1
|
Sarvestani M, Rajabzadeh A, Salimian M, Mazoochi T, Ghavipanjeh G. Ameliorative Effect of Combined Placenta-Derived Mesenchymal Stem Cells plus Platelet-rich Plasma on Polycystic Ovarian Model in Rats: A Biochemical and Histological Study. Reprod Sci 2025; 32:907-918. [PMID: 39856459 DOI: 10.1007/s43032-025-01791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Polycystic ovary syndrome (PCOS) is a common cause of infertility in women, characterized by metabolic and hormonal irregularities. We investigated the effects of placenta-derived mesenchymal stem cells (PDMSCs) and platelet-rich plasma (PRP), as well as their combination on follicular development, hormonal profile, inflammatory parameters, and insulin resistance in a model of PCOS. In this study, 25 female Wistar rats were randomly allocated into five groups: Sham (given a dose of 1 mL of a 0.5% carboxymethylcellulose (CMC) solution), PCOS (administered 1 mg/kg of letrozole (LTZ) dissolved in CMC for 21 days), PDMSC (treated with a single intraovarian dose of PDMSCs), PRP (treated with a single intraovarian dose of PRP), and a combined PDMSC and PRP-treated group. After two weeks, serum and ovarian samples were collected for biochemical and histological analyses. Our results demonstrated that the simultaneous administration of PDMSCs and PRP had a synergistic effect compared to monotherapy, leading to an increase in estradiol (E2) and follicle-stimulating hormone (FSH) serum levels, a decrease in luteinizing hormone (LH) and testosterone levels, as well as inflammatory factors. Moreover, the combined therapy was associated with significantly lower levels of the homeostatic model of insulin resistance (HOMA-IR), fasting insulin (FINS), and blood glucose (FBG) compared to monotherapy. The combined treatment also caused a significant reduction in cystic follicles and an elevated number of corpus luteum, primordial, primary, secondary, and antral follicles. In conclusion, the combination of PRP and PDMSCs may have an ameliorative effect on modifying metabolic abnormalities and accelerating ovarian regeneration in PCOS.
Collapse
Affiliation(s)
- Mojtaba Sarvestani
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Rajabzadeh
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Morteza Salimian
- Department of medical laboratory, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Tahereh Mazoochi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Gholamreza Ghavipanjeh
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
- Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Nie Z, Fan Q, Jiang W, Wei S, Luo R, Hu H, Liu G, Lei Y, Xie S. Placental mesenchymal stem cells suppress inflammation and promote M2-like macrophage polarization through the IL-10/STAT3/NLRP3 axis in acute lung injury. Front Immunol 2024; 15:1422355. [PMID: 39620220 PMCID: PMC11604576 DOI: 10.3389/fimmu.2024.1422355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/29/2024] [Indexed: 12/23/2024] Open
Abstract
INTRODUCTION Acute lung injury (ALI) is a clinically severe respiratory disorder that currently lacks specific and effective pharmacotherapy. The imbalance of M1/M2 macrophage polarization is pivotal in the initiation and progression of ALI. Shifting macrophage polarization from the proinflammatory M1 phenotype to the anti-inflammatory M2 phenotype could be a potential therapeutic strategy. The intratracheal administration of placental mesenchymal stem cells (pMSCs) has emerged as a novel and effective treatment for ALI. This study aimed to investigate the role and downstream mechanisms of pMSCs in reprogramming macrophage polarization to exert anti-inflammatory effects in ALI. METHODS The study used lipopolysaccharide (LPS) to induce inflammation in both cell and rat models of ALI. Intratracheal administration of pMSCs was tested as a therapeutic intervention. An expression dataset for MSCs cultured with LPS-treated macrophages was collected from the Gene Expression Omnibus database to predict downstream regulatory mechanisms. Experimental validation was conducted through in vitro and in vivo assays to assess pMSCs effects on macrophage polarization and inflammation. RESULTS Both in vitro and in vivo experiments validated that pMSCs promoted M2 macrophage polarization and reduced the release of inflammatory factors. Further analyses revealed that pMSCs activated the signal transducer and activator of transcription (STAT)3 signaling pathway by secreting interleukin (IL)-10, leading to increased STAT3 phosphorylation and nuclear translocation. This activation inhibited NLRP3 inflammasome activation, promoting M2 macrophage polarization and suppressing the inflammatory response. CONCLUSION The study concluded that pMSCs alleviated lung injury in an LPS-induced ALI model by inhibiting M1 macrophage polarization and proinflammatory factor secretion, while promoting M2 macrophage polarization. This effect was mediated via the IL-10/STAT3/NLRP3 axis, presenting a novel therapeutic pathway for ALI treatment.
