1
|
Lawson MK. Copper-quercetin complexes: methods of study, relevance to cell death pathways, therapeutic applications. Biomed Pharmacother 2025; 187:118055. [PMID: 40288175 DOI: 10.1016/j.biopha.2025.118055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/03/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Copper-quercetin complexes, CuQ, have been an active area of research for several decades. In vitro experiments show complexes are better antioxidants than quercetin alone. There seems to be a synergy effect. Cancer cell culture experiments also show prooxidant and DNA damaging properties which may be exploitable in cancer cell therapy. The effect of copper in combination with quercetin on cell death pathways needs to be investigated, especially regarding the cuproptosis pathway. CuQ complexes may require formulations similar to quercetin. The use of nanoparticles has enabled practical formulations of quercetin and/or their complexes to be made which guarantee stability, satisfactory bioavailability, and clinical effectiveness. In vivo studies are also being reported as well of planning of applications including skin infections and bone healing. Zn, Cu and quercetin tested on mice shows strong potential to treat Androgenic Alopecia. Copper-quercetin complexes seem to be easy to make and have good pharmacological potential in antimicrobial function, osteogenesis, angiogenesis and cancer treatment. Complexes such as those involving phenoanthroline, quercetin and copper may be found to be superior and zinc might be better for cancer therapy.
Collapse
Affiliation(s)
- Michael Kenneth Lawson
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, Bratislava 83232, Slovakia.
| |
Collapse
|
2
|
Lu Y, Wang K, Hu L. Advancements in delivery systems for dietary polyphenols in enhancing radioprotection effects: challenges and opportunities. NPJ Sci Food 2025; 9:51. [PMID: 40229284 PMCID: PMC11997175 DOI: 10.1038/s41538-025-00419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
Radiotherapy, a widely employed cancer treatment, often triggers diverse inflammatory responses such as radiation enteritis, pulmonary injury, pelvic inflammation, dermatitis, and osteitis. Dietary polyphenols have recently emerged as promising agents for mitigating radiation-induced inflammation. However, their clinical application faced challenges related to variable bioavailability, individual pharmacokinetics, optimal dosing, and limited clinical evidence. Current researches revealed the efficacy of bioactive small molecule polyphenols in addressing radiation-induced inflammation. In this review, along with a comprehensive examination of the etiology and categories of radiation-induced inflammatory conditions, the diversity of polyphenols and elucidating their anti-inflammatory mechanisms are explored. This study emphasizes the recent progresses in delivery systems for dietary polyphenols, aiming to enhance radioprotection effects. The optimized utilization of polyphenols, with a theoretical framework and reference guide, is of paramount relevance. Through diverse delivery mechanisms, the more effective and safer radioprotective strategies become achievable. This endeavor aspires to contribute to breakthroughs in the dietary polyphenols' application, significantly enhancing human health protection during radiotherapy. These comprehensive insights presented here also support (pre)-clinical practices in navigating the complexities of utilizing dietary polyphenols for radioprotection, fostering advancements in the field and improving patient outcomes.
Collapse
Affiliation(s)
- Yuxuan Lu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
3
|
Wu X, Xiao X, Su Y, Zhang Y, Li G, Wang F, Du Q, Yang H. Use quercetin for pulmonary fibrosis: a preclinical systematic review and meta-analysis. Inflammopharmacology 2025; 33:1879-1897. [PMID: 40038212 DOI: 10.1007/s10787-025-01678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/31/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is an age-related interstitial lung disease, which lacks effective drug treatment at present. Quercetin has been shown to have favorable anti-inflammatory and anti-fibrotic properties, and preliminary evidence suggests its potential efficacy and tolerability in PF patients. However, a comprehensive systematic review and evaluation of the protective effects and potential mechanisms of quercetin in PF models remains to be completed. Therefore, we conducted this study. METHODS The PubMed, Cochrane Library, Embase, and Web of Science databases were searched up to the April 1, 2024. CAMARADES was the methodological quality assessment tool. And statistical analyses were conducted with R and Stata 16.0. Origin was used for a three-dimensional (3D) dosage-intervention duration-efficacy model for quercetin treatment of PF. RESULTS A total of 20 studies, encompassing 44 independent experiments and involving 1019 animals, were included in the analysis. Meta-analysis revealed that quercetin significantly mitigated lung pathological tissue scores and the expression of lung fibrosis markers in PF animal models. Furthermore, quercetin significantly ameliorated inflammatory responses, oxidative stress, epithelial-mesenchymal transition and myofibroblast activation, cell senescence and apoptosis, and the markers expression of extracellular matrix (ECM) deposition. Quercetin did not show significant hepatic and nephrotoxicity. The 3D dosage-intervention duration-efficacy model indicated that a dosing period over 20 days and dosages range of 5-100 mg/kg were appropriate modalities. CONCLUSION Herein, our study highlights the potential of quercetin in the treatment of PF and the available mechanisms.
Collapse
Affiliation(s)
- Xuanyu Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xiang Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yuchen Su
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yuwei Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Ganggang Li
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Quanyu Du
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Han Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
4
|
Singh PA, Pandey RP, Awasthi R. Unveiling the role of nanoparticle-based therapeutic strategies for pulmonary drug delivery. J Drug Deliv Sci Technol 2025; 104:106558. [DOI: 10.1016/j.jddst.2024.106558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
5
|
Huang M, Liu X, Ren Y, Huang Q, Shi Y, Yuan P, Chen M. Quercetin: A Flavonoid with Potential for Treating Acute Lung Injury. Drug Des Devel Ther 2024; 18:5709-5728. [PMID: 39659949 PMCID: PMC11630707 DOI: 10.2147/dddt.s499037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
In intensive care units, acute lung injury (ALI) is a syndrome that is frequently encountered. It is associated with a high rate of morbidity and mortality. Despite the extensive research conducted by the medical community on its treatment, no specific effective drugs have been identified. Quercetin is a natural flavonoid with many biological activities and pharmacological effects. Research indicates that Quercetin can modulate various targets and signaling pathways, inhibiting oxidative stress, inflammatory responses, ferroptosis, apoptosis, fibrosis, and bacterial and viral infections in ALI. This regulation suggests its potential therapeutic application for the condition. Currently, there is no comprehensive review addressing the application of Quercetin in the treatment of ALI. This paper begins with a classification of ALI, followed by a detailed summary of the mechanisms through which Quercetin may treat ALI to evaluate its potential as a novel therapeutic option.
