1
|
Zhang L, Guo M. Correlation of TGF-β1 and Smad2 expression with clinicopathological characteristics and prognosis in hepatitis B virus associated hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2023; 31:1014-1021. [DOI: 10.11569/wcjd.v31.i24.1014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/18/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND The occurrence and development of liver cancer are affected by many classical signaling pathways, and as a result, the growth of cancer cells is either inhibited or promoted. The transforming growth factor-β1 (TGF-β1)/Smad2 signaling pathway is often involved in the development of cancer.
AIM To investigate the expression of TGF-β1 and Smad2 in hepatocellular carcinoma tissues and its correlation with hepatitis B virus (HBV) infection.
METHODS Sixty-five patients with hepatocellular carcinoma diagnosed by pathology after surgical resection at our hospital from February 2016 to March 2019 were selected for the study, and they were divided into 37 HBV-infected cases and 28 non-infected cases based on whether HBV infection occurred. Eight cases were lost after 3 years of follow-up, and the remaining patients with hepatocellular carcinoma were divided into two subgroups based on their survival status: 36 cases in survival group and 21 cases in death group. The expression of TGF-β1 and Smad2 in liver cancer tissues and paraneoplastic tissues was detected by protein immunoblotting (Western blot). The correlation of TGF-β1 and Smad2 protein expression with clinicopathological characteristics and survival rate was analyzed. Cox regression analysis of prognostic factors was performed.
RESULTS The expression of TGF-β1 and Smad2 in hepatocellular carcinoma tissues of both HBV-infected and non-infected patients was higher than that in paracancerous tissues, and their expression in HBV-infected patients was higher than that of non-infected patients (P < 0.05). The expression of TGF-β1 and Smad2 was associated with the degree of differentiation, satellite lesions, cirrhosis, TNM stage, and lymph node metastasis (P < 0.05). TGF-β1 and Smad2 expression was higher in dead patients than in survivors (P < 0.05). The survival rate within 3 years was lower in patients with high TGF-β1 expression (48.28%) than in those with low expression (78.57%; P = 0.003). The survival rate within 3 years was also lower inpatients with high Smad2 expression (50.00%) than in those with low expression (77.78%; P = 0.012). TNM stage, lymph node metastasis, TGF-β1 expression, and Smad2 expression were identified to be independent risk factors for poor prognosis within 3 years (P < 0.05).
CONCLUSION The expression levels of TGF-β1 and Smad2 in HBV-infected hepatocellular carcinoma tissues are elevated, and are associated with clinical pathological characteristics and poor prognosis.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gastroenterology, Ji'an People's Hospital, Huzhou 313300, Zhejiang Province, China
| | - Ming Guo
- Department of Gastroenterology, Ji'an People's Hospital, Huzhou 313300, Zhejiang Province, China
| |
Collapse
|
2
|
Zhang Y, Yang X, Zhou H, Yao G, Zhou L, Qian C. BIBR1532 inhibits proliferation and enhances apoptosis in multiple myeloma cells by reducing telomerase activity. PeerJ 2023; 11:e16404. [PMID: 37953768 PMCID: PMC10638922 DOI: 10.7717/peerj.16404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
Background Multiple myeloma (MM) is a rare haematological disorder with few therapeutic options. BIBR1532, a telomerase inhibitor, is widely used in cancer treatment and has promising outcomes. In this study, we investigated the efficacy and mechanism of action of BIBR1532 in MM. Methods K562 and MEG-01 cells were cultured with BIBR1532 at different concentrations. After 24 and 48 h, cell survival was analyzed. Next, these cells were cultured with 25 and 50 µM BIBR1532 for 48 h, then, cell proliferation, apoptosis, and the expression of the telomerase activity related markers were tested by 5-Ethynyl-2'-deoxyuridine (EdU) staining, flow cytometric analysis, western blot and quantitative real-time PCR (qRT-PCR), respectively. Expression of Bcl-xL, Bad, Survivin, phosphorylation of PI3K, AKT, mTOR, ERK1/2, and MAPK were tested via western blotting. Further experiments were conducted to evaluate the synergistic effects of BIBR1532 and doxorubicin (Dox) or bortezomib (Bor). Results BIBR1532 inhibited K562 and MEG-01 cell survival in a dose- and time-dependent manner. In addition, BIBR1532 hindered cell proliferation while promoting apoptosis, and this effect was enhanced by increasing the BIBR1532 concentration. Moreover, BIBR1532 inhibited TERT and c-MYC expression, PI3K, AKT, mTOR phosphorylation, and facilitated ERK1/2 and MAPK phosphorylation. Additionally, BIBR1532 combined with Dox or Bor showed synergistic effects in MM treatment. Conclusion BIBR1532 inhibits proliferation and promotes apoptosis in MM cells by inhibiting telomerase activity. Additionally, BIBR1532 combined with Dox or Bor exhibited synergistic effects, indicating that BIBR1532 may be a novel medicine for the treatment of MM.
