1
|
Ma Y, Wang J, Fan J, Jia H, Li J. Interrelation of Natural Polyphenol and Fibrosis in Diabetic Nephropathy. Molecules 2024; 30:20. [PMID: 39795078 PMCID: PMC11722366 DOI: 10.3390/molecules30010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Diabetic nephropathy (DN) is a common and serious complication of diabetes mellitus and a major cause of end-stage renal disease (ESRD). Renal fibrosis, which corresponds to excessive deposition of extracellular matrix and leads to scarring, is a characteristic feature of the various progressive stages of DN. It can trigger various pathological processes leading to the activation of autophagy, inflammatory responses and a vicious circle of oxidative stress and inflammation. Although it is known that DN can be alleviated by mechanisms linked to antioxidants, reducing inflammation and improving autophagy, how to improve DN by reducing fibrosis using natural polyphenols needs to be studied further. Nowadays, natural polyphenolic compounds with excellent safety and efficacy are playing an increasingly important role in drug discovery. Therefore, this review reveals the multiple mechanisms associated with fibrosis in DN, as well as the different signaling pathways (including TGF-β/SMAD, mTORC1/p70S6K, JAK/STAT/SOCS and Wnt/β-catenin) and the potential role in the fibrotic niche. In parallel, we summarize the types of polyphenolic compounds and their pharmacodynamic effects, and finally evaluate the use of polyphenols to modulate relevant targets and pathways, providing potential research directions for polyphenols to improve DN. In summary, the problem of long-term monotherapy resistance can be reduced with natural polyphenols, while reducing the incidence of toxic side effects. In addition, potential targets and their inhibitors can be identified through these pathways, offering potential avenues of research for natural polyphenols in the pharmacological treatment of multisite fibrosis.
Collapse
Affiliation(s)
- Ye Ma
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (Y.M.); (J.W.); (J.F.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Jiakun Wang
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (Y.M.); (J.W.); (J.F.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Juyue Fan
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (Y.M.); (J.W.); (J.F.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Huiyang Jia
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (Y.M.); (J.W.); (J.F.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
2
|
Yang Y, Huang L, Gao J, Qian B. Salvianolic acid B inhibits the growth and metastasis of A549 lung cancer cells through the NDRG2/PTEN pathway by inducing oxidative stress. Med Oncol 2024; 41:170. [PMID: 38847902 DOI: 10.1007/s12032-024-02413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/23/2024] [Indexed: 07/03/2024]
Abstract
Salvianolic acid B (Sal B) has demonstrated anticancer activity against various types of cancer. However, the underlying mechanism of Sal B-mediated anticancer effects remains incompletely understood. This study aims to investigate the impact of Sal B on the growth and metastasis of human A549 lung cells, as well as elucidate its potential mechanisms. In this study, different concentrations of Sal B were administered to A549 cells. The effects on migration and invasion abilities were assessed using MTT, wound healing, and transwell assays. Flow cytometry analysis was employed to evaluate Sal B-induced apoptosis in A549 cells. Western blotting and immunohistochemistry were conducted to measure the expression levels of cleaved caspase-3, cleaved PARP, and E-cadherin. Commercial kits were utilized for detecting intracellular reactive oxygen species (ROS) and NAD+. Additionally, a xenograft model with transplanted A549 tumors was employed to assess the anti-tumor effect of Sal B in vivo. The expression levels of NDRG2, p-PTEN, and p-AKT were determined through western blotting. Our findings demonstrate that Sal B effectively inhibits proliferation, migration, and invasion in A549 cells while inducing dose-dependent apoptosis. These apoptotic responses and inhibition of tumor cell metastasis are accompanied by alterations in intracellular ROS levels and NAD+/NADH ratio. Furthermore, our in vivo experiment reveals that Sal B significantly suppresses A549 tumor growth compared to an untreated control group while promoting increased cleavage of caspase-3 and PARP. Importantly, we observe that Sal B upregulates NDRG2 expression while downregulating p-PTEN and p-AKT expressions. Collectively, our results provide compelling evidence supporting the ability of Sal B to inhibit both growth and metastasis in A549 lung cancer cells through oxidative stress modulation as well as involvement of the NDRG2/PTEN/AKT pathway.