Collapse
Affiliation(s)
- Zhihao Nie
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qinglu Fan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wanli Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shujian Wei
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Renwei Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haifeng Hu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gaoli Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yufei Lei
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Songping Xie
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Zhang W, Guo H, Li L, Zhang M, Xu E, Dai L. Network Pharmacology-Based Strategy Integrated with Molecular Docking and In Vitro Experimental Validation to Explore the Underlying Mechanism of Fangji Huangqi Decoction in Treating Rheumatoid Arthritis. ACS OMEGA 2024; 9:31878-31889. [PMID: 39072058 PMCID: PMC11270556 DOI: 10.1021/acsomega.4c03495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Fangji Huangqi decoction (FHD), as a classic traditional Chinese medicine formula, has been clinically proven effective against rheumatoid arthritis (RA), yet its therapeutic mechanism remains unclear. This study employed network pharmacology and molecular docking methods to explore the major active components, biological targets, and signaling pathways of FHD. Subsequently, lipopolysaccharide (LPS)-stimulated RAW264.7 cells were used as the in vitro model to validate the modulating effects of FHD on molecules/inflammatory mediators using various biomedical techniques/kits such as MTT assay, Griess reagents, flow cytometry, RT-qPCR, and immunoblotting. Network pharmacology analyses indicated a total of 20 major active components and 30 core biological targets of FHD against RA. Pathway enrichment analyses demonstrated the involvement of mitogen-activated protein kinase (MAPK) signaling pathways in the efficacy of the formula. Furthermore, experimental evidence demonstrated that FHD dose-dependently and significantly inhibited the productions of nitric oxide (NO) and reactive oxygen species; lowered the mRNA expression levels of proinflammatory mediators including iNOS, COX-2, TNF-α, ΙL-1β, and IL-6; decreased protein levels of the phosphorylated forms of p38, ERK, JNK, and NF-κB p65. Additionally, the results of molecular docking showed that tetrandrine, licochalcone A, oxonantenine, isorhamnetin, and kaempferol in FHD exerted the potent capability of binding to target molecules in the focused signaling pathway, probably being the potential effective substances for FHD. Our network pharmacology study integrated with cellular validation has elucidated that FHD exerts downregulating effects of the MAPK and NF-κB signaling pathway, ultimately leading to inhibitory effects on the productions of proinflammatory mediators in LPS-stimulated RAW264.7 cells. This work comprehensively demonstrated the effective substances, key targets, and signaling pathways involved in the anti-RA effects of the formula, and these findings provide a further understanding of the underlying mechanism of FHD in managing RA.
Collapse
Affiliation(s)
- Weijin Zhang
- Collaborative
Innovation Center of Research and Development on the Whole Industry
Chain of Yu-Yao, Henan University of Chinese
Medicine (HUCM), Zhengzhou, Henan 450000, China
- School
of Pharmacy, HUCM, Zhengzhou, Henan 450000, China
| | - Hui Guo
- Collaborative
Innovation Center of Research and Development on the Whole Industry
Chain of Yu-Yao, Henan University of Chinese
Medicine (HUCM), Zhengzhou, Henan 450000, China
- School
of Pharmacy, HUCM, Zhengzhou, Henan 450000, China
| | - Leyuan Li
- Collaborative
Innovation Center of Research and Development on the Whole Industry
Chain of Yu-Yao, Henan University of Chinese
Medicine (HUCM), Zhengzhou, Henan 450000, China
- School
of Pharmacy, HUCM, Zhengzhou, Henan 450000, China
| | - Mengmeng Zhang
- Collaborative
Innovation Center of Research and Development on the Whole Industry
Chain of Yu-Yao, Henan University of Chinese
Medicine (HUCM), Zhengzhou, Henan 450000, China
- School
of Pharmacy, HUCM, Zhengzhou, Henan 450000, China
| | - Erping Xu
- Collaborative
Innovation Center of Research and Development on the Whole Industry
Chain of Yu-Yao, Henan University of Chinese
Medicine (HUCM), Zhengzhou, Henan 450000, China
| | - Liping Dai
- Collaborative
Innovation Center of Research and Development on the Whole Industry
Chain of Yu-Yao, Henan University of Chinese
Medicine (HUCM), Zhengzhou, Henan 450000, China
- School
of Pharmacy, HUCM, Zhengzhou, Henan 450000, China
| |
Collapse
|
4
|
Gong H, Zhong H, Cheng L, Li LP, Zhang DK. Post-translational protein lactylation modification in health and diseases: a double-edged sword. J Transl Med 2024; 22:41. [PMID: 38200523 PMCID: PMC10777551 DOI: 10.1186/s12967-023-04842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