Collapse
Affiliation(s)
- Yuefeng Zhang
- Department of Hematology, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Xinxin Yang
- Department of Hematology, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Hangqun Zhou
- Medical School, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Guoli Yao
- Department of Hematology, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Li Zhou
- Department of Oncology, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Chunyan Qian
- Clinical Laboratory, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Amiri MA, Amiri D, Mokhtari MJ, Lavaee F, Fattahi MJ, Ghaderi A, Khademi B. Allelic and Genotypic Analysis of LncRNA ANRIL rs4977574 A/G Mutations in Oral Squamous Cell Carcinoma Patients: Insights into Tumor Characteristics and Genotypic Correlations. Int J Dent 2023; 2023:7738719. [PMID: 37829275 PMCID: PMC10567505 DOI: 10.1155/2023/7738719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/07/2023] [Accepted: 09/10/2023] [Indexed: 10/14/2023] Open
Abstract
Aim Long noncoding RNAs (lncRNA) ANRIL and its genetic polymorphisms are shown to be associated with the risk of several cancers. However, the single nucleotide polymorphisms (SNPs) of lncRNA ANRIL are not thoroughly assessed in oral squamous cell carcinoma (OSCC) which is the most prevalent cancer in the head and neck area. Thus, this study aimed to assess the association of SNP of lncRNA ANRIL rs4977574 in patients with OSCC. Methods and Materials 106 blood samples from the patients with OSCC were obtained with a gender- and age-matched control group to evaluate the SNP of rs4977574 of lncRNA ANRIL. The DNA was extracted using the salt-out technique and DNA genotyping was undertaken using specific primer pairs in the tetra-primer ARMS-PCR technique. Eventually, the frequency of wild-type (A) and the mutated allele (G), as well as the genotypes were estimated between the groups of patients with OSCC and healthy individuals. Results The results of our study indicated no statistically significant difference in the frequency of rs4977574 A/G of lncRNA ANRIL among the patients with OSCC and healthy individuals (p > 0.05). Likewise, no significant difference was found in the genotypes' frequencies (p > 0.05). Nevertheless, the marked association of GG with smaller tumor size and the high level of differentiation of OSCC cells in the presence of AA or AG genotypes were interesting outcomes of this study (p < 0.05). Similarly, all the genotypes AA, AG, and GG were correlated with the site of the occurrence of OSCC. Furthermore, the association of the genotypes with the lymph node metastasis and the tumors stage was not found to be significant (p > 0.05). Conclusions The results of our study indicate that rs4977574 A/G and its genotypes do not have any direct correlation with the presence of OSCC; however, its association with the smaller tumor size and the level of the cancer cells differentiation could imply its possible indirect role.
Collapse
Affiliation(s)
- Mohammad Amin Amiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Delara Amiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Fatemeh Lavaee
- Oral and Dental Disease Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Fattahi
- Shiraz Institute of Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute of Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bijan Khademi
- Department of Otorhinolaryngology, Khalili Hospital, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Hu Z, Liu Y, Liu M, Zhang Y, Wang C. Roles of TGF‑β signalling pathway‑related lncRNAs in cancer (Review). Oncol Lett 2023; 25:107. [PMID: 36817052 PMCID: PMC9932718 DOI: 10.3892/ol.2023.13693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNAs that are >200 nucleotides in length that do not have the ability to be translated into protein but are associated with numerous diseases, including cancer. The involvement of lncRNAs in the signalling of certain signalling pathways can promote tumour progression; these pathways include the transforming growth factor (TGF)-β signalling pathway, which is related to tumour development. The expression of lncRNAs in various tumour tissues is specific, and their interaction with the TGF-β signalling pathway indicates that they may serve as new tumour markers and therapeutic targets. The present review summarized the role of TGF-β pathway-associated lncRNAs in regulating tumorigenesis in different types of cancer and their effects on the TGF-β signalling pathway.