Collapse
Affiliation(s)
- Ye Yang
- Department of Pharmacology and Medicinal Chemistry, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, People's Republic of China
| | - Lei Huang
- Department of Pharmacology and Medicinal Chemistry, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, People's Republic of China
| | - Jie Gao
- Clinical Pharmacology Laboratory, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, 210004, Jiangsu, People's Republic of China
| | - Bingjun Qian
- Department of Pharmacology and Medicinal Chemistry, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Fakhri S, Moradi SZ, Abbaszadeh F, Faraji F, Amirian R, Sinha D, McMahon EG, Bishayee A. Targeting the key players of phenotypic plasticity in cancer cells by phytochemicals. Cancer Metastasis Rev 2024; 43:261-292. [PMID: 38169011 DOI: 10.1007/s10555-023-10161-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Plasticity of phenotypic traits refers to an organism's ability to change in response to environmental stimuli. As a result, the response may alter an organism's physiological state, morphology, behavior, and phenotype. Phenotypic plasticity in cancer cells describes the considerable ability of cancer cells to transform phenotypes through non-genetic molecular signaling activities that promote therapy evasion and tumor metastasis via amplifying cancer heterogeneity. As a result of metastable phenotypic state transitions, cancer cells can tolerate chemotherapy or develop transient adaptive resistance. Therefore, new findings have paved the road in identifying factors and agents that inhibit or suppress phenotypic plasticity. It has also investigated novel multitargeted agents that may promise new effective strategies in cancer treatment. Despite the efficiency of conventional chemotherapeutic agents, drug toxicity, development of resistance, and high-cost limit their use in cancer therapy. Recent research has shown that small molecules derived from natural sources are capable of suppressing cancer by focusing on the plasticity of phenotypic responses. This systematic, comprehensive, and critical review analyzes the current state of knowledge regarding the ability of phytocompounds to target phenotypic plasticity at both preclinical and clinical levels. Current challenges/pitfalls, limitations, and future perspectives are also discussed.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran
| | - Roshanak Amirian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700 026, West Bengal, India
| | - Emily G McMahon
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
4
|
Zhang Y, Zhai W, Fan M, Wu J, Wang C. Salvianolic Acid B Significantly Suppresses the Migration of Melanoma Cells via Direct Interaction with β-Actin. Molecules 2024; 29:906. [PMID: 38398656 PMCID: PMC10892080 DOI: 10.3390/molecules29040906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Melanoma is the most aggressive and difficult to treat of all skin cancers. Despite advances in the treatment of melanoma, the prognosis for melanoma patients remains poor, and the recurrence rate remains high. There is substantial evidence that Chinese herbals effectively prevent and treat melanoma. The bioactive ingredient Salvianolic acid B (SAB) found in Salvia miltiorrhiza, a well-known Chinese herbal with various biological functions, exhibits inhibitory activity against various cancers. A375 and mouse B16 cell lines were used to evaluate the main targets and mechanisms of SAB in inhibiting melanoma migration. Online bioinformatics analysis, Western blotting, immunofluorescence, molecular fishing, dot blot, and molecular docking assays were carried out to clarify the potential molecular mechanism. We found that SAB prevents the migration and invasion of melanoma cells by inhibiting the epithelial-mesenchymal transition (EMT) process of melanoma cells. As well as interacting directly with the N-terminal domain of β-actin, SAB enhanced its compactness and stability, thereby inhibiting the migration of cells. Taken together, SAB could significantly suppress the migration of melanoma cells via direct binding with β-actin, suggesting that SAB could be a helpful supplement that may enhance chemotherapeutic outcomes and benefit melanoma patients.