Collapse
Affiliation(s)
- Ma Huang
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Xinxin Liu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Yingcong Ren
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Qianxia Huang
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Yuanzhi Shi
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Ping Yuan
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Miao Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| |
Collapse
|
6
|
Sharma A, Wairkar S. Flavonoids for treating pulmonary fibrosis: Present status and future prospects. Phytother Res 2024; 38:4406-4423. [PMID: 38986681 DOI: 10.1002/ptr.8285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/08/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with an unknown underlying cause. There is no complete cure for IPF; however, two anti-fibrotic agents (Nintedanib and pirfenidone) are approved by the USFDA to extend the patient's life span. Therefore, alternative therapies supporting the survival of fibrotic patients have been studied in recent literature. The abundance of phenolic compounds, particularly flavonoids, has gathered attention due to their potential health benefits. Various flavonoids, like naringin, quercetin, baicalin, baicalein, puerarin, silymarin, and kaempferol, exhibit anti-inflammatory and anti-oxidant properties, which help decrease lung fibrosis. Various databases, including PubMed, EBSCO, ProQuest, and Scopus, as well as particular websites, such as the World Health Organisation and the National Institutes of Health, were used to conduct a literature search. Several mechanisms of action of flavonoids are reported with the help of in vivo and cell line studies emphasizing their ability to modulate oxidative stress, inflammation, and fibrotic processes in the lungs. They are reported for the restoration of biomarkers like hydroxyproline, cytokines, superoxide dismutase, malondialdehyde and others associated with IPF and for modulating various pathways responsible for the progression of pulmonary fibrosis. Yet, flavonoids have some drawbacks, such as poor solubility, challenging drug loading, stability issues, and scarce bioavailability. Therefore, novel formulations of flavonoids are explored, including liposomes, solid lipid microparticles, polymeric nanoparticles, nanogels, and nanocrystals, to enhance the therapeutic efficacy of flavonoids in pulmonary fibrosis. This review focuses on the role of flavonoids in mitigating idiopathic pulmonary fibrosis, their mode of action and novel formulations.
Collapse
Affiliation(s)
- Anju Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, Maharashtra, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, Maharashtra, India
| |
Collapse
|
7
|
Elmas O, Keskin E, Keser Sahin HH, Guven B, Almisned G, Zakaly HM, Tekin H, Ene A. The effect of Annona muricata (Graviola) on the prevention of brain damage due to ionizing radiation in rats. Heliyon 2024; 10:e25932. [PMID: 38370260 PMCID: PMC10867642 DOI: 10.1016/j.heliyon.2024.e25932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/03/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024] Open
Abstract
In this study, it was aimed to evaluate the effect of ethanol extract of Annona Muricata (AM) leaves in the prevention of brain damage caused by ionizing radiation (IR). This study was conducted in the Experimental Animal Research Unit of a university with 28 adults female Wistar Albino rats. The experimental groups were as follows: Control group (n = 8), AM group (n = 6), IR group (n = 8), AM + IR group (n = 6). In the IR group, astrocyte hypertrophy, microglial reaction and inflammatory reaction levels were significantly higher than the control and AM groups (P < 0.001). Edema was significantly higher in the IR group compared to the control group (P=0.001). The MDA of the IR group was significantly higher compared to the control group and AM group (P=0.031, P=0.006, respectively). The MDA of the AM + IR group was significantly higher than the AM group (P=0.039). Our findings show that histomorphology and oxidant damage caused by IR can be ameliorated using AM, as demonstrated by the comparison of the controls to AM + IR recipients, which showed similar histomorphology and oxidant damage levels.
Collapse
Affiliation(s)
- Ozlem Elmas
- Department of Radiation Oncology, Bulent Ecevit University Practice and Research Hospital, Zonguldak, Turkey
| | - Emrah Keskin
- Department of Neurosurgery, Bulent Ecevit University Practice and Research Hospital, Zonguldak, Turkey
| | | | - Berrak Guven
- Department of Biochemistry, Bulent Ecevit University Practice and Research Hospital, Zonguldak, Turkey
| | - Ghada Almisned
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hesham M.H. Zakaly
- Institute of Physics and Technology, Ural Federal University, Yekaterinburg, 620002, Russia
- Physics Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - H.O. Tekin
- Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Istinye University, Faculty of Engineering and Natural Sciences, Computer Engineering Department, Istanbul, 34396, Turkey
| | - Antoaneta Ene
- INPOLDE Research Center, Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 Galati, Romania
| |
Collapse
|
8
|
Clemente-Suárez VJ, Mielgo-Ayuso J, Ramos-Campo DJ, Beltran-Velasco AI, Martínez-Guardado I, Navarro Jimenez E, Redondo-Flórez L, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Basis of preventive and non-pharmacological interventions in asthma. Front Public Health 2023; 11:1172391. [PMID: 37920579 PMCID: PMC10619920 DOI: 10.3389/fpubh.2023.1172391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/18/2023] [Indexed: 11/04/2023] Open
Abstract
Asthma is one of the most common atopic disorders in all stages of life. Its etiology is likely due to a complex interaction between genetic, environmental, and lifestyle factors. Due to this, different non-pharmacological interventions can be implemented to reduce or alleviate the symptoms caused by this disease. Thus, the present narrative review aimed to analyze the preventive and non-pharmacological interventions such as physical exercise, physiotherapy, nutritional, ergonutritional, and psychological strategies in asthma treatment. To reach these aims, an extensive narrative review was conducted. The databases used were MedLine (PubMed), Cochrane (Wiley), Embase, PsychINFO, and CinAhl. Asthma is an immune-mediated inflammatory condition characterized by increased responsiveness to bronchoconstrictor stimuli. Different factors have been shown to play an important role in the pathogenesis of asthma, however, the treatments used to reduce its incidence are more controversial. Physical activity is focused on the benefits that aerobic training can provide, while physiotherapy interventions recommend breathing exercises to improve the quality of life of patients. Nutritional interventions are targeted on implement diets that prioritize the consumption of fruits and vegetables and supplementation with antioxidants. Psychological interventions have been proposed as an essential non-pharmacological tool to reduce the emotional problems associated with asthma.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain
- Studies Centre in Applied Combat (CESCA), Toledo, Spain
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, Burgos, Spain
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, Universidad Camilo José Cela, Madrid, Spain
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | - Jose Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain
- Studies Centre in Applied Combat (CESCA), Toledo, Spain
| |
Collapse
|
9
|
Tomou EM, Papakyriakopoulou P, Saitani EM, Valsami G, Pippa N, Skaltsa H. Recent Advances in Nanoformulations for Quercetin Delivery. Pharmaceutics 2023; 15:1656. [PMID: 37376104 DOI: 10.3390/pharmaceutics15061656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Quercetin (QUE) is a flavonol that has recently received great attention from the research community due to its important pharmacological properties. However, QUE's low solubility and extended first-pass metabolism limit its oral administration. This review aims to present the potential of various nanoformulations in the development of QUE dosage forms for bioavailability enhancement. Advanced drug delivery nanosystems can be used for more efficient encapsulation, targeting, and controlled release of QUE. An overview of the primary nanosystem categories, formulation processes, and characterization techniques are described. In particular, lipid-based nanocarriers, such as liposomes, nanostructured-lipid carries, and solid-lipid nanoparticles, are widely used to improve QUE's oral absorption and targeting, increase its antioxidant activity, and ensure sustained release. Moreover, polymer-based nanocarriers exhibit unique properties for the improvement of the Absorption, Distribution, Metabolism, Excretion, and Toxicology (ADME(T)) profile. Namely, micelles and hydrogels composed of natural or synthetic polymers have been applied in QUE formulations. Furthermore, cyclodextrin, niosomes, and nanoemulsions are proposed as formulation alternatives for administration via different routes. This comprehensive review provides insight into the role of advanced drug delivery nanosystems for the formulation and delivery of QUE.
Collapse
Affiliation(s)
- Ekaterina-Michaela Tomou
- Section of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Paraskevi Papakyriakopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Elmina-Marina Saitani
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Georgia Valsami
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Helen Skaltsa
- Section of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
10
|
Mariano A, Bigioni I, Marchetti M, Scotto d'Abusco A, Superti F. Repositioned Natural Compounds and Nanoformulations: A Promising Combination to Counteract Cell Damage and Inflammation in Respiratory Viral Infections. Molecules 2023; 28:molecules28104045. [PMID: 37241786 DOI: 10.3390/molecules28104045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Respiratory viral diseases are among the most important causes of disability, morbidity, and death worldwide. Due to the limited efficacy or side effects of many current therapies and the increase in antiviral-resistant viral strains, the need to find new compounds to counteract these infections is growing. Since the development of new drugs is a time-consuming and expensive process, numerous studies have focused on the reuse of commercially available compounds, such as natural molecules with therapeutic properties. This phenomenon is generally called drug repurposing or repositioning and represents a valid emerging strategy in the drug discovery field. Unfortunately, the use of natural compounds in therapy has some limitations, due to their poor kinetic performance and consequently reduced therapeutic effect. The advent of nanotechnology in biomedicine has allowed this limitation to be overcome, showing that natural compounds in nanoform may represent a promising strategy against respiratory viral infections. In this narrative review, the beneficial effects of some promising natural molecules, curcumin, resveratrol, quercetin, and vitamin C, which have been already studied both in native form and in nanoform, against respiratory viral infections are presented and discussed. The review focuses on the ability of these natural compounds, analyzed in in vitro and in vivo studies, to counteract inflammation and cellular damage induced by viral infection and provide scientific evidence of the benefits of nanoformulations in increasing the therapeutic potential of these molecules.
Collapse
Affiliation(s)
- Alessia Mariano
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Irene Bigioni
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Magda Marchetti
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Anna Scotto d'Abusco
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Fabiana Superti
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
11
|
Prades-Sagarra È, Yaromina A, Dubois LJ. Polyphenols as Potential Protectors against Radiation-Induced Adverse Effects in Patients with Thoracic Cancer. Cancers (Basel) 2023; 15:cancers15092412. [PMID: 37173877 PMCID: PMC10177176 DOI: 10.3390/cancers15092412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Radiotherapy is one of the standard treatment approaches used against thoracic cancers, occasionally combined with chemotherapy, immunotherapy and molecular targeted therapy. However, these cancers are often not highly sensitive to standard of care treatments, making the use of high dose radiotherapy necessary, which is linked with high rates of radiation-induced adverse effects in healthy tissues of the thorax. These tissues remain therefore dose-limiting factors in radiation oncology despite recent technological advances in treatment planning and delivery of irradiation. Polyphenols are metabolites found in plants that have been suggested to improve the therapeutic window by sensitizing the tumor to radiotherapy, while simultaneously protecting normal cells from therapy-induced damage by preventing DNA damage, as well as having anti-oxidant, anti-inflammatory or immunomodulatory properties. This review focuses on the radioprotective effect of polyphenols and the molecular mechanisms underlying these effects in the normal tissue, especially in the lung, heart and esophagus.