Collapse
Affiliation(s)
- Zhizhong Hu
- Cancer Research Institute, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yitong Liu
- Cancer Research Institute, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Meiqi Liu
- Cancer Research Institute, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yang Zhang
- Cancer Research Institute, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China,Correspondence to: Dr Yang Zhang or Dr Chengkun Wang, Cancer Research Institute, Medical School, University of South China, 28 Chang Sheng Xi Avenue, Hengyang, Hunan 421001, P.R. China, E-mail:
| | - Chengkun Wang
- Cancer Research Institute, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China,Correspondence to: Dr Yang Zhang or Dr Chengkun Wang, Cancer Research Institute, Medical School, University of South China, 28 Chang Sheng Xi Avenue, Hengyang, Hunan 421001, P.R. China, E-mail:
| |
Collapse
|
5
|
Xu D, Gao C, Cao Y, Xiao B. HOXC8 alleviates high glucose-triggered damage of trophoblast cells during gestational diabetes mellitus via activating TGFβ1-mediated Notch1 pathway. Hum Cell 2023; 36:195-208. [PMID: 36308681 DOI: 10.1007/s13577-022-00816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/18/2022] [Indexed: 01/07/2023]
Abstract
Gestational diabetes mellitus (GDM) is an increasingly frequent disease occurred during pregnancy. HOXC8 has been disclosed to take part in the regulation of cancers. Additionally, the HOXC8 expression was dramatically decreased in the placenta of pre-eclampsia patients, but its expression and function have not been investigated in GDM. In this work, it was demonstrated that the mRNA and protein expression of HOXC8 was lower in GDM placenta tissues and GDM cell model. In addition, HOXC8 facilitated trophoblast cell proliferation and weakened trophoblast cell mitochondrial apoptosis. HOXC8 enhanced trophoblast cell migration and angiogenesis. Moreover, HOXC8 activated the TGFβ1-mediated Notch1 signaling pathway. Results showed that the mRNA and protein expressions of TGFβ1 and Notch1 were both lower in the GDM group than that in the NP group. Besides, there were positive correlations among HOXC8, TGFβ1 and Notch1. Inhibition of TGFβ1 (SB202190 treatment) reversed the effects of HOXC8 on trophoblast cells through modulating cell proliferation, mitochondrial apoptosis, migration and angiogenesis. At last, through in vivo experiments, it was identified that HOXC8 relieved GDM symptoms in vivo. In conclusion, HOXC8 alleviated HG-stimulated damage of trophoblast cells during GDM through activating TGFβ1-mediated Notch1 pathway. This discovery may provide a novel and useful bio-target for GDM treatment.
Collapse
Affiliation(s)
- Dan Xu
- Department of Obstetrics, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng, 224001, Jiangsu, PR China
| | - Chengzhen Gao
- Department of Obstetrics, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng, 224001, Jiangsu, PR China
| | - Yuanyuan Cao
- Department of Obstetrics, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng, 224001, Jiangsu, PR China
| | - Biru Xiao
- Department of Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, 325000, Zhejiang, PR China.
| |
Collapse
|
6
|
Yang Y, Chen S, Li P, Jing Y, Cheng B, Hu Y, Zheng Q, Wang C. PFOI stimulates the motility of T24 bladder cancer cells: Possible involvement and activation of lncRNA malat1. CHEMOSPHERE 2022; 287:131967. [PMID: 34438215 DOI: 10.1016/j.chemosphere.2021.131967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Perfluorinated iodine alkanes (PFIs) can serve as an important raw materials for the synthesis of various perfluorinated chemical products through telomerization reaction. The estrogenic effects of PFIs have been reported previously by some in vitro and in vivo screening assays. To explore the potential epigenetic toxicity of PFIs, activation of lncRNAs was screened, and the cell motility changes induced by perfluorooctyl iodide (PFOI) were analyzed in this study. High metastatic bladder cell line (T24) was used to investigate the cellular migration function affected by PFOI. PFOI exposure significantly induced the upregulation of lncRNA anril, thorlnc, hotairm1, meg3, and malat1. The migration and invasion of T24 cells were also enhanced upon PFOI exposure. The transcription level of matrix metalloenzyme genes, epidermal growth factors, cytoskeleton genes, and the upstream factors involved in cell motility pathways were examined to illustrate possible mechanisms. Additionally, the basic role of malat1 in cellular motility was investigated by lncRNA knockdown and migration assays. The knockdown of malat1 inhibited the cellular motility induced by PFOI. The levels of MMP-2/-9 genes were also down-regulated by the treatment of si-malat1. Overall, the perturbation of cytoskeleton genes (E-cadherin/N-cadherin) may account for the impact on the motility of T24 cells. Our studies indicate that perfluorinated chemicals might regulate the lncRNAs, thus promoting the metastasis of the tumor cells.
Collapse
Affiliation(s)
- Yuying Yang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China; School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430025, China
| | - Siyi Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Pingdeng Li
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China; School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430025, China
| | - Yingwei Jing
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China; School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430025, China
| | - Bo Cheng
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430025, China
| | - Yeli Hu
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430025, China
| | - Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Jianghan University, Wuhan, 430056, China
| | - Chang Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
7
|
MicroRNA and Other Non-Coding RNAs in Epstein-Barr Virus-Associated Cancers. Cancers (Basel) 2021; 13:cancers13153909. [PMID: 34359809 PMCID: PMC8345394 DOI: 10.3390/cancers13153909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/27/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022] Open
Abstract
EBV is a direct causative agent in around 1.5% of all cancers. The oncogenic properties of EBV are related to its ability to activate processes needed for cellular proliferation, survival, migration, and immune evasion. The EBV latency program is required for the immortalization of infected B cells and involves the expression of non-coding RNAs (ncRNAs), including viral microRNAs. These ncRNAs have different functions that contribute to virus persistence in the asymptomatic host and to the development of EBV-associated cancers. In this review, we discuss the function and potential clinical utility of EBV microRNAs and other ncRNAs in EBV-associated malignancies. This review is not intended to be comprehensive, but rather to provide examples of the importance of ncRNAs.
Collapse
|
8
|
Adylova A, Mukhanbetzhanovna AA, Attar R, Yulaevna IM, Farooqi AA. Regulation of TGFβ/SMAD signaling by long non-coding RNAs in different cancers: Dark Knight in the Castle of molecular oncology. Noncoding RNA Res 2021; 6:23-28. [PMID: 33511320 PMCID: PMC7814108 DOI: 10.1016/j.ncrna.2020.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 11/15/2022] Open
Abstract
One of the complex themes in recent years has been the multi-layered regulation of TGFβ signaling in cancer cells. TGFβ/SMAD signaling pathway is a highly complicated web of proteins which work spatio-temporally to regulate multiple steps of carcinogenesis. TGFβ/SMAD has been shown to dualistically regulate cancer progression. Therefore, TGFβ/SMAD signaling behaves as a “double-edged sword” in molecular oncology. Accordingly, regulation of TGFβ/SMAD is multi-layered because of oncogenic and tumor suppressor long non-coding RNAs (LncRNAs). In this review, we have summarized most recent breakthroughs in our understanding related to regulation of TGFβ/SMAD signaling by lncRNAs. We have comprehensively analyzed how different lncRNAs positively and negatively regulate TGFβ/SMAD signaling in different cancers. We have gathered missing pieces of an incomplete jig-saw puzzle of lncRNA-interactome ranging from “sponge effects” of lncRNAs to mechanistic modulation of TGFβ/SMAD signaling by lncRNAs.
Collapse
Affiliation(s)
- Aima Adylova
- Biomedical Engineering & Molecular Medicine PhD candidate, Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | | | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University, Turkey
| | | | | |
Collapse
|