Collapse
Affiliation(s)
| | | | | | - Jinjun Wu
- Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines of the Ministry of Education of the People’s Republic of China, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (Y.Z.); (W.Z.); (M.F.)
| | - Caiyan Wang
- Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines of the Ministry of Education of the People’s Republic of China, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (Y.Z.); (W.Z.); (M.F.)
| |
Collapse
|
5
|
He G, Chen G, Liu W, Ye D, Liu X, Liang X, Song J. Salvianolic Acid B: A Review of Pharmacological Effects, Safety, Combination Therapy, New Dosage Forms, and Novel Drug Delivery Routes. Pharmaceutics 2023; 15:2235. [PMID: 37765204 PMCID: PMC10538146 DOI: 10.3390/pharmaceutics15092235] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Salvianolic acid B is extracted from the roots and rhizomes of Danshen (Salvia miltiorrhiza Bge., family Labiatae). It is a water-soluble, weakly acidic drug that has demonstrated antitumor and anti-inflammatory effects on various organs and tissues such as the lung, heart, kidney, intestine, bone, liver, and skin and protective effects in diseases such as depression and spinal cord injury. The mechanisms underlying the protective effects of salvianolic acid B are mainly related to its anti-inflammatory, antioxidant, anti- or pro-apoptotic, anti- or pro-autophagy, anti-fibrotic, and metabolism-regulating functions. Salvianolic acid B can regulate various signaling pathways, cells, and molecules to achieve maximum therapeutic effects. This review summarizes the safety profile, combination therapy potential, and new dosage forms and delivery routes of salvianolic acid B. Although significant research progress has been made, more in-depth pharmacological studies are warranted to identify the mechanism of action, related signaling pathways, more suitable combination drugs, more effective dosage forms, and novel routes of administration of salvianolic acid B.
Collapse
Affiliation(s)
- Guannan He
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (G.H.); (W.L.); (D.Y.)
| | - Guangfeng Chen
- Department of Geriatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Weidong Liu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (G.H.); (W.L.); (D.Y.)
| | - Dongxue Ye
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (G.H.); (W.L.); (D.Y.)
| | - Xuehuan Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Xiaodong Liang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (G.H.); (W.L.); (D.Y.)
| | - Jing Song
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (G.H.); (W.L.); (D.Y.)
- Shandong Yuze Pharmaceutical Industry Technology Research Institute Co., Ltd., Dezhou 251200, China
| |
Collapse
|
6
|
Wu S, Sun Z, Guo Z, Li P, Mao Q, Tang Y, Chen H, Peng H, Wang S, Cao Y. The effectiveness of blood-activating and stasis-transforming traditional Chinese medicines (BAST) in lung cancer progression-a comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116565. [PMID: 37172918 DOI: 10.1016/j.jep.2023.116565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Blood-activating and stasis-transforming traditional Chinese medicines (BAST) are a class of herbs that have the effect of dilating blood vessels and dispersing stagnation. Modern pharmaceutical research has demonstrated that they are capable of improving hemodynamics and micro-flow, resist thrombosis and promote blood flow. BAST contain numerous active ingredients, which can theoretically regulate multiple targets at the same time and have a wide range of pharmacological effects in the treatment of diseases including human cancers. Clinically, BAST have minimal side effects and can be used in combination with Western medicine to improve patients' quality of life, lessen adverse effects and minimize the risk of recurrence and metastasis of cancers. AIM OF THE REVIEW We aimed to summarize the research progression of BAST on lung cancer in the past five years and present a prospect for the future. Particularly, this review further analyzes the effects and molecular mechanisms that BAST inhibit the invasion and metastasis of lung cancer. MATERIALS AND METHODS Relevant studies about BSAT were collected from PubMed and Web of science. RESULTS Lung cancer is one of the malignant tumors with the highest mortality rate. Most patients with lung cancer are diagnosed at an advanced stage and are highly susceptible to metastasis. Recent studies have shown that BAST, a class of traditional Chinese medicine (TCM) with the function of opening veins and dispersing blood stasis, significantly improve hemodynamics and microcirculation, prevent thrombosis and promote blood flow, and thereby inhibiting the invasion and metastasis of lung cancer. In the current review, we analyzed 51 active ingredients extracted from BAST. It was found that BAST and their active ingredients contribute to the prevention of invasion and metastasis of lung cancer through multiple mechanisms, such as regulation of EMT process, specific signaling pathway and metastasis-related genes, tumor blood vessel formation, immune microenvironment and inflammatory response of tumors. CONCLUSIONS BSAT and its active ingredients have showed promising anticancer activity and significantly inhibit the invasion and metastasis of lung cancer. A growing number of studies have realized their potential clinical significance in the therapy of lung cancer, which will provide substantial evidences for the development of new TCM for lung cancer therapy.