Collapse
Affiliation(s)
- Èlia Prades-Sagarra
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
12
|
Fu X, Li T, Yao Q. The Effect of Ophiopogonin C in Ameliorating Radiation-Induced Pulmonary Fibrosis in C57BL/6 Mice: An Update Study. Front Oncol 2022; 12:811183. [PMID: 35433490 PMCID: PMC9007236 DOI: 10.3389/fonc.2022.811183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background The aim of this study was to assess and update the protective effects and underlying mechanisms of Ophiopogonin C (OP-C), a biologically active component separated and purified from Ophiopogon japonicus, in ameliorating radiation-induced pulmonary fibrosis in C57BL/6 mice administered thoracic radiation. Methods and Materials We randomly divided 75 mice into five groups and administered a dose of 12-Gy whole thoracic radiation to establish a pulmonary fibrosis animal model. Mice were treated with OP-C or dexamethasone combined with or without cephalexin by daily gavage for 4 weeks. All mice were sacrificed after the completion of thoracic irradiation at 28 weeks. Serum levels of interleukin-6 and transforming growth factor-β1 (TGF-β1) were evaluated. Moreover, superoxide dismutase (SOD) levels in lung tissue were measured. The severity of fibrosis was evaluated using the hydroxyproline content of the lung tissue. The pathological changes in the five groups were detected by hematoxylin and eosin and Masson trichrome staining. Smooth muscle actin expression was detected using immunohistochemical staining. Matrix metalloproteinases-2 (MMP-2) and tissue inhibitors of metalloproteases-2 (TIMP-2) were examined by immunohistochemical staining of the lung sections, and semiquantitative analysis was used to calculate the expression of MMP-2 and TIMP-2. Results Irradiated mice treated with OP-C or DXE combined with or without cephalexin significantly reduced mortality in mice and fibrosis levels by 1) reducing the deposition of collagen and accumulation of inflammatory cells and fibroblasts, 2) downgrading levels of the promote-fibrosis cytokine TGF-β1, and 3) increasing SOD activity in the lung tissue compared with that of irradiated mice without treatment. However, there were no statistical differences in fibrosis levels among the irradiated mice treated with OP-C or DXE combined with or without cephalexin. Conclusion OP-C significantly ameliorates radiation-induced pulmonary fibrosis and may be a promising therapeutic strategy for this disorder.
Collapse
Affiliation(s)
- Xiaobin Fu
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Tingting Li
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qiwei Yao
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
13
|
Alkahtani S, Alarifi S, Aljarba NH, Alghamdi HA, Alkahtane AA. Mesoporous SBA-15 Silica-Loaded Nano-formulation of Quercetin: A Probable Radio-Sensitizer for Lung Carcinoma. Dose Response 2022; 20:15593258211050532. [PMID: 35110975 PMCID: PMC8777362 DOI: 10.1177/15593258211050532] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Lung cancer is considered as one of the most serious disease worldwide. The progress of drug carriers based on nonmaterial, which selectively hold chemotherapeutic agents to cancer cells, has become a major focus in biomedical research. This study aimed to evaluate the growth inhibition and apoptosis induction of the human lung cancer cells (A-549) by Q-loaded SBA-15 conjugate system. Mesoporous silica nanoparticles (SBA-15) as host materials for transporting therapeutics medicaments were fabricated for targeted drug delivery toward lung cancer. With the objective of increasing bioavailability and aqueous solubility of flavonoids, SBA-15 was successfully loaded with the quercetin (Q)-a major flavonoid and characterized with the help of Fourier-transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The biological investigation on A549 cell line confirmed that the efficacy of Q-SBA-15 is much higher than only Q. Moreover, the apoptotic pathway of synthesized Q-SBA-15 NPs examined that the Q-SBA-15-mediated apoptosis via PI3K/AKT/mTOR signaling pathway. Thus, the newly conjugated Q-SBA-15 system improved the apoptotic fate through caspase-mediated apoptosis via PI3K/AKT/mTOR signaling pathway and hence, it can be potentially employed as an anticancer agent for lung cancer.
Collapse
Affiliation(s)
- Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nada H. Aljarba
- Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman
University, Riyadh, Saudi Arabia
| | - Hamzah A. Alghamdi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A. Alkahtane
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Sun PY, Wang AS, Zhang ZF, Zhang YL, Zheng X. Network pharmacology-based strategy to investigate the active ingredients and molecular mechanisms of Scutellaria Barbata D. Don against radiation pneumonitis. Medicine (Baltimore) 2021; 100:e27957. [PMID: 34964782 PMCID: PMC8615305 DOI: 10.1097/md.0000000000027957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/05/2021] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Herbal medicines combined with radiotherapy significantly reduced the incidence of radiation pneumonitis (RP), and the Scutellaria barbata D. Don (SBD) is a perennial herb that has been reported to protect against radiation-induced pneumonitis. However, the exact molecular mechanism is not known. The objective of this research was to investigate the against radiation pneumonitis ingredients and their functional mechanisms in SBD. METHODS Based on the network pharmacology approaches, we collected active ingredients and target genes in SBD against RP through Traditional Chinese Medicine System Pharmacology (TCMSP) Database, and the "Herb-Ingredients-Target Genes-Disease" Network was constructed by using of Cytoscape. STRING analysis was performed to reveal the protein-protein interactions, and then we applied enrichment analysis on these target proteins, gene function, and pathways. RESULTS A total of 18 ingredients in SBD regulate 65 RP related target proteins, which show that quercetin, luteolin, baicalein, wogonin may be the key active ingredients, while IL6, AKT1, VEGFA, MMP9, CCL2, prostaglandin-endoperoxide synthase 2 (PTGS2) (cyclooxygenase-2 [COX-2]), CXCL8, IL1B, mitogen-activated protein kinase (MAPK1), and IL10 were identified as critical targets. Besides, the results of Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that predicted targets of SBD are mostly associated with the pathological process of oxidative stress and inflammation. AGE- Receptor of Advanced Glycation Endproducts (RAGE) signaling pathway in diabetic complications, IL-17 signaling pathway, hypoxia-inducible factor-1 (HIF-1) signaling pathway, NF-kappa B signaling pathway might serve as the principal pathways for RP treatment. CONCLUSION In our study, the pharmacological and molecular mechanism of SBD against RP was predicted from a holistic perspective, and the results provided theoretical guidance for researchers to explore the mechanism in further research.
Collapse
Affiliation(s)
- Ping-Yi Sun
- Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Ai-Shuai Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250000, China
| | - Zhen-Fei Zhang
- Heze Hospital of traditional Chinese Medicine, Heze 274000, China
| | - Yan-Li Zhang
- Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Xin Zheng
- Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser hospital), Qingdao 266000, China
| |
Collapse
|
15
|
Bernini R, Velotti F. Natural Polyphenols as Immunomodulators to Rescue Immune Response Homeostasis: Quercetin as a Research Model against Severe COVID-19. Molecules 2021; 26:molecules26195803. [PMID: 34641348 PMCID: PMC8510228 DOI: 10.3390/molecules26195803] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
The COVID-19 pandemic is caused by SARS-CoV-2 and is leading to the worst health crisis of this century. It emerged in China during late 2019 and rapidly spread all over the world, producing a broad spectrum of clinical disease severity, ranging from asymptomatic infection to death (4.3 million victims so far). Consequently, the scientific research is devoted to investigating the mechanisms of COVID-19 pathogenesis to both identify specific therapeutic drugs and develop vaccines. Although immunological mechanisms driving COVID-19 pathogenesis are still largely unknown, new understanding has emerged about the innate and adaptive immune responses elicited in SARS-CoV-2 infection, which are mainly focused on the dysregulated inflammatory response in severe COVID-19. Polyphenols are naturally occurring products with immunomodulatory activity, playing a relevant role in reducing inflammation and preventing the onset of serious chronic diseases. Mainly based on data collected before the appearance of SARS-CoV-2, polyphenols have been recently suggested as promising agents to fight COVID-19, and some clinical trials have already been approved with polyphenols to treat COVID-19. The aim of this review is to analyze and discuss the in vitro and in vivo research on the immunomodulatory activity of quercetin as a research model of polyphenols, focusing on research that addresses issues related to the dysregulated immune response in severe COVID-19. From this analysis, it emerges that although encouraging data are present, they are still insufficient to recommend polyphenols as potential immunomodulatory agents against COVID-19.
Collapse
Affiliation(s)
- Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
- Correspondence: (R.B.); (F.V.)
| | - Francesca Velotti
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
- Correspondence: (R.B.); (F.V.)
| |
Collapse
|
16
|
Khazdair MR, Saadat S, Aslani MR, Shakeri F, Boskabady MH. Experimental and clinical studies on the effects of Portulaca oleracea L. and its constituents on respiratory, allergic, and immunologic disorders, a review. Phytother Res 2021; 35:6813-6842. [PMID: 34462981 DOI: 10.1002/ptr.7268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022]
Abstract
Various pharmacological effects for Portulaca oleracea were shown in previous studies. Therefore, the effects of P. oleracea and its derivatives on respiratory, allergic, and immunologic diseases according to update experimental and clinical studies are provided in this review article. PubMed/Medline, Scopus, and Google Scholar were searched using appropriate keywords until the end of December 2020. The effects of P. oleracea and its constituents such as quercetin and kaempferol on an animal model of asthma were shown. Portulaca oleracea and its constituents also showed therapeutic effects on chronic obstructive pulmonary disease and chronic bronchitis in both experimental and clinical studies. The possible bronchodilatory effect of P. oleracea and its ingredients was also reported. Portulaca oleracea and its constituents showed the preventive effect on lung cancer and a clinical study showed the effect of P. oleracea on patients with lung adenocarcinoma. In addition, a various constituents of P. oleracea including, quercetin and kaempferol showed therapeutic effects on lung infections. This review indicates the therapeutic effect of P. oleracea and its constituents on various lung and allergic disorders but more clinical studies are required to establish the clinical efficacy of this plant and its constituents on lung and allergic disorders.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeideh Saadat
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Reza Aslani
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Lung Inflammatory Diseases Research Center, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.,Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Molecular and Biologic Targets for Radiation Fibrosis: Implications for Rehabilitation. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2021. [DOI: 10.1007/s40141-021-00321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Jin D, An X, Zhang Y, Zhao S, Duan L, Duan Y, Lian F, Tong X. Potential Mechanism Prediction of Herbal Medicine for Pulmonary Fibrosis Associated with SARS-CoV-2 Infection Based on Network Analysis and Molecular Docking. Front Pharmacol 2021; 12:602218. [PMID: 33986661 PMCID: PMC8112227 DOI: 10.3389/fphar.2021.602218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/01/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Coronavirus Disease 2019 (COVID-19) is still a relevant global problem. Although some patients have recovered from COVID-19, the sequalae to the SARS-CoV-2 infection may include pulmonary fibrosis, which may contribute to considerable economic burden and health-care challenges. Convalescent Chinese Prescription (CCP) has been widely used during the COVID-19 recovery period for patients who were at high risk of pulmonary fibrosis and is recommended by the Diagnosis and Treatment Protocol for COVID-19 (Trial Version sixth, seventh). However, its underlying mechanism is still unclear. Methods: In this study, an integrated pharmacology approach was implemented, which involved evaluation of absorption, distribution, metabolism and excretion of CCP, data mining of the disease targets, protein-protein interaction (PPI) network construction, and analysis, enrichment analysis, and molecular docking simulation, to predict the bioactive components, potential targets, and molecular mechanism of CCP for pulmonary fibrosis associated with SARS-CoV-2 infection. Results: The active compound of CCP and the candidate targets, including pulmonary fibrosis targets, were obtained through database mining. The Drug-Disease network was constructed. Sixty-five key targets were identified by topological analysis. The findings of Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation suggested that the VEGF, Toll-like 4 receptor, MAPK signaling pathway, and TGF-β1 signaling pathways may be involved in pulmonary fibrosis. In the molecular docking analyses, VEGF, TNF-α, IL-6, MMP9 exhibited good binding activity. Findings from our study indicated that CCP could inhibit the expression of VEGF, TNF-α, IL-6, MMP9, TGF-β1 via the VEGF, Toll-like 4 receptor, MAPK, and TGF-β1 signaling pathways. Conclusion: Potential mechanisms involved in CCP treatment for COVID-19 pulmonary fibrosis associated with SARS-CoV-2 infection involves multiple components and multiple target points as well as multiple pathways. These findings may offer a profile for further investigations of the anti-fibrotic mechanism of CCP.