As more is learned about lactate, it acts as both a product and a substrate and functions as a shuttle system between different cell populations to provide the energy for sustaining tumor growth and proliferation. Recent discoveries of protein lactylation modification mediated by lactate play an increasingly significant role in human health (e.g., neural and osteogenic differentiation and maturation) and diseases (e.g., tumors, fibrosis and inflammation, etc.). These views are critically significant and first described in detail in this review. Hence, here, we focused on a new target, protein lactylation, which may be a "double-edged sword" of human health and diseases. The main purpose of this review was to describe how protein lactylation acts in multiple physiological and pathological processes and their potential mechanisms through an in-depth summary of preclinical in vitro and in vivo studies. Our work aims to provide new ideas for treating different diseases and accelerate translation from bench to bedside.
Collapse
Affiliation(s)
- Hang Gong
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Huang Zhong
- Department of Gastroenterology, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Long Cheng
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Liang-Ping Li
- Department of Gastroenterology, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan, China.
| | - De-Kui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
5
|
Abdolmohammadi K, Mahmoudi T, Alimohammadi M, Tahmasebi S, Zavvar M, Hashemi SM. Mesenchymal stem cell-based therapy as a new therapeutic approach for acute inflammation. Life Sci 2023; 312:121206. [PMID: 36403645 DOI: 10.1016/j.lfs.2022.121206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Acute inflammatory diseases such as acute colitis, kidney injury, liver failure, lung injury, myocardial infarction, pancreatitis, septic shock, and spinal cord injury are significant causes of death worldwide. Despite advances in the understanding of its pathophysiology, there are many restrictions in the treatment of these diseases, and new therapeutic approaches are required. Mesenchymal stem cell-based therapy due to immunomodulatory and regenerative properties is a promising candidate for acute inflammatory disease management. Based on preclinical results, mesenchymal stem cells and their-derived secretome improved immunological and clinical parameters. Furthermore, many clinical trials of acute kidney, liver, lung, myocardial, and spinal cord injury have yielded promising results. In this review, we try to provide a comprehensive view of mesenchymal stem cell-based therapy in acute inflammatory diseases as a new treatment approach.
Collapse
Affiliation(s)
- Kamal Abdolmohammadi
- Department of Immunology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Tayebeh Mahmoudi
- 17 Shahrivar Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Zavvar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanothechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Park JM, Han YM, Hahm KB. Rejuvenation of Helicobacter pylori-Associated Atrophic Gastritis Through Concerted Actions of Placenta-Derived Mesenchymal Stem Cells Prevented Gastric Cancer. Front Pharmacol 2021; 12:675443. [PMID: 34483897 PMCID: PMC8416416 DOI: 10.3389/fphar.2021.675443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/22/2021] [Indexed: 01/06/2023] Open
Abstract
Chronic Helicobacter pylori infection causes gastric cancer via the progression of precancerous chronic atrophic gastritis (CAG). Therefore, repairing gastric atrophy could be a useful strategy in preventing H. pylori-associated gastric carcinogenesis. Although eradication of the bacterial pathogen offers one solution to this association, this study was designed to evaluate an alternative approach using mesenchymal stem cells to treat CAG and prevent carcinogenesis. Here, we used human placenta-derived mesenchymal stem cells (PD-MSCs) and their conditioned medium (CM) to treat H. pylori-associated CAG in a mice/cell model to explore their therapeutic effects and elucidate their molecular mechanisms. We compared the changes in the fecal microbiomes in response to PD-MSC treatments, and chronic H. pylori-infected mice were given ten treatments with PD-MSCs before being sacrificed for end point assays at around 36 weeks of age. These animals presented with significant reductions in the mean body weights of the control group, which were eradicated following PD-MSC treatment (p < 0.01). Significant changes in various pathological parameters including inflammation, gastric atrophy, erosions/ulcers, and dysplastic changes were noted in the control group (p < 0.01), but these were all significantly reduced in the PD-MSC/CM-treated groups. Lgr5+, Ki-67, H+/K+-ATPase, and Musashi-1 expressions were all significantly increased in the treated animals, while inflammatory mediators, MMP, and apoptotic executors were significantly decreased in the PD-MSC group compared to the control group (p < 0.001). Our model showed that H. pylori-initiated, high-salt diet-promoted gastric atrophic gastritis resulted in significant changes in the fecal microbiome at the phylum/genus level and that PD-MSC/CM interventions facilitated a return to more normal microbial communities. In conclusion, administration of PD-MSCs or their conditioned medium may present a novel rejuvenating agent in preventing the progression of H. pylori-associated premalignant lesions.
Collapse
Affiliation(s)
- Jong Min Park
- College of Oriental Medicine, Daejeon University, Daejeon, Korea
| | - Young Min Han
- Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Ki Baik Hahm
- Medpacto Research Institute, Medpacto, Seoul, Korea.,CHA Cancer Preventive Research Center, CHA Bio Complex, Seongnam, Korea
| |
Collapse
|
7
|
Han J, Li G, Hou M, Ng J, Kwon MY, Xiong K, Liang X, Taglauer E, Shi Y, Mitsialis SA, Kourembanas S, El-Chemaly S, Lederer JA, Rosas IO, Perrella MA, Liu X. Intratracheal transplantation of trophoblast stem cells attenuates acute lung injury in mice. Stem Cell Res Ther 2021; 12:487. [PMID: 34461993 PMCID: PMC8404310 DOI: 10.1186/s13287-021-02550-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/08/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a common lung disorder that affects millions of people every year. The infiltration of inflammatory cells into the lungs and death of the alveolar epithelial cells are key factors to trigger a pathological cascade. Trophoblast stem cells (TSCs) are immune privileged, and demonstrate the capability of self-renewal and multipotency with differentiation into three germ layers. We hypothesized that intratracheal transplantation of TSCs may alleviate ALI. METHODS ALI was induced by intratracheal delivery of bleomycin (BLM) in mice. After exposure to BLM, pre-labeled TSCs or fibroblasts (FBs) were intratracheally administered into the lungs. Analyses of the lungs were performed for inflammatory infiltrates, cell apoptosis, and engraftment of TSCs. Pro-inflammatory cytokines/chemokines of lung tissue and in bronchoalveolar lavage fluid (BALF) were also assessed. RESULTS The lungs displayed a reduction in cellularity, with decreased CD45+ cells, and less thickening of the alveolar walls in ALI mice that received TSCs compared with ALI mice receiving PBS or FBs. TSCs decreased infiltration of neutrophils and macrophages, and the expression of interleukin (IL) 6, monocyte chemoattractant protein-1 (MCP-1) and keratinocyte-derived chemokine (KC) in the injured lungs. The levels of inflammatory cytokines in BALF, particularly IL-6, were decreased in ALI mice receiving TSCs, compared to ALI mice that received PBS or FBs. TSCs also significantly reduced BLM-induced apoptosis of alveolar epithelial cells in vitro and in vivo. Transplanted TSCs integrated into the alveolar walls and expressed aquaporin 5 and prosurfactant protein C, markers for alveolar epithelial type I and II cells, respectively. CONCLUSION Intratracheal transplantation of TSCs into the lungs of mice after acute exposure to BLM reduced pulmonary inflammation and cell death. Furthermore, TSCs engrafted into the alveolar walls to form alveolar epithelial type I and II cells. These data support the use of TSCs for the treatment of ALI.
Collapse
Affiliation(s)
- Junwen Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Gu Li
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Minmin Hou
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Julie Ng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Min-Young Kwon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Kevin Xiong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Xiaoliang Liang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, 77024, USA
| | - Elizabeth Taglauer
- Department of Pediatrics, Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - S Alex Mitsialis
- Department of Pediatrics, Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Stella Kourembanas
- Department of Pediatrics, Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - James A Lederer
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Ivan O Rosas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, 77024, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|