Collapse
Affiliation(s)
- Siqi Wu
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhe Sun
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zehuai Guo
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Peiqin Li
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Qianqian Mao
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yang Tang
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Hongyu Chen
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Huiting Peng
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Sisi Wang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yang Cao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
7
|
Saleem HM, Ramaiah P, Gupta J, Jalil AT, Kadhim NA, Alsaikhan F, Ramírez-Coronel AA, Tayyib NA, Guo Q. Nanotechnology-empowered lung cancer therapy: From EMT role in cancer metastasis to application of nanoengineered structures for modulating growth and metastasis. ENVIRONMENTAL RESEARCH 2023:115942. [PMID: 37080268 DOI: 10.1016/j.envres.2023.115942] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Lung cancer is one of the leading causes of death in both males and females, and it is the first causes of cancer-related deaths. Chemotherapy, surgery and radiotherapy are conventional treatment of lung cancer and recently, immunotherapy has been also appeared as another therapeutic strategy for lung tumor. However, since previous treatments have not been successful in cancer therapy and improving prognosis and survival rate of lung tumor patients, new studies have focused on gene therapy and targeting underlying molecular pathways involved in lung cancer progression. Nanoparticles have been emerged in treatment of lung cancer that can mediate targeted delivery of drugs and genes. Nanoparticles protect drugs and genes against unexpected interactions in blood circulation and improve their circulation time. Nanoparticles can induce phototherapy in lung cancer ablation and mediating cell death. Nanoparticles can induce photothermal and photodynamic therapy in lung cancer. The nanostructures can impair metastasis of lung cancer and suppress EMT in improving drug sensitivity. Metastasis is one of the drawbacks observed in lung cancer that promotes migration of tumor cells and allows them to establish new colony in secondary site. EMT can occur in lung cancer and promotes tumor invasion. EMT is not certain to lung cancer and it can be observed in other human cancers, but since lung cancer has highest incidence rate, understanding EMT function in lung cancer is beneficial in improving prognosis of patients. EMT induction in lung cancer promotes tumor invasion and it can also lead to drug resistance and radio-resistance. Moreover, non-coding RNAs and pharmacological compounds can regulate EMT in lung cancer and EMT-TFs such as Twist and Slug are important modulators of lung cancer invasion that are discussed in current review.
Collapse
Affiliation(s)
- Hiba Muwafaq Saleem
- Department of Medical Laboratory Techniques, Al-Maarif University College, AL-Anbar, Iraq.
| | | | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, UP, India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Qingdong Guo
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
8
|
Alves-Silva JM, Pedreiro S, Cavaleiro C, Cruz MT, Figueirinha A, Salgueiro L. Effect of Thymbra capitata (L.) Cav. on Inflammation, Senescence and Cell Migration. Nutrients 2023; 15:nu15081930. [PMID: 37111149 PMCID: PMC10146686 DOI: 10.3390/nu15081930] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Aromatic plants are reported to display pharmacological properties, including anti-aging. This work aims to disclose the anti-aging effect of the essential oil (EO) of Thymbra capitata (L.) Cav., an aromatic and medicinal plant widely used as a spice, as well as of the hydrodistillation residual water (HRW), a discarded by-product of EO hydrodistillation. The phytochemical characterization of EO and HRW was assessed by GC-MS and HPLC-PDA-ESI-MSn, respectively. The DPPH, ABTS, and FRAP assays were used to disclose the antioxidant properties. The anti-inflammatory potential was evaluated using lipopolysaccharide-stimulated macrophages by assessing NO production, iNOS, and pro-IL-1β protein levels. Cell migration was evaluated using the scratch wound assay, and the etoposide-induced senescence was used to assess the modulation of senescence. The EO is mainly characterized by carvacrol, while the HRW is predominantly characterized by rosmarinic acid. The HRW exerts a stronger antioxidant effect in the DPPH and FRAP assays, whereas the EO was the most active sample in the ABTS assay. Both extracts reduce NO, iNOS, and pro-IL-1β. The EO has no effect on cell migration and presents anti-senescence effects. In opposition, HRW reduces cell migration and induces cellular senescence. Overall, our study highlights interesting pharmacological properties for both extracts, EO being of interest as an anti-aging ingredient and HRW relevant in cancer therapy.
Collapse
Affiliation(s)
- Jorge M Alves-Silva
- Institute for Clinical and Biomedical Research, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
| | - Sónia Pedreiro
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, 4099-002 Porto, Portugal
| | - Carlos Cavaleiro
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, 4099-002 Porto, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, 4099-002 Porto, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
9
|
An Q, Wu M, Yang C, Feng Y, Xu X, Su H, Zhang G. Salviae miltiorrhiza against human lung cancer: A review of its mechanism (Review). Exp Ther Med 2023; 25:139. [PMID: 36845955 PMCID: PMC9947574 DOI: 10.3892/etm.2023.11838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/10/2023] [Indexed: 02/15/2023] Open
Abstract
Lung cancer is one of the commonest malignant tumors in the world today, causing millions of mortalities every year. New methods to treat lung cancer are urgently needed. Salviae miltiorrhiza Bunge is a common Chinese medicine, often used for promoting blood circulation. In the past 20 years, Salviae miltiorrhiza has made significant progress in the treatment of lung cancer and is considered to be one of the most promising methods to fight against the disease. A great amount of research has shown that the mechanism of Salviae miltiorrhiza against human lung cancer mainly includes inhibiting the proliferation of lung cancer cells, promoting lung cancer cell apoptosis, inducing cell autophagy, regulating immunity and resisting angiogenesis. Research has shown that Salviae miltiorrhiza has certain effects on the resistance to chemotherapy drugs. The present review discussed the status and prospects of Salviae miltiorrhiza against human lung cancer.
Collapse
Affiliation(s)
- Qingwen An
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China,Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, Zhejiang 310053, P.R. China
| | - Mengting Wu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China,Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, Zhejiang 310053, P.R. China
| | - Chuqi Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China,Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, Zhejiang 310053, P.R. China
| | - Yewen Feng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China,Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, Zhejiang 310053, P.R. China
| | - Xuefei Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China,Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, Zhejiang 310053, P.R. China
| | - Hang Su
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China,Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, Zhejiang 310053, P.R. China
| | - Guangji Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China,Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, Zhejiang 310053, P.R. China,Traditional Chinese Medicine ‘Preventing Disease’ Wisdom Health Project Research Center of Zhejiang, Hangzhou, Zhejiang 310053, P.R. China,Correspondence to: Professor Guangji Zhang, School of Basic Medical Sciences, Zhejiang Chinese Medical University, 526 Binwen Road, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
10
|
Guo SS, Wang ZG. Salvianolic acid B from Salvia miltiorrhiza bunge: A potential antitumor agent. Front Pharmacol 2022; 13:1042745. [PMID: 36386172 PMCID: PMC9640750 DOI: 10.3389/fphar.2022.1042745] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/14/2022] [Indexed: 11/25/2022] Open
Abstract
Salvia miltiorrhiza Bunge (Lamiaceae) is a perennial herb widely found in China since ancient times with a high economic and medicinal value. Salvianolic acid B (Sal-B) is an important natural product derived from Salvia miltiorrhiza and this review summarizes the anticancer activity of Sal-B. Sal-B inhibits tumor growth and metastasis by targeting multiple cell signaling pathways. This review aims to review experimental studies to describe the possible anticancer mechanisms of Sal-B and confirm its potential as a therapeutic drug.
Collapse
Affiliation(s)
- Sha-Sha Guo
- Key Laboratory of Theory of TCM, Ministry of Education of China, Shandong University of Traditional Chinese Medicine, Jinan, China
- Institute of Traditional Chinese Medicine Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen-Guo Wang
- Key Laboratory of Theory of TCM, Ministry of Education of China, Shandong University of Traditional Chinese Medicine, Jinan, China
- Institute of Traditional Chinese Medicine Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Zhen-Guo Wang,
| |
Collapse
|
11
|
Ye L, Zhong Y, Hu L, Huang Y, Tang X, Yu S, Huang J, Wang Z, Li Q, Zhou X. Overexpression of hsa_circ_0061817 Can Inhibit the Proliferation and Invasion of Lung Cancer Cells Based on Active Compounds. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4509019. [PMID: 39282154 PMCID: PMC11401659 DOI: 10.1155/2022/4509019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 09/18/2024]
Abstract
Objective This study was aimed at investigating the expression level of hsa_circ_0061817 in lung adenocarcinoma cells and its effect on cell proliferation and invasion and the possible mechanism of hsa_circ_0061817 in lung adenocarcinoma. Methods The overexpression plasmids of hsa_circ_0061817 (OE-hsacirc_0061817) were transfected into human lung A549 cells and mouse LLC-LUC cells, respectively. The cell viability was detected by CCK-8, and the cell proliferation was detected by cell clone formation assay and EdU assay. Transwell test was used to detect the ability of cell invasion, and apoptosis was detected by flow cytometry. WB was applied to determine the expression of apoptosis and epithelial mesenchymal transition- (EMT-) related proteins and also target proteins for observation the effect of OE-hsa_circ_0061817 on the growth of A549 cells in nude mice. Bioinformatics method was used to predict the binding microRNA (miRNA) of hsa_circ_0061817 and construct the regulatory network of competitive endogenous RNA (ceRNA) and functional analysis of miRNA target genes. Results Compared with PLO-ciR group, the cell viability, proliferation, and invasive ability of A549 and LLC-LUC were significantly reduced in OE-hsa_circ_00061817 group, while the apoptosis increased in OE-hsa_circ_00061817 group compared to PLO-ciR group. WB results showed that the expression of caspase 3, caspase 7, caspase 9, and E-cadherin increased significantly, while the expression levels of vimentin and N-cadherin decreased severely. Most importantly, OE-hsa_circ_00061817 inhibited the growth of A549 tumor-bearing nude mice. According to TargetScan and mirBase databases, hsa_circ_0061817 may competitively bind hsa_mir-181b-3p, hsa-mir-337-3p, hsa-mir-421, and hsa-mir-548d-3p. The results of functional enrichment showed that miRNA target genes were involved in many cancer-related biological processes, including negative regulation of apoptosis, gene expression, transcriptional imbalance in cancer, transforming growth factor-β, and P53 signal pathway. Conclusions Over expression of hsa_circ_0061817 inhibits the proliferation of lung adenocarcinoma A549 and LLC-LUC cells and may reduce the invasive ability of lung adenocarcinoma cells by weakening the process of EMT, which provides a new target for the prevention and treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Longping Ye
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, China
| | - Youqing Zhong
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, China
| | - Lihua Hu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, China
| | - Ya Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, China
| | - Xiang Tang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, China
| | - Shanjun Yu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, China
| | - Jianxin Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, China
| | - Ziyuan Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, China
| | - Qi Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, China
| | - Xiangdong Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
12
|
Lu M, Lan X, Wu X, Fang X, Zhang Y, Luo H, Gao W, Wu D. Salvia miltiorrhiza in cancer: Potential role in regulating MicroRNAs and epigenetic enzymes. Front Pharmacol 2022; 13:1008222. [PMID: 36172186 PMCID: PMC9512245 DOI: 10.3389/fphar.2022.1008222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that play important roles in gene regulation by influencing the translation and longevity of various target mRNAs and the expression of various target genes as well as by modifying histones and DNA methylation of promoter sites. Consequently, when dysregulated, microRNAs are involved in the development and progression of a variety of diseases, including cancer, by affecting cell growth, proliferation, differentiation, migration, and apoptosis. Preparations from the dried root and rhizome of Salvia miltiorrhiza Bge (Lamiaceae), also known as red sage or danshen, are widely used for treating cardiovascular diseases. Accumulating data suggest that certain bioactive constituents of this plant, particularly tanshinones, have broad antitumor effects by interfering with microRNAs and epigenetic enzymes. This paper reviews the evidence for the antineoplastic activities of S. miltiorrhiza constituents by causing or promoting cell cycle arrest, apoptosis, autophagy, epithelial-mesenchymal transition, angiogenesis, and epigenetic changes to provide an outlook on their future roles in the treatment of cancer, both alone and in combination with other modalities.
Collapse
Affiliation(s)
- Meng Lu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xintian Lan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xi Wu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yegang Zhang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Wenyi Gao
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Wenyi Gao, ; Donglu Wu,
| | - Donglu Wu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Wenyi Gao, ; Donglu Wu,
| |
Collapse
|