Collapse
Affiliation(s)
- De Jin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuedong An
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuqing Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shenghui Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Liyun Duan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Fengmei Lian
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Zheng Y, Jin D, Lin J, Zhang Y, Tian J, Lian F, Tong X. Understanding COVID-19 in Wuhan From the Perspective of Cold-Dampness: Clinical Evidences and Mechanisms. Front Med (Lausanne) 2021; 8:617659. [PMID: 33693014 PMCID: PMC7939017 DOI: 10.3389/fmed.2021.617659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/08/2021] [Indexed: 01/08/2023] Open
Abstract
Traditional Chinese medicine (TCM) has played a significant role in the treatment of coronavirus disease 2019 (COVID-19) in Wuhan City. During the epidemic, Academician Tong Xiaolin suggested a close association of COVID-19 with cold-dampness, an etiological factor in TCM, by summarizing the characteristics of the COVID-19 patients in Wuhan. and the theory of Cold-dampness Plague was proposed. Based on the Cold-dampness Plague theory, a series of TCM drugs, such as Huoxiang Zhengqi Dropping Pills, Lianhua Qingwen Granules Hanshiyi Formula, and Tongzhi Granule were developed for the different stages, namely mild, moderate, severe, recovery, of the COVID-19. In addition, clinical evidences were obtained through randomized clinical trials or retrospective cohort studies. The Anti-SARS-CoV-2 mechanism of the TCM prescriptions were then summarized from the four aspects: targeting the ACE2 and 3CLPro, targeting cytokines, targeting acute immune responses to SARS-CoV-2, and targeting pulmonary fibrosis. Despite the clinical efficacy and therapeutic pharmacology speculation, more studies such as large-scale randomized clinical trials, cell and animal experiments are needed to further verify the theory of the Cold-dampness Plague in COVID-19 patients.
Collapse
Affiliation(s)
- Yujiao Zheng
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - De Jin
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaran Lin
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yuehong Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxing Tian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
20
|
He YQ, Zhou CC, Yu LY, Wang L, Deng JL, Tao YL, Zhang F, Chen WS. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol Res 2021; 163:105224. [PMID: 33007416 PMCID: PMC7522693 DOI: 10.1016/j.phrs.2020.105224] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) as common life-threatening lung diseases with high mortality rates are mostly associated with acute and severe inflammation in lungs. With increasing in-depth studies of ALI/ARDS, significant breakthroughs have been made, however, there are still no effective pharmacological therapies for treatment of ALI/ARDS. Especially, the novel coronavirus pneumonia (COVID-19) is ravaging the globe, and causes severe respiratory distress syndrome. Therefore, developing new drugs for therapy of ALI/ARDS is in great demand, which might also be helpful for treatment of COVID-19. Natural compounds have always inspired drug development, and numerous natural products have shown potential therapeutic effects on ALI/ARDS. Therefore, this review focuses on the potential therapeutic effects of natural compounds on ALI and the underlying mechanisms. Overall, the review discusses 159 compounds and summarizes more than 400 references to present the protective effects of natural compounds against ALI and the underlying mechanism.
Collapse
Affiliation(s)
- Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu-Yao Yu
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang Wang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiu-Ling Deng
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Long Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Feng Zhang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Wan-Sheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
21
|
Checa J, Aran JM. Airway Redox Homeostasis and Inflammation Gone Awry: From Molecular Pathogenesis to Emerging Therapeutics in Respiratory Pathology. Int J Mol Sci 2020; 21:E9317. [PMID: 33297418 PMCID: PMC7731288 DOI: 10.3390/ijms21239317] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/05/2020] [Indexed: 02/06/2023] Open
Abstract
As aerobic organisms, we are continuously and throughout our lifetime subjected to an oxidizing atmosphere and, most often, to environmental threats. The lung is the internal organ most highly exposed to this milieu. Therefore, it has evolved to confront both oxidative stress induced by reactive oxygen species (ROS) and a variety of pollutants, pathogens, and allergens that promote inflammation and can harm the airways to different degrees. Indeed, an excess of ROS, generated intrinsically or from external sources, can imprint direct damage to key structural cell components (nucleic acids, sugars, lipids, and proteins) and indirectly perturb ROS-mediated signaling in lung epithelia, impairing its homeostasis. These early events complemented with efficient recognition of pathogen- or damage-associated recognition patterns by the airway resident cells alert the immune system, which mounts an inflammatory response to remove the hazards, including collateral dead cells and cellular debris, in an attempt to return to homeostatic conditions. Thus, any major or chronic dysregulation of the redox balance, the air-liquid interface, or defects in epithelial proteins impairing mucociliary clearance or other defense systems may lead to airway damage. Here, we review our understanding of the key role of oxidative stress and inflammation in respiratory pathology, and extensively report current and future trends in antioxidant and anti-inflammatory treatments focusing on the following major acute and chronic lung diseases: acute lung injury/respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and cystic fibrosis.
Collapse
Affiliation(s)
| | - Josep M. Aran
- Immune-Inflammatory Processes and Gene Therapeutics Group, IDIBELL, L’Hospitalet de Llobregat, 08908 Barcelona, Spain;
| |
Collapse
|
22
|
Das SS, Hussain A, Verma PRP, Imam SS, Altamimi MA, Alshehri S, Singh SK. Recent Advances in Liposomal Drug Delivery System of Quercetin for Cancer Targeting: A Mechanistic Approach. Curr Drug Deliv 2020; 17:845-860. [PMID: 32294036 DOI: 10.2174/1567201817666200415112657] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/09/2020] [Accepted: 03/15/2020] [Indexed: 11/22/2022]
Abstract
Quercetin (QT, 3,3',4',5,7-pentahydroxyflavone), is a natural flavonoid with nutritional value and acts as a potential free-radical scavenger (antioxidant). QT has also been explored for its anti-cancer as well as anti-proliferative activities against numerous cancerous cells. Moreover, QT exhibits significant pro-apoptotic activity against tumor cells and is well established to control the growth of different carcinoma cells at various phases of the cell cycle. Hence, it can reduce the burden of human solid cancer and metastasis. Both these activities have been established in a diverse class of human cell lines in-vitro as well as in animal models (in-vivo). Apart from the promising therapeutic activities of QT molecule, their applications have been limited due to some major concerns, including low oral bioavailability and poor aqueous solubility. Also, rapid gastrointestinal digestion of QT seems to be a key barrier for its clinical translations for oral drug delivery in conventional dosage form. Henceforth, to overcome these drawbacks, QT is loaded with liposomal systems, which exhibit promising outcomes in the upregulation of QT by the epithelial system and also improved its targeting at the site of action. Furthermore, Liposomes based Drug Delivery Systems (LDDS) have showed significant therapeutic activity with conjugated drug moiety and exhibit safety, biocompatibility, biodegradability, and mitigated toxicity despite having certain limitations associated with physiological and biological barriers. Herein, in this review, we have focused on the mechanism related with the chemotherapeutic activity of QT and also discussed the promising activity of QT-loaded LDDS as a potent chemotherapeutic agent for cancer therapy.
Collapse
Affiliation(s)
- Sabya S Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra- 835215 Ranchi, Jharkhand, India
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Priya R Prasad Verma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra- 835215 Ranchi, Jharkhand, India
| | - Syed S Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad A Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,College of Pharmacy, Almaarefa University, Riyadh, Kingdom of Saudi Arabia
| | - Sandeep Kumar Singh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra- 835215 Ranchi, Jharkhand, India
| |
Collapse
|
23
|
Shen Y, TanTai J. Co-Delivery Anticancer Drug Nanoparticles for Synergistic Therapy Against Lung Cancer Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4503-4510. [PMID: 33122893 PMCID: PMC7591005 DOI: 10.2147/dddt.s275123] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/02/2020] [Indexed: 01/24/2023]
Abstract
Introduction This study aims to develop a novel co-delivery gefitinib and quercetin system loaded with PLGA-PEG nanoparticles and evaluate their antitumor activity in vitro and in vivo. Methods Gef/Qur NPs were prepared and characterized. The release of drugs, stability, cellular uptake and cytotoxicity were evaluated in vitro. The antitumor effects and systemic toxicity of different formulations were also investigated. Results Gef/Qur NPs displayed a smaller particle size and a PDI and zeta potential of 0.11 and −23.5 mV, respectively. The hydrophobic Gef and Qur content in NPs reached up to 65.2% and 56.4%, respectively, and their high entrapment efficiencies recorded 83.7% and 82.3%, respectively. The in vitro release of Gef/Qur from the NPs was sustained for 12 h. Compared with control groups, Gef/Qur NPs showed higher cellular uptake and cell inhibition rates. In vivo studies identified the lungs as the target tissue and the region of maximum drug release. Through pharmacodynamics analysis, we found that two drugs (Gef and Qur) were incorporated into one nanoparticle carrier, which played a good role in generating synergistic effect. Discussion It is concluded that PLGA-PEG is an ideal drug carrier for the co-delivery of Gef/Qur to treat lung cancer.
Collapse
Affiliation(s)
- Yuzhou Shen
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Jicheng TanTai
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| |
Collapse
|
24
|
Tang L, Li K, Zhang Y, Li H, Li A, Xu Y, Wei B. Quercetin liposomes ameliorate streptozotocin-induced diabetic nephropathy in diabetic rats. Sci Rep 2020; 10:2440. [PMID: 32051470 PMCID: PMC7016118 DOI: 10.1038/s41598-020-59411-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/29/2020] [Indexed: 01/27/2023] Open
Abstract
The effects of quercetin liposomes (Q-PEGL) on streptozotocin (STZ)-induced diabetic nephropathy (DN) was investigated in rats. Male Sprague Dawley rats were used to establish a STZ induced DN model. DN rats randomly received one of the following treatments for 8 weeks: blank treatment (DN), free quercetin (Que), pegylated liposomes (PEGL) and pegylated quercetin liposomes (Q-PEGL). A group of healthy rats served as the normal control. The fasting blood glucose (FBG), body weights (BWs), renal hypertrophy index (rHI), serum and urine biochemistry, renal histopathology, oxidative stress and immunohistochemical measurements of AGEs were analyzed to compare the effect of different treatments. Que and Q-PEGL significantly improved DN biochemistry and pathological changes, although the treated rats still had some symptoms of DN. The therapeutic effect of Q-PEGL surpassed that of Que. Pegylated quercetin liposomes allow maintaining higher quercetin concentrations in plasma than non-encapsulated quercetin. In conclusion the use of quercetin liposomes allows to reduce disease symptoms in a rat model of DN.
Collapse
Affiliation(s)
- Lixia Tang
- Department of Endocrine, The First People's Hospital of Yongkang, Jinhua, 321300, P.R. China
| | - Ke Li
- Department of Endocrine, The First People's Hospital of Yongkang, Jinhua, 321300, P.R. China
| | - Yan Zhang
- Department of Pathology, Zhucheng Maternal and Child Health Hospital, Weifang, 262200, P.R. China
| | - Huifang Li
- Department of Endocrine, The First People's Hospital of Yongkang, Jinhua, 321300, P.R. China
| | - Ankang Li
- Department of Pharmacy, The First People's Hospital of Yongkang, Jinhua, 321300, P.R. China
| | - Yuancheng Xu
- Department of Pathology, The First People's Hospital of Yongkang, Jinhua, 321300, P.R. China
| | - Bing Wei
- Department of Orthopedics, The First People's Hospital of Yongkang, Jinhua, 321300, P.R. China.
| |
Collapse
|
25
|
Mortezaee K, Najafi M, Farhood B, Ahmadi A, Shabeeb D, Musa AE. NF‐κB targeting for overcoming tumor resistance and normal tissues toxicity. J Cell Physiol 2019; 234:17187-17204. [DOI: 10.1002/jcp.28504] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy School of Medicine, Kurdistan University of Medical Sciences Sanandaj Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department School of Paramedical Sciences, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology Faculty of Paramedical Sciences, Kashan University of Medical Sciences Kashan Iran
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center Faculty of Pharmacy, Mazandaran University of Medical Sciences Sari Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology College of Medicine, University of Misan Misan Iraq
| | - Ahmed E. Musa
- Department of Medical Physics Tehran University of Medical Sciences (International Campus) Tehran Iran
| |
Collapse
|
26
|
Zhou X, Liu HY, Zhao H, Wang T. RGD-modified nanoliposomes containing quercetin for lung cancer targeted treatment. Onco Targets Ther 2018; 11:5397-5405. [PMID: 30214245 PMCID: PMC6128275 DOI: 10.2147/ott.s169555] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose The aim of this study was to prepare RGD-modified nanoliposomes containing quercetin (QCT) distearoyl-L-a-phosphatidylethanolamine-polyethylene glycol 2000-RGD-liposomes ([DSPE]-PEG2000-RGD-LPs/QCT) for lung cancer targeting treatment. Methods The physicochemical parameters of (DSPE)-PEG2000-RGD-LPs/QCT were characterized in terms of the particle size, zeta potential, morphology, entrapment efficiency, drug loading, and in vitro release behavior. In vivo, pharmacokinetics and antitumor studies of prepared formulations were also evaluated. Results In this study, QCT was found to be easily dispersed in lipid solution and entrapped by the thin-film hydration method. The encapsulation ratio and drug loading of prepared LPs were 89.2%±7.4% and 9.2%±1.3% and the mean diameter was 93.4±7.2 nm from 3 batches. The results of in vitro experiments showed that the particle size of liposomes was suitable for the fenestrated vasculatures of cancer tissues via the enhanced permeability retention effect. In vitro, a relatively slow QCT release profile was observed in (DSPE)-PEG2000-RGD-LPs, and the release mechanism fit with the Higuchi equation better. In vivo imaging results indicated that RGD-modified LPs had very good tumor targeting ability. (DSPE)-PEG2000-RGD-LPs/QCT showed a significant antitumor activity in mice with A549 tumors. Conclusion Through this study, it was found that the RGD-modified LPs loaded with QCT could potentially be a very promising lung-targeted preparation.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of General Thoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Hong-Yan Liu
- Department of Respiratory, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China,
| | - Hui Zhao
- Department of Respiratory, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China,
| | - Tong Wang
- Department of General Medicine, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
27
|
Mishra V, Banga J, Silveyra P. Oxidative stress and cellular pathways of asthma and inflammation: Therapeutic strategies and pharmacological targets. Pharmacol Ther 2018; 181:169-182. [PMID: 28842273 PMCID: PMC5743757 DOI: 10.1016/j.pharmthera.2017.08.011] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Asthma is a complex inflammatory disease characterized by airway inflammation and hyperresponsiveness. The mechanisms associated with the development and progression of asthma have been widely studied in multiple populations and animal models, and these have revealed involvement of various cell types and activation of intracellular signaling pathways that result in activation of inflammatory genes. Significant contributions of Toll-like-receptors (TLRs) and transcription factors such as NF-кB, have been reported as major contributors to inflammatory pathways. These have also recently been associated with mechanisms of oxidative biology. This is of important clinical significance as the observed inefficacy of current available treatments for severe asthma is widely attributed to oxidative stress. Therefore, targeting oxidizing molecules in conjunction with inflammatory mediators and transcription factors may present a novel therapeutic strategy for asthma. In this review, we summarize TLRs and NF-кB pathways in the context of exacerbation of asthma pathogenesis and oxidative biology, and we discuss the potential use of polyphenolic flavonoid compounds, known to target these pathways and possess antioxidant activity, as potential therapeutic agents for asthma.
Collapse
Affiliation(s)
- Vikas Mishra
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Departments of Pediatrics, The Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Jaspreet Banga
- The Feinstein Institute for Medical Research, Center for Autoimmune and Musculoskeletal Diseases, Manhasset, NY, USA
| | - Patricia Silveyra
- Departments of Pediatrics, The Pennsylvania State University, College of Medicine, Hershey, PA, USA; Biochemistry and Molecular Biology, The Pennsylvania State University, College of Medicine, Hershey, PA, USA.
| |
Collapse
|
28
|
Qin M, Chen W, Cui J, Li W, Liu D, Zhang W. Protective efficacy of inhaled quercetin for radiation pneumonitis. Exp Ther Med 2017; 14:5773-5778. [PMID: 29285120 PMCID: PMC5740811 DOI: 10.3892/etm.2017.5290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/28/2017] [Indexed: 12/30/2022] Open
Abstract
Radiation pneumonitis is a clinical problem with a high incidence. Once the onset of radiation pneumonitis has occurred, the administration of antioxidants and anti-inflammatory agents is the most commonly used method of clinical treatment. Quercetin (Que) is a common flavonoid, with potent anti-inflammatory and anti-oxidant activities. In the present study, the therapeutic effect of inhaled Que on radiation-induced radiation pneumonitis in rats was investigated. Treatment with Que via inhalation was shown to increase the number of leukocytes and erythrocytes in the blood, and reduce the number of inflammatory cells in bronchoalveolar lavage fluid. Histological examination of lung tissue indicated that inhaled Que reduced hemorrhaging and the infiltration of inflammatory cells, and suppressed the expression of the proinflammatory cytokines transforming growth factor-β1 and interleukin-6. These results indicated that treatment with Que via inhalation ameliorates radiation pneumonitis by reducing the number of inflammatory cells, and attenuating the inflammatory response and pathological changes. This suggests that administration of Que via inhalation has the potential to become a novel treatment for radiation pneumonitis.
Collapse
Affiliation(s)
- Meng Qin
- Department of Pharmaceutics, College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Weijuan Chen
- Department of Pathology, People's Hospital of Shouguang, Weifang, Shandong 262700, P.R. China
| | - Juanjuan Cui
- Department of Pharmaceutics, College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Wentao Li
- Laboratory of Pharmacology, College of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Dongmei Liu
- Department of Pharmaceutics, College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Weifen Zhang
- Department of Pharmaceutics, College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
29
|
Nikfarjam BA, Hajiali F, Adineh M, Nassiri-Asl M. Anti-inflammatory Effects of Quercetin and Vitexin on Activated Human Peripheral Blood Neutrophils: - The effects of quercetin and vitexin on human neutrophils. J Pharmacopuncture 2017; 20:127-131. [PMID: 30087790 PMCID: PMC5532472 DOI: 10.3831/kpi.2017.20.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/10/2017] [Accepted: 06/20/2017] [Indexed: 11/21/2022] Open
Abstract
Objectives Polymorphonuclear neutrophils (PMNs) constitute the first line of defense against invading microbial pathogens. Early events in inflammation involve the recruitment of neutrophils to the site of injury or damage where changes in intracellular calcium can cause the activation of pro-inflammatory mediators from neutrophils including superoxide generation, degranulation and release of myeloperoxidase (MPO), productions of interleukin (IL)-8 and tumor necrosis factor α (TNF-α), and adhesion to the vascular endothelium. To address the anti-inflammatory role of flavonoids, in the present study, we investigated the effects of the flavonoids quercetin and vitexin on the stimulus-induced nitric oxide (NO), TNF-α, and MPO productions in human neutrophils. