1
|
Ciftel E, Mercantepe F, Mercantepe T, Akyildiz K, Yilmaz A, Ciftel S. Comparative Analysis of Epigallocatechin-3-Gallate and TNF-Alpha Inhibitors in Mitigating Cisplatin-Induced Pancreatic Damage Through Oxidative Stress and Apoptosis Pathways. Biol Trace Elem Res 2024; 202:5190-5207. [PMID: 38776022 PMCID: PMC11442533 DOI: 10.1007/s12011-024-04239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/15/2024] [Indexed: 10/01/2024]
Abstract
Oxidative stress and inflammation caused by cisplatin, which is frequently used in the treatment of many cancers, damage healthy tissues as well as cancer cells. In this study, we aimed to investigate the effect of epigallocatechin-3-gallate (EGCG) and infliximab (INF) administration on pancreatic endocrine cells in rats treated with systemic cisplatin (CDDP). The rats were randomly divided into 6 groups: group 1 (control group), group 2 (EGCG group), group 3 (CDDP group), group 4 (EGCG + CDDP group), group 5 (CDDP + INF group), and group 6 (EGCG + CDDP + INF group). The study's findings demonstrated that EGCG and INF effectively reduced the cellular damage induced by CDDP in histopathologic investigations of the pancreas. EGCG and INF, whether used individually or in combination, demonstrated a significant reduction in malondialdehyde (MDA) levels and an increase in glutathione (GSH) levels in the rat pancreas compared to the CDDP group. Immunohistochemically, the enhanced presence of insulin and glucagon positivity in the EGCG and INF groups, along with the absence of TUNEL immunopositivity, indicate that both treatments reduced CDDP-induced apoptosis. Furthermore, the observed lack of immunopositivity in TNF-α and 8-OHdG in the groups treated with EGCG and INF, compared to those treated with CDDP, indicates that these substances can inhibit inflammation. EGCG and INF, whether provided alone or together, can potentially reduce the damage caused to pancreatic islet cells by cisplatin. This effect is achieved through their anti-inflammatory and antioxidant properties during the early stages of the condition.
Collapse
Affiliation(s)
- Enver Ciftel
- Department of Endocrinology and Metabolism, Sivas Numune Hospital, Sivas, Turkey
| | - Filiz Mercantepe
- Department of Endocrinology and Metabolism, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, 53010, Turkey.
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Kerimali Akyildiz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Adnan Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Serpil Ciftel
- Department of Endocrinology and Metabolism, Erzurum Education and Research Hospital, Erzurum, Turkey
| |
Collapse
|
2
|
Zhang Y, Zeng M, Zhang X, Yu Q, Zeng W, Yu B, Gan J, Zhang S, Jiang X. Does an apple a day keep away diseases? Evidence and mechanism of action. Food Sci Nutr 2023; 11:4926-4947. [PMID: 37701204 PMCID: PMC10494637 DOI: 10.1002/fsn3.3487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 09/14/2023] Open
Abstract
Apples and their products exemplify the recently reemphasized link between dietary fruit intake and the alleviation of human disease. Their consumption does indeed improve human health due to their high phytochemical content. To identify potentially relevant articles from clinical trials, some epidemiological studies and meta-analyses, and in vitro and in vivo studies (cell cultures and animal models), PubMed was searched from January 1, 2012, to May 15, 2022. This review summarized the potential effects of apple and apple products (juices, puree, pomace, dried apples, extracts rich in apple bioactives and single apple bioactives) on health. Apples and apple products have protective effects against cardiovascular diseases, cancer, as well as mild cognitive impairment and promote hair growth, healing of burn wounds, improve the oral environment, prevent niacin-induced skin flushing, promote the relief of UV-induced skin pigmentation, and improve the symptoms of atopic dermatitis as well as cedar hay fever among others. These effects are associated with various mechanisms, such as vascular endothelial protection, blood lipids lowering, anti-inflammatory, antioxidant, antiapoptotic, anti-invasion, and antimetastatic effects. Meanwhile, it has provided an important reference for the application and development of medicine, nutrition, and other fields.
Collapse
Affiliation(s)
- Yue Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Miao Zeng
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xiaolu Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Qun Yu
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Wenyun Zeng
- Department of PathologyTianjin Union Medical CenterTianjinChina
| | - Bin Yu
- School of International EducationTianjin University of Chinese MedicineTianjinChina
| | - Jiali Gan
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Shiwu Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- Department of PathologyTianjin Union Medical CenterTianjinChina
| | - Xijuan Jiang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|
3
|
Duan XK, Sun YX, Wang HY, Xu YY, Fan SZ, Tian JY, Yu Y, Zhao YY, Jiang YL. miR-124 is upregulated in diabetic mice and inhibits proliferation and promotes apoptosis of high-glucose-induced β-cells by targeting EZH2. World J Diabetes 2023; 14:209-221. [PMID: 37035229 PMCID: PMC10075033 DOI: 10.4239/wjd.v14.i3.209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/05/2023] [Accepted: 02/15/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Diabetes is a chronic metabolic disease, and a variety of miRNA are involved in the occurrence and development of diabetes. In clinical studies, miR-124 is highly expressed in the serum of patients with diabetes and in pancreatic islet β-cells. However, few reports exist concerning the role and mechanism of action of miR-124 in diabetes.
AIM To investigate the expression of miR-124 in diabetic mice and the potential mechanism of action in islet β-cells.
METHODS The expression levels of miR-124 and enhancer of zeste homolog 2 (EZH2) in pancreatic tissues of diabetic mice were detected. The targeted relationship between miR-124 and EZH2 was predicted by Targetscan software and verified by a double luciferase reporter assay. Mouse islet β-cells Min6 were grown in a high glucose (HG) medium to mimic a diabetes model. The insulin secretion, proliferation, cell cycle and apoptosis of HG-induced Min6 cells were detected after interference of miR-124a and/or EZH2.
RESULTS The expression of miR-124 was upregulated and EZH2 was downregulated in the pancreatic tissue of diabetic mice compared with control mice, and the expression of miR-124 was negatively correlated with that of EZH2. miR-124 was highly expressed in HG-induced Min6 cells. Inhibition of miR-124 promoted insulin secretion and cell proliferation, induced the transition from the G0/G1 phase to the S phase of the cell cycle, and inhibited cell apoptosis in HG-induced Min6 cells. EZH2 was one of the targets of miR-124. Co-transfection of miR-124 inhibitor and siRNA-EZH2 could reverse the effects of the miR-124 inhibitor in HG-induced Min6 cells.
CONCLUSION miR-124 is highly expressed in diabetic mice and HG-induced Min6 cells and regulates insulin secretion, proliferation and apoptosis of islet β-cells by targeting EZH2.
Collapse
Affiliation(s)
- Xiao-Kai Duan
- Department of General Practice, Zhengzhou First People’s Hospital, Zhengzhou 450000, Henan Province, China
| | - Yong-Xiang Sun
- Department of General Practice, Zhengzhou First People’s Hospital, Zhengzhou 450000, Henan Province, China
| | - Hong-Yun Wang
- Department of General Practice, Zhengzhou First People’s Hospital, Zhengzhou 450000, Henan Province, China
| | - Yan-Yan Xu
- Department of General Practice, Zhengzhou First People’s Hospital, Zhengzhou 450000, Henan Province, China
| | - Shi-Zhen Fan
- Department of General Practice, Zhengzhou First People’s Hospital, Zhengzhou 450000, Henan Province, China
| | - Jin-Ya Tian
- Department of General Practice, Zhengzhou First People’s Hospital, Zhengzhou 450000, Henan Province, China
| | - Yong Yu
- Department of General Practice, Zhengzhou First People’s Hospital, Zhengzhou 450000, Henan Province, China
| | - Yan-Yun Zhao
- Department of General Practice, Zhengzhou First People’s Hospital, Zhengzhou 450000, Henan Province, China
| | - Yan-Li Jiang
- Department of General Practice, Zhengzhou First People’s Hospital, Zhengzhou 450000, Henan Province, China
| |
Collapse
|
4
|
Wan C, Ouyang J, Li M, Rengasamy KRR, Liu Z. Effects of green tea polyphenol extract and epigallocatechin-3-O-gallate on diabetes mellitus and diabetic complications: Recent advances. Crit Rev Food Sci Nutr 2022; 64:5719-5747. [PMID: 36533409 DOI: 10.1080/10408398.2022.2157372] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetes mellitus is one of the major non-communicable diseases accounting for millions of death annually and increasing economic burden. Hyperglycemic condition in diabetes creates oxidative stress that plays a pivotal role in developing diabetes complications affecting multiple organs such as the heart, liver, kidney, retina, and brain. Green tea from the plant Camellia sinensis is a common beverage popular in many countries for its health benefits. Green tea extract (GTE) is rich in many biologically active compounds, e.g., epigallocatechin-3-O-gallate (EGCG), which acts as a potent antioxidant. Recently, several lines of evidence have shown the promising results of GTE and EGCG for diabetes management. Here, we have critically reviewed the effects of GTE and EGCC on diabetes in animal models and clinical studies. The concerns and challenges regarding the clinical use of GTE and EGCG against diabetes are also briefly discussed. Numerous beneficial effects of green tea and its catechins, particularly EGCG, make this natural product an attractive pharmacological agent that can be further developed to treat diabetes and its complications.
Collapse
Affiliation(s)
- Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jian Ouyang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Kannan R R Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
5
|
Amelioration of Age-Related Multiple Neuronal Impairments and Inflammation in High-Fat Diet-Fed Rats: The Prospective Multitargets of Geraniol. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4812993. [PMID: 36304965 PMCID: PMC9596245 DOI: 10.1155/2022/4812993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/31/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022]
Abstract
Neuroinflammation is documented to alter brain function as a consequence of metabolic changes linked with a high-fat diet (HFD). The primary target of this study is to see how geraniol is effective in manipulating age- and diet-associated multiple toxicity and neuroinflammation in HFD-fed rats. Sixty-four adult male Wistar rats were partitioned into two groups: Group 1 (untreated normal young and aged rats) and Group 2 (HFD-fed young and aged rats) that received HFD for 16 weeks before being orally treated with geraniol or chromax for eight weeks. The results revealed a dropping in proinflammatory cytokines (TNF-α and IL-6) and leptin while boosting adiponectin in geraniol-supplemented rats. The liver, kidney, and lipid profiles were improved in geraniol-HFD-treated groups. HFD-induced brain insulin resistance decreased insulin clearance and insulin-degrading enzyme (IDE) levels significantly after geraniol supplementation. Geraniol suppressed acetylcholinesterase (AChE) activity and alleviated oxidative stress by boosting neuronal reduced glutathione (GSH), catalase (CAT), glutathione-S-transferase (GST), and superoxide dismutase (SOD) activities. It lowered malondialdehyde concentration (TBARS), nitric oxide (NO), and xanthine oxidase (XO) and restored the structural damage to the brain tissue caused by HFD. Compared with model rats, geraniol boosted learning and memory function and ameliorated the inflammation status in the brain by lowering the protein levels of IL-1β, iNOS, NF-κBp65, and COX-2. In addition, the expression levels of inflammation-related genes (MCP-1, TNF-α, IL-6, IL-1β, and IDO-1) were lessened significantly. Remarkably, the supplementation of geraniol reversed the oxidative and inflammation changes associated with aging. It affected the redox status of young rats. In conclusion, our results exhibit the effectiveness of dietary geraniol supplementation in modifying age-related neuroinflammation and oxidative stress in rats and triggering off the use of geraniol as a noninvasive natural compound for controlling age- and diet-associated neuronal impairments and toxicity.
Collapse
|
6
|
Characterization and Roles of Membrane Lipids in Fatty Liver Disease. MEMBRANES 2022; 12:membranes12040410. [PMID: 35448380 PMCID: PMC9025760 DOI: 10.3390/membranes12040410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Obesity has reached global epidemic proportions and it affects the development of insulin resistance, type 2 diabetes, fatty liver disease and other metabolic diseases. Membrane lipids are important structural and signaling components of the cell membrane. Recent studies highlight their importance in lipid homeostasis and are implicated in the pathogenesis of fatty liver disease. Here, we discuss the numerous membrane lipid species and their metabolites including, phospholipids, sphingolipids and cholesterol, and how dysregulation of their composition and physiology contribute to the development of fatty liver disease. The development of new genetic and pharmacological mouse models has shed light on the role of lipid species on various mechanisms/pathways; these lipids impact many aspects of the pathophysiology of fatty liver disease and could potentially be targeted for the treatment of fatty liver disease.
Collapse
|
7
|
Zhang A, Jiang X, Ge Y, Xu Q, Li Z, Tang H, Cao D, Zhang D. The Effects of GABA-Rich Adzuki Beans on Glycolipid Metabolism, as Well as Intestinal Flora, in Type 2 Diabetic Mice. Front Nutr 2022; 9:849529. [PMID: 35237647 PMCID: PMC8883037 DOI: 10.3389/fnut.2022.849529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 12/16/2022] Open
Abstract
Objectives In this study, the effects of γ-aminobutyric acid (GABA)-rich sprouted adzuki beans on the glycolipid metabolism and gastrointestinal health were investigated in mice with type 2 diabetes mellitus (T2DM). Methods Mice with T2DM were subjected to dietary intervention with different doses of GABA-rich sprouted adzuki beans for 6 consecutive weeks, during which growth indicators, glycolipid metabolism, and the composition and diversity of the gut microbiota changes were observed. Results A high dietary intake of GABA-rich sprouted adzuki beans had a preventive effect against weight gain, significantly reduced serum levels of FBG, TG, and TC. Additionally, high dietary intake of GABA-rich sprouted adzuki beans increased the abundances of Firmicutes, Bacteroidetes, Verrucomicrobia, and Akkermansia, leading to a shift in the structure of the gut microbiota toward the dominance of probiotics with regulatory effects on glycolipid metabolism. Conclusions GABA-rich sprouted adzuki beans can effectively control the bodyweight of mice with T2DM, maintain a balanced blood glucose level, improve glycolipid metabolism and the changes in the microbiota may mediate the anti-diabetic effect of sprouted adzuki beans.
Collapse
Affiliation(s)
- Aiwu Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiujie Jiang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yunfei Ge
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, South Korea
| | - Qingpeng Xu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhijiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Huacheng Tang
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongmei Cao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Dongjie Zhang
| |
Collapse
|
8
|
Sun P, Zhao L, Zhang N, Zhou J, Zhang L, Wu W, Ji B, Zhou F. Bioactivity of Dietary Polyphenols: The Role in LDL-C Lowering. Foods 2021; 10:2666. [PMID: 34828946 PMCID: PMC8617782 DOI: 10.3390/foods10112666] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases are the leading causes of the death around the world. An elevation of the low-density lipoprotein cholesterol (LDL-C) level is one of the most important risk factors for cardiovascular diseases. To achieve optimal plasma LDL-C levels, clinal therapies were investigated which targeted different metabolism pathways. However, some therapies also caused various adverse effects. Thus, there is a need for new treatment options and/or combination therapies to inhibit the LDL-C level. Dietary polyphenols have received much attention in the prevention of cardiovascular diseases due to their potential LDL-C lowering effects. However, the effectiveness and potential mechanisms of polyphenols in lowering LDL-C is not comprehensively summarized. This review focused on dietary polyphenols that could reduce LDL-C and their mechanisms of action. This review also discussed the limitations and suggestions regarding previous studies.
Collapse
Affiliation(s)
- Peng Sun
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Liang Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China;
| | - Nanhai Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Jingxuan Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Liebing Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Wei Wu
- College of Engineering, China Agricultural University, Beijing 100083, China;
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| |
Collapse
|
9
|
Li W, Zhu C, Liu T, Zhang W, Liu X, Li P, Zhu T. Epigallocatechin-3-gallate ameliorates glucolipid metabolism and oxidative stress in type 2 diabetic rats. Diab Vasc Dis Res 2020; 17:1479164120966998. [PMID: 33280417 PMCID: PMC7919214 DOI: 10.1177/1479164120966998] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIMS The objective of this study was to explore the effects of epigallocatechin-3-gallate (EGCG) on type 2 diabetes mellitus (T2DM). MAIN METHODS Male Sprague-Dawley rats were allocated into six groups. The control group received a conventional diet. The diabetic group received a high-sucrose high-fat (HSHF) diet for 4 weeks and then was fasted and injected with streptozotocin (STZ); subsequently, the rats received a HSHF diet for another 4 weeks to develop diabetes. The four treatment groups were diabetic rats that received intragastric metformin (500 mg/kg/day) or EGCG (25, 50, and 100 mg/kg/day) for 10 weeks. All groups except the control group received a HSHF diet throughout the experiment. Several biochemical parameters such as fasting blood glucose (FBG), postprandial blood glucose (PBG), liver glycogen, muscle glycogen, fasting serum insulin (FSI), homeostasis model of insulin resistance (HOMA-IR), total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), free fatty acids (FFA), superoxide dismutase (SOD), and malondialdehyde (MDA) were measured to assess the effects of EGCG on glycemic control, insulin resistance, lipid profile, and oxidative stress. Furthermore, oxidative stress in pancreatic islet β cells was detected by dihydroethidium staining. KEY FINDINGS A HSHF diet and STZ injection induced T2DM, as indicated by changed blood glucose and body weight, which was accompanied by insulin resistance, an altered lipid profile, and oxidative stress. Interestingly, EGCG treatment dose-dependently recovered these indexes. SIGNIFICANCE EGCG successfully ameliorated glycemic control and insulin sensitivity while reducing the lipid profile and oxidative stress in a T2DM rat model.
Collapse
Affiliation(s)
- Wenru Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chaonan Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
- Department of pharmacy, The first Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Tianheng Liu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang, Henan, China
- Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang, Henan, China
| | - Weifang Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Xu Liu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang, Henan, China
- Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang, Henan, China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang, Henan, China
- Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang, Henan, China
| | - Tiantian Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang, Henan, China
- Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang, Henan, China
- Tiantian Zhu, College of Pharmacy, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, Henan 453003, China.
| |
Collapse
|
10
|
Yuan H, Li Y, Ling F, Guan Y, Zhang D, Zhu Q, Liu J, Wu Y, Niu Y. The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats. Aging Cell 2020; 19:e13199. [PMID: 32729662 PMCID: PMC7511879 DOI: 10.1111/acel.13199] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/10/2020] [Accepted: 07/01/2020] [Indexed: 01/05/2023] Open
Abstract
We have recently reported that epigallocatechin gallate (EGCG) could extend lifespan in healthy rats. This study aimed to investigate the effects and mechanisms of a high dose of EGCG in extending the lifespan of obese rats. Ninety adult male Wistar rats were randomly divided into the control (NC), high-fat (HF) and EGCG groups. Serum glucose and lipids, inflammation and oxidative stress were dynamically determined from adulthood to death, and the transcriptome and proteome of the liver were also examined. The median lifespans of the NC, HF and EGCG groups were 693, 599 and 683 days, respectively, and EGCG delayed death by 84 days in obese rats. EGCG improved serum glucose and lipids and reduced inflammation and oxidative stress associated with aging in obese rats induced by a high-fat diet. EGCG also significantly decreased the levels of total free fatty acids (FFAs), SFAs and the n-6/n-3 ratio but significantly increased the n-3 FFAs related to longevity. The joint study of the transcriptome and proteome in liver found that EGCG exerted its effects mainly by regulating the suppression of hydrogen peroxide and oxygen species metabolism, suppression of oxidative stress, activation of fatty acid transport and oxidation and cholesterol metabolism. EGCG significantly increased the protein expression of FOXO1, Sirt1, CAT, FABP1, GSTA2, ACSL1 and CPT2 but significantly decreased NF-κB, ACC1 and FAS protein levels in the livers of rats. All the results indicate that EGCG extends lifespan by improving FFA metabolism and reducing the levels of inflammatory and oxidative stress in obese rats.
Collapse
Affiliation(s)
- Hang Yuan
- Department of Nutrition and Food Hygiene College of Public Health Harbin Medical University HarbinHeilongjiang China
- Heilongjiang Health Development Research Center Heilongjiang China
| | - Yuqiao Li
- Department of Nutrition and Food Hygiene College of Public Health Harbin Medical University HarbinHeilongjiang China
| | - Fan Ling
- Department of Nutrition and Food Hygiene College of Public Health Harbin Medical University HarbinHeilongjiang China
| | - Yue Guan
- Department of Nutrition and Food Hygiene College of Public Health Harbin Medical University HarbinHeilongjiang China
| | - Dandan Zhang
- Department of Nutrition and Food Hygiene College of Public Health Harbin Medical University HarbinHeilongjiang China
| | - Qiushuang Zhu
- Department of Nutrition and Food Hygiene College of Public Health Harbin Medical University HarbinHeilongjiang China
| | - Jinxiao Liu
- Department of Nutrition and Food Hygiene College of Public Health Harbin Medical University HarbinHeilongjiang China
| | - Yuqing Wu
- Department of Nutrition and Food Hygiene College of Public Health Harbin Medical University HarbinHeilongjiang China
| | - Yucun Niu
- Department of Nutrition and Food Hygiene College of Public Health Harbin Medical University HarbinHeilongjiang China
| |
Collapse
|