6, and TNF-α in serum, liver, and brain were significantly higher, but the levels of CAT, SOD, and GSH-Px were significantly lower. Isoquercitrin, quercitrin, and quercetin significantly increased organ indexes and activities of CAT, SOD, and GSH-Px while decreasing MDA, IL-1β, IL-6, and TNF-α levels in serum, liver, and brain tissues compared to the D-gal group. The morphological changes in the brain and liver tissue were significantly restored by glycosides and quercetin, as observed in HE staining. Furthermore, Western blot results revealed that glycosides and quercetin increased the protein levels of Nrf2, HO-1, and NQO1. Finally, the antioxidant and anti-inflammatory effects of RRT glycoside and quercetin in aging may be attributed to an activated Nrf2/HO-1 signaling pathway. PRACTICAL APPLICATIONS: Aging is characterized by physical changes and dysfunction of numerous biological systems caused by a variety of factors. The oxidative stress and inflammatory effects of RRT glycosides and quercetin on D-galactose-induced aging mice were investigated in this study. RRT glycosides and quercetin were found to protect organ atrophy, liver, and brain tissue in aging mice by regulating oxidative stress and chronic inflammation. It served as the theoretical foundation for the investigation of Rosa roxburghii Tratt as a health product and pharmaceutical raw material.
Collapse
Affiliation(s)
- Zhen Chen
- College of Brewing and Food Engineering, Guizhou University, Guiyang, P. R. China
| | - Yuping Zhu
- College of Basic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Mintao Lu
- College of Brewing and Food Engineering, Guizhou University, Guiyang, P. R. China
| | - Lu Yu
- College of Brewing and Food Engineering, Guizhou University, Guiyang, P. R. China
| | - Shuming Tan
- College of Brewing and Food Engineering, Guizhou University, Guiyang, P. R. China
| | - Tingyuan Ren
- College of Brewing and Food Engineering, Guizhou University, Guiyang, P. R. China
- Institute of Guizhou Distinctive Plant Resources Conservation, Guizhou Academy of Agricultural Science, Guiyang, P. R. China
| |
Collapse
|
8
|
Kopalli SR, Cha KM, Cho JY, Kim SK, Koppula S. Cordycepin from Medicinal Fungi Cordyceps militaris Mitigates Inflammaging-Associated Testicular Damage via Regulating NF-κB/MAPKs Signaling in Naturally Aged Rats. MYCOBIOLOGY 2022; 50:89-98. [PMID: 35291597 PMCID: PMC8890559 DOI: 10.1080/12298093.2022.2035515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Inflammaging in male reproductive organs covers a wide variety of problems, including sexual dysfunction and infertility. In this study, the beneficial effects of cordycepin (COR), isolated from potential medicinal fungi Cordyceps militaris, in aging-associated testicular inflammation and serum biochemical changes in naturally aged rats were investigated. Male Sprague Dawley rats were divided into young control (YC), aged control (AC), and COR (5, 10, and 20 mg/kg) treated aged rat groups. Aging-associated serum biochemical changes and inflammatory parameters were analyzed by biochemical assay kits, Western blotting, and real-time RT-PCR. Results showed a significant (p < 0.05) alteration in the total blood cell count, lipid metabolism, and liver functional parameters in AC group when compared with YC group. However, COR-treated aged rats ameliorated the altered biochemical parameters significantly (p < 0.05 and p < 0.01 at 5, 10, and 20 mg/kg, respectively). Furthermore, the increase in the expression of inflammatory mediators (COX-2, interleukin (IL)-6, IL-1β, and tissue necrosis factor-alpha) in aged rat testis was significant (p < 0.05) when compared with YC group. Treatment with COR at 20 mg/kg to aged rats attenuated the increased expression of inflammatory mediators significantly (p < 0.05). Mechanistic studies revealed that the potential attenuating effects exhibited by COR in aged rats was mediated by regulation of NF-κB activation and MAPKs (c-Jun N-terminal kinase, extracellular signal-regulated kinase 1/2, and p38) signaling. In conclusion, COR restored the altered serum biochemical parameters in aged rats and ameliorated the aging-associated testicular inflammation proving the therapeutic benefits of COR targeting inflammaging-associated male sexual dysfunctions.
Collapse
Affiliation(s)
| | - Kyu-Min Cha
- D&L Biochem, Business Incubator Center 406, Chungju-Si, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Si-Kwan Kim
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju-si, Republic of Korea
| | - Sushruta Koppula
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju-si, Republic of Korea
| |
Collapse
|
9
|
Koppula S, Akther M, Haque ME, Kopalli SR. Potential Nutrients from Natural and Synthetic Sources Targeting Inflammaging-A Review of Literature, Clinical Data and Patents. Nutrients 2021; 13:nu13114058. [PMID: 34836313 PMCID: PMC8617641 DOI: 10.3390/nu13114058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
Inflammaging, the steady development of the inflammatory state over age is an attributable characteristic of aging that potentiates the initiation of pathogenesis in many age-related disorders (ARDs) including neurodegenerative diseases, arthritis, cancer, atherosclerosis, type 2 diabetes, and osteoporosis. Inflammaging is characterized by subclinical chronic, low grade, steady inflammatory states and is considered a crucial underlying cause behind the high mortality and morbidity rate associated with ARDs. Although a coherent set of studies detailed the underlying pathomechanisms of inflammaging, the potential benefits from non-toxic nutrients from natural and synthetic sources in modulating or delaying inflammaging processes was not discussed. In this review, the available literature and recent updates of natural and synthetic nutrients that help in controlling inflammaging process was explored. Also, we discussed the clinical trial reports and patent claims on potential nutrients demonstrating therapeutic benefits in controlling inflammaging and inflammation-associated ARDs.
Collapse
Affiliation(s)
- Sushruta Koppula
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju 27381, Korea; (S.K.); (M.A.)
| | - Mahbuba Akther
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju 27381, Korea; (S.K.); (M.A.)
| | - Md Ezazul Haque
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27381, Korea;
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Korea
- Correspondence: ; Tel.: +82-2-6935-2619
| |
Collapse
|
10
|
Matzkin ME, Calandra RS, Rossi SP, Bartke A, Frungieri MB. Hallmarks of Testicular Aging: The Challenge of Anti-Inflammatory and Antioxidant Therapies Using Natural and/or Pharmacological Compounds to Improve the Physiopathological Status of the Aged Male Gonad. Cells 2021; 10:cells10113114. [PMID: 34831334 PMCID: PMC8619877 DOI: 10.3390/cells10113114] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022] Open
Abstract
The evolutionary theory of aging supports a trade-off relationship between reproduction and aging. Aging of the male reproductive system primarily affects the testes, leading to a decrease in the levels of sexual hormones, alterations in sperm quality and production, and a decline in fertility that does not necessarily involve a complete cessation of spermatogenesis. Inflammation, oxidation, and apoptosis are events considered as predictors of pathogenesis and the development of age-related diseases that are frequently observed in aged testes. Although the molecular mechanisms are still poorly understood, accumulating evidence points toward pro-inflammatory molecules and reactive oxygen species as primary contributing factors for testicular aging. However, the real impact of aging-related testicular alterations on fertility, reproductive health, and life span is far from being fully revealed. This work discusses the current knowledge on the impact of aging in the testis, particularly of aging-related dysregulated inflammation and oxidative damage on the functioning of its different cell populations. More interestingly, this review covers the potential benefits of anti-aging interventions and therapies using either pharmacological compounds (such as non-selective non-steroidal anti-inflammatory medication) or more natural alternatives (such as various nutraceuticals or even probiotics) that exhibit anti-inflammatory, antioxidant, and anti-apoptotic properties. Some of these are currently being investigated or are already in clinical use to delay or prevent testicular aging.
Collapse
Affiliation(s)
- María Eugenia Matzkin
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires C1428ADN, Argentina; (R.S.C.); (S.P.R.); (M.B.F.)
- Departamento de Bioquímica Humana, Cátedra I, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires C1121ABG, Argentina
- Correspondence: ; Tel.: +54-114783-2869 (ext. 1209)
| | - Ricardo Saúl Calandra
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires C1428ADN, Argentina; (R.S.C.); (S.P.R.); (M.B.F.)
| | - Soledad Paola Rossi
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires C1428ADN, Argentina; (R.S.C.); (S.P.R.); (M.B.F.)
- Departamento de Bioquímica Humana, Cátedra I, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Andrzej Bartke
- Geriatrics Research, Department of Internal Medicine, School of Medicine, Southern Illinois University, Springfield, IL 62794, USA;
| | - Mónica Beatriz Frungieri
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires C1428ADN, Argentina; (R.S.C.); (S.P.R.); (M.B.F.)
- Cátedra de Química, Ciclo Básico Común, Universidad de Buenos Aires, Ciudad de Buenos Aires C1405CAE, Argentina
| |
Collapse
|
11
|
El-Far AH, Elewa YHA, Abdelfattah EZA, Alsenosy AWA, Atta MS, Abou-Zeid KM, Al Jaouni SK, Mousa SA, Noreldin AE. RETRACTED: Thymoquinone and Curcumin Defeat Aging-Associated Oxidative Alterations Induced by D-Galactose in Rats' Brain and Heart. Int J Mol Sci 2021; 22:6839. [PMID: 34202112 PMCID: PMC8268720 DOI: 10.3390/ijms22136839] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 01/17/2023] Open
Abstract
D-galactose (D-gal) administration causes oxidative disorder and is widely utilized in aging animal models. Therefore, we subcutaneously injected D-gal at 200 mg/kg BW dose to assess the potential preventive effect of thymoquinone (TQ) and curcumin (Cur) against the oxidative alterations induced by D-gal. Other than the control, vehicle, and D-gal groups, the TQ and Cur treated groups were orally supplemented at 20 mg/kg BW of each alone or combined. TQ and Cur effectively suppressed the oxidative alterations induced by D-gal in brain and heart tissues. The TQ and Cur combination significantly decreased the elevated necrosis in the brain and heart by D-gal. It significantly reduced brain caspase 3, calbindin, and calcium-binding adapter molecule 1 (IBA1), heart caspase 3, and BCL2. Expression of mRNA of the brain and heart TP53, p21, Bax, and CASP-3 were significantly downregulated in the TQ and Cur combination group along with upregulation of BCL2 in comparison with the D-gal group. Data suggested that the TQ and Cur combination is a promising approach in aging prevention.
Collapse
Affiliation(s)
- Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Yaser H. A. Elewa
- Department of Histology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Laboratory of Anatomy, Faculty of Veterinary Medicine, Basic Veterinary Sciences, Hokkaido University, Sapporo 060-0818, Japan
| | | | - Abdel-Wahab A. Alsenosy
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Mustafa S. Atta
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Khalid M. Abou-Zeid
- Animal Care Unit, Medical Research Institute, Alexandria University, Alexandria 21544, Egypt; (E.-Z.A.A.); (K.M.A.-Z.)
| | - Soad K. Al Jaouni
- Department of Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA;
| | - Ahmed E. Noreldin
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| |
Collapse
|
12
|
Chen H, Liu O, Chen S, Zhou Y. Aging and Mesenchymal Stem Cells: Therapeutic Opportunities and Challenges in the Older Group. Gerontology 2021; 68:339-352. [PMID: 34161948 DOI: 10.1159/000516668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/07/2021] [Indexed: 11/19/2022] Open
Abstract
With aging, a portion of cells, including mesenchymal stem cells (MSCs), become senescent, and these senescent cells accumulate and promote various age-related diseases. Therefore, the older age group has become a major population for MSC therapy, which is aimed at improving tissue regeneration and function of the aged body. However, the application of MSC therapy is often unsatisfying in the aged group. One reasonable conjecture for this correlation is that aging microenvironment reduces the number and function of MSCs. Cellular senescence also plays an important role in MSC function impairment. Thus, it is necessary to explore the relationship between senescence and MSCs for improving the application of MSCs in the elderly. Here, we present the influence of aging on MSCs and the characteristics and functional changes of senescent MSCs. Furthermore, current therapeutic strategies for improving MSC therapy in the elderly group are also discussed.
Collapse
Affiliation(s)
- Huan Chen
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, and Xiangya School of Stomatology, Central South University, Changsha, China
| | - Ousheng Liu
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, and Xiangya School of Stomatology, Central South University, Changsha, China
| | - Sijia Chen
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, and Xiangya School of Stomatology, Central South University, Changsha, China
| | - Yueying Zhou
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, and Xiangya School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
13
|
Zhang Q, Yang C, Zhang M, Lu X, Cao W, Xie C, Li X, Wu J, Zhong C, Geng S. Protective effects of ginseng stem-leaf saponins on D-galactose-induced reproductive injury in male mice. Aging (Albany NY) 2021; 13:8916-8928. [PMID: 33714944 PMCID: PMC8034965 DOI: 10.18632/aging.202709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/20/2021] [Indexed: 12/16/2022]
Abstract
Panax ginseng is a perennial plant in the Araliaceae family. In this study, we investigated the protective effects of ginseng stem-leaf saponins (GSLS) isolated from P. ginseng against D-galactose-induced reproductive function decline, oxidative stress, and inflammatory response. Reproductive injuries were induced in mice via the subcutaneous injection of D-galactose (300 mg/kg) for six weeks. The mice were then treated with GSLS by intragastric administration. GSLS inhibited markers of oxidative stress and inflammatory cytokines induced by D-galactose in serum, liver and kidney, whereas GSLS increased the activities of antioxidant enzymes. Compared to the mice treated only with D-galactose, GSLS treatment significantly increased the average path velocity, straight line velocity, curvilinear velocity, and amplitude of the lateral head displacement of mouse sperm. Meanwhile, GSLS significantly increased the testosterone level and reduced the cortisol, FSH, and LH levels. Histopathological examination revealed alterations in the number and the arrangement of spermatogenic cells in the seminiferous tubules of the mice in the GSLS group. GSLS treatment suppressed MAPKs pathway activation in testes. These results suggest that GSLS can attenuate D-galactose-induced oxidative stress and inflammatory response in serum, liver and kidney, and ameliorate reproductive damage by inhibiting MAPKs signaling pathway.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Chenying Yang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Min Zhang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Xiaomin Lu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Wanshuang Cao
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jieshu Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Shanshan Geng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| |
Collapse
|
14
|
The Effects of New Zealand Grown Ginseng Fractions on Cytokine Production from Human Monocytic THP-1 Cells. Molecules 2021; 26:molecules26041158. [PMID: 33671522 PMCID: PMC7926829 DOI: 10.3390/molecules26041158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/18/2022] Open
Abstract
Pro-inflammatory cytokines and anti-inflammatory cytokines are important mediators that regulate the inflammatory response in inflammation-related diseases. The aim of this study is to evaluate different New Zealand (NZ)-grown ginseng fractions on the productions of pro-inflammatory and anti-inflammatory cytokines in human monocytic THP-1 cells. Four NZ-grown ginseng fractions, including total ginseng extract (TGE), non-ginsenoside fraction extract (NGE), high-polar ginsenoside fraction extract (HPG), and less-polar ginsenoside fraction extract (LPG), were prepared and the ginsenoside compositions of extracts were analyzed by HPLC using 19 ginsenoside reference standards. The THP-1 cells were pre-treated with different concentrations of TGE, NGE, HPG, and LPG, and were then stimulated with lipopolysaccharide (LPS). The levels of pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), and anti-inflammatory cytokines, such as interleukin-10 (IL-10), and transforming growth factor beta-1 (TGF-β1), were determined by enzyme-linked immunosorbent assay (ELISA). TGE at 400 µg/mL significantly inhibited LPS-induced TNF-α and IL-6 productions. NGE did not show any effects on inflammatory secretion except inhibited IL-6 production at a high dose. Furthermore, LPG displayed a stronger effect than HPG on inhibiting pro-inflammatory cytokine (TNF-α, IL-1β, and IL-6) productions. Particularly, 100 µg/mL LPG not only significantly inhibited the production of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, but also remarkably enhanced the production of anti-inflammatory cytokine IL-10. NZ-grown ginseng exhibited anti-inflammatory effects in vitro, which is mainly attributed to ginsenoside fractions (particularly less-polar ginsenosides) rather than non-saponin fractions.
Collapse
|
15
|
Fetal and Postnatal Nicotine Exposure Modifies Maturation of Gonocytes to Spermatogonia in Mice. ACTA ACUST UNITED AC 2020; 2020:8892217. [PMID: 33381390 PMCID: PMC7758125 DOI: 10.1155/2020/8892217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/23/2020] [Indexed: 12/31/2022]
Abstract
Studies in laboratory animals have shown that male offspring from dams, exposed to nicotine during pregnancy and postnatal periods, show alterations in fertility, although the origin of this is still uncertain. In this study, we examined in a mouse model if the process of gonocyte maturation to spermatogonia was affected in male offspring from dams with nicotine administration during pregnancy and postnatal periods. BALB/C mice, with and without nicotine administrations in pregnancy and postnatal periods, were studied. The animals were euthanized at 3, 7, 10, 16, and 35 days postpartum (dpp). Testicular tissue samples were processed for histological, ultrastructural, and immunohistochemical studies; and testicular lipoperoxidation was determined. It was observed that in the nicotine-exposed animals, there was increased apoptosis and a reduction in the number of gonocytes that matured to spermatogonia. This gonocyte-spermatogonia maturation reduction was associated with a greater immunoreactivity to nicotinic acetylcholine receptors in the germ cells. Lipoperoxidation was similar in both groups until 16 dpp, with significant reduction at 35 dpp. Our findings suggest that nicotine intake during pregnancy and postnatal periods can affect the process of maturation of gonocytes to spermatogonia and the pool of available spermatogonia for spermatogenesis.
Collapse
|
16
|
Wang Y, Cui X, Lin Q, Cai J, Tang L, Liang Y. Active Peptide KF-8 from Rice Bran Attenuates Oxidative Stress in a Mouse Model of Aging Induced by d-Galactose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12271-12283. [PMID: 32942847 DOI: 10.1021/acs.jafc.0c04358] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study investigated the effects of a physiologically active peptide derived from rice bran (KF-8) on oxidative stress in d-galactose (d-gal)-induced aging mice and the underlying molecular mechanisms. The aging model was developed by subcutaneously injecting Institute of Cancer Research mice with 250 mg/kg d-gal daily for 12 weeks and simultaneously treating them with 30 mg/kg KF-8. The relative expression levels of Nrf2 and NF-κB in the liver were determined by the western blot. The regulation of Nrf2 and NF-κBp65 by KF-8 was further validated in NIH/3T3 cells. Compared with the control mice, the aging mice had significantly decreased body weights as well as superoxide dismutase and GSH-Px levels (p < 0.05); however, they had increased serum reactive oxygen species and malondialdehyde and 8-hydroxydeoxyguanosine levels accompanied by aortic and brain injuries. They also had elevated RAGE, TLR4, IκB, Bax, and caspase-8 expressions and NF-κB/p65 phosphorylation but reduced BcL-2 expression in the liver. Moreover, in vitro experiments demonstrated that the pretreatment of H2O2-treated NIH/3T3 cells with KF-8 significantly mitigated the NF-κB signaling and attenuated the Nrf2 nuclear transport (both p < 0.05). In conclusion, KF-8 treatment inhibited aging-induced oxidative stress-related organ injury in mice by attenuating NF-κB/p38 signaling and preserving Nrf2 activity.
Collapse
Affiliation(s)
- Yuqian Wang
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xiaoji Cui
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Qinlu Lin
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Jie Cai
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Liuhuan Tang
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| |
Collapse
|
17
|
Liuweidihuang Pill Alleviates Inflammation of the Testis via AMPK/SIRT1/NF- κB Pathway in Aging Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2792738. [PMID: 32565851 PMCID: PMC7267858 DOI: 10.1155/2020/2792738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/28/2020] [Indexed: 12/29/2022]
Abstract
Liuweidihuang Pill (LP) is a traditional Chinese herbal formula that is often used in clinical practice to treat kidney deficiency syndrome. The present study investigated the antiaging effects of LP in a D-galactose- (D-Gal-) induced subacute aging rat model. The study also attempted to explore whether anti-inflammatory mechanisms that underpin the antiaging effects are mediated by the AMPK/SIRT1/NF-κB signaling pathway. Rats were subcutaneously injected with D-Gal at a dosage of 100 mg/kg/d for 8 weeks. Upon successful induction of aging in the rats, the animal was administered LP at 0.9 g/kg/d by gavage for 4 weeks. Proteins of the testis were subsequently examined by western blot analysis, and associated locations in the testicular tissue were determined by immunohistochemistry. We observed that LP exerted antiaging effects in aging rats following the activation of AMPK/SIRT1. It was also observed that LP inhibited the expression of NF-κB, thereby further attenuating inflammation of the testis. Therefore, LP can alleviate inflammation of the testis via the AMPK/SIRT1/NF-κB pathway in aging rats.
Collapse
|
18
|
Ma J, Chen Q, Wang S, Ma R, Jing J, Yang Y, Feng Y, Zou Z, Zhang Y, Ge X, Xue T, Liang K, Cao S, Wang D, Chen L, Yao B. Mitochondria-related miR-574 reduces sperm ATP by targeting ND5 in aging males. Aging (Albany NY) 2020; 12:8321-8338. [PMID: 32381753 PMCID: PMC7244036 DOI: 10.18632/aging.103141] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/31/2020] [Indexed: 12/28/2022]
Abstract
Couples are delaying childbearing in recent decades. While women experience a notable decrease in oocyte production in their late thirties, the effect of advanced paternal age on reproduction is incompletely understood. Herein, we observed that numerous miRNAs, including miR-574, increased in the sperm of aging males, as indicated by high-throughput sequencing. We demonstrated that miR-574 was upregulated in the sperm of two aging mouse models and was related to inferior sperm motility as an adverse predictor. Moreover, we proved that miR-574 suppressed mitochondrial function and reduced cellular ATP production in GC2 cells. Mechanistically, we demonstrated that miR-574 regulated mitochondrial function by directly targeting mt-ND5. Our study revealed an important role of miR-574 in sperm function in aging males and provided a fresh view to comprehend the aging process in sperm.
Collapse
Affiliation(s)
- Jinzhao Ma
- Center of Reproductive Medicine, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing 210002, Jiangsu, China.,Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Qiwei Chen
- Center of Reproductive Medicine, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing 210002, Jiangsu, China
| | - Shuxian Wang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Rujun Ma
- Center of Reproductive Medicine, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing 210002, Jiangsu, China.,Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Jun Jing
- Center of Reproductive Medicine, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing 210002, Jiangsu, China.,Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Yang Yang
- Institute of Laboratory Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Yuming Feng
- Center of Reproductive Medicine, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing 210002, Jiangsu, China.,Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Zhichuan Zou
- Center of Reproductive Medicine, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing 210002, Jiangsu, China.,Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Yu Zhang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, School of Medicine, Jiangsu University, Zhenjiang 212002, Jiangsu, China
| | - Xie Ge
- Center of Reproductive Medicine, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing 210002, Jiangsu, China.,Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Tongmin Xue
- Jinling Hospital Department Reproductive Medical Center, Nanjing Medicine University, Nanjing 210002, Jiangsu, China
| | - Kuan Liang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing 210002, Jiangsu, China
| | - Siyuan Cao
- School of Life Science, Nanjing Normal University, Nanjing 210002, Jiangsu, China
| | - Dandan Wang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Li Chen
- Center of Reproductive Medicine, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing 210002, Jiangsu, China.,Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Bing Yao
- Center of Reproductive Medicine, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing 210002, Jiangsu, China.,Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, Jiangsu, China.,Center of Reproductive Medicine, Nanjing Jinling Hospital, School of Medicine, Jiangsu University, Zhenjiang 212002, Jiangsu, China.,Jinling Hospital Department Reproductive Medical Center, Nanjing Medicine University, Nanjing 210002, Jiangsu, China.,School of Life Science, Nanjing Normal University, Nanjing 210002, Jiangsu, China
| |
Collapse
|
19
|
Li H, Chen C, Li ZM, Yang Y, Xing CQ, Li Y, Jin YH. Specific Interaction With Human Serum Albumin Reduces Ginsenoside Cytotoxicity in Human Umbilical Vein Endothelial Cells. Front Pharmacol 2020; 11:498. [PMID: 32410989 PMCID: PMC7201041 DOI: 10.3389/fphar.2020.00498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/30/2020] [Indexed: 11/16/2022] Open
Abstract
Human serum albumin (HSA) is an important component of plasma, which has the functions of maintaining colloid osmotic pressure and capillary membrane stability, promoting blood circulation, and anti-oxidation. Three-dimensional structure of HSA determines its ability to bind and transport hormones and other substances. In this study we examined the interactions between HSA and ginsenoside Rg3, Rg5, Rk1, Rh2, and Rh4, which are the main cytotoxic ginsenosides extracted from red ginseng. Heat transfer generated by the specific interaction between HSA and each ginsenoside was measured using isothermal titration calorimetry (ITC) assay, which demonstrated that all these 5 ginsenosides bound to HSA with binding constants of 3.25, 1.89, 6.04, 2.07, and 5.17 × 105 M−1, respectively. Molecular docking also displayed that these ginsenosides interact with HSA at different sites of the HSA surface. Importantly, cell viability assay showed that the cytotoxicity of these ginsenosides reduced significantly at the presence of HSA in human vascular endothelial cells (HUVEC). Taken together, this study reveals the mechanism by which these ginsenosides are transported in vivo by not causing damage in vascular endothelium, and also suggests HSA might be an ideal carrier help to transport and execute these ginsenoside functions in human body.
Collapse
Affiliation(s)
- He Li
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, College of Life Science, Jilin University, Changchun, China
| | - Chen Chen
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, College of Life Science, Jilin University, Changchun, China
| | - Zhong-Ming Li
- The First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yang Yang
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, College of Life Science, Jilin University, Changchun, China
| | - Chao-Qun Xing
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, College of Life Science, Jilin University, Changchun, China
| | - Yang Li
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, College of Life Science, Jilin University, Changchun, China
| | - Ying-Hua Jin
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, College of Life Science, Jilin University, Changchun, China
| |
Collapse
|
20
|
Tang YL, Zhang CG, Liu H, Zhou Y, Wang YP, Li Y, Han YJ, Wang CL. Ginsenoside Rg1 Inhibits Cell Proliferation and Induces Markers of Cell Senescence in CD34+CD38- Leukemia Stem Cells Derived from KG1α Acute Myeloid Leukemia Cells by Activating the Sirtuin 1 (SIRT1)/Tuberous Sclerosis Complex 2 (TSC2) Signaling Pathway. Med Sci Monit 2020; 26:e918207. [PMID: 32037392 PMCID: PMC7032532 DOI: 10.12659/msm.918207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Clinical relapse in acute myeloid leukemia (AML) is associated with the reduced treatment response of leukemia stem cells (LSCs). This study aimed to investigate the effects of the ginseng derivative, ginsenoside Rg1 (Rg1), on CD34+CD38- LSCs derived from KG1a human acute myeloid leukemia cells. MATERIAL AND METHODS CD34+CD38- LSCs were isolated from KG1a human acute myeloid leukemia cells by cell sorting. CD34+CD38- KG1alpha LSCs were divided into the control group and the Rg1 group (treated with Rg1). The cell counting kit-8 (CCK-8) assay evaluated the proliferation of CD34+CD38- KG1alpha LSCs and flow cytometry studied the cell cycle. The mixed colony-forming unit (CFU-Mix) assay and staining for senescence-associated beta-galactosidase (SA-ß-Gal) evaluated cell senescence. Expression of sirtuin 1 (SIRT1) and tuberous sclerosis complex 2 (TSC2) were evaluated using Western blot and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). RESULTS CD34+CD38- KG1alpha LSCs were isolated at 98.72%. Rg1 significantly reduced the proliferation of CD34+CD38- KG1alpha LSCs compared with the control group (p<0.05). Cells in the G0/G1 phase were significantly increased, and cells in the G2/M and S phase were significantly reduced compared with the control group (p<0.05). Rg1 significantly increased SA-ß-Gal and reduced CFU-Mix formation compared with the control group (p<0.05), significantly down-regulated SIRT1 expression in CD34+CD38- KG1alpha LSCs compared with the control group (p<0.05), and significantly reduced TSC2 expression in CD34+CD38- KG1alpha LSCs compared with the control group (p<0.05). CONCLUSIONS Rg1 inhibited cell proliferation and induced cell senescence markers in CD34+CD38- KG1alpha LSCs by activating the SIRT1/TSC2 signaling pathway.
Collapse
Affiliation(s)
- Yan-Long Tang
- Department of Radiology, The First Affiliated Hospital of Dali University, Dali, Yunnan, China (mainland)
| | - Cheng-Gui Zhang
- Key Laboratory of Insect Biomedicine Research and Development in Yunnan Province, Dali University, Dali, Yunnan, China (mainland)
| | - Heng Liu
- Key Laboratory of Insect Biomedicine Research and Development in Yunnan Province, Dali University, Dali, Yunnan, China (mainland)
| | - Yue Zhou
- Department of Histology and Embryology, Key Laboratory of Cell Biology, Dali University, Dali, Yunnan, China (mainland)
| | - Ya-Ping Wang
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China (mainland)
| | - Yuan Li
- Department of Histology and Embryology, Key Laboratory of Cell Biology, Dali University, Dali, Yunnan, China (mainland)
| | - Yan-Jun Han
- Department of Histology and Embryology, Key Laboratory of Cell Biology, Dali University, Dali, Yunnan, China (mainland)
| | - Cui-Li Wang
- Department of Histology and Embryology, Key Laboratory of Cell Biology, Dali University, Dali, Yunnan, China (mainland)
| |
Collapse
|
21
|
New Insights for Cellular and Molecular Mechanisms of Aging and Aging-Related Diseases: Herbal Medicine as Potential Therapeutic Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4598167. [PMID: 31915506 PMCID: PMC6930799 DOI: 10.1155/2019/4598167] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 09/28/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Aging is a progressive disease affecting around 900 million people worldwide, and in recent years, the mechanism of aging and aging-related diseases has been well studied. Treatments for aging-related diseases have also made progress. For the long-term treatment of aging-related diseases, herbal medicine is particularly suitable for drug discovery. In this review, we discuss cellular and molecular mechanisms of aging and aging-related diseases, including oxidative stress, inflammatory response, autophagy and exosome interactions, mitochondrial injury, and telomerase damage, and summarize commonly used herbals and compounds concerned with the development of aging-related diseases, including Ginkgo biloba, ginseng, Panax notoginseng, Radix astragali, Lycium barbarum, Rhodiola rosea, Angelica sinensis, Ligusticum chuanxiong, resveratrol, curcumin, and flavonoids. We also summarize key randomized controlled trials of herbal medicine for aging-related diseases during the past ten years. Adverse reactions of herbs were also described. It is expected to provide new insights for slowing aging and treating aging-related diseases with herbal medicine.
Collapse
|
22
|
Effects of Ginsenoside Rg1 Regulating Wnt/ β-Catenin Signaling on Neural Stem Cells to Delay Brain Senescence. Stem Cells Int 2019; 2019:5010184. [PMID: 31885611 PMCID: PMC6914998 DOI: 10.1155/2019/5010184] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 10/04/2019] [Accepted: 11/07/2019] [Indexed: 01/02/2023] Open
Abstract
This is a study on the relationship between the protective effect of ginsenoside Rg1 on senescent neural stem cells and Wnt-β/catenin signaling pathway. Background. Recent studies have shown that overactivation of the Wnt/β-catenin signaling pathway is closely related to stem cell senescence. Whether Rg1 delays the senescence of NSCs is related to the regulation of this signaling pathway. Methods. The whole brain of Nestin-GFP transgenic newborn rat was extracted, and NSCs were extracted and cultured to P3 generation. The following indicators were detected: (1) NSC culture identification, (2) the effect of LiCl on the proliferation and survival rate of NSCs, (3) the effect of ginsenoside Rg1 on the proliferation and survival of NSCs, (4) the growth of NSCs in each group observed by an optical microscope, (5) the cell cycle of each group detected by flow cytometry, (6) the proliferative ability of each group detected by BrdU, (7) the fluorescence intensity of Nestin and Sox2 of NSCs in each group observed by a fluorescence microscope, (8) the positive rate of senescence staining analyzed by SA-β-Gal staining, (9) the localization of β-catenin in NSCs observed by laser confocal microscopy, and (10) the changes of the Wnt/β-catenin pathway-related proteins in each group detected by Western blotting. Results. LiCl activates the Wnt/β-catenin pathway and promotes mouse neural stem cell senescence. Ginsenoside Rg1 promotes proliferation of neural stem cells and inhibits Wnt/β-catenin pathway activation. Conclusions. LiCl can activate the Wnt/β-catenin signaling pathway of NSCs, and ginsenoside Rg1 can antagonize the senescence of NSCs caused by activation of the Wnt/β-catenin signaling pathway and delay brain aging.
Collapse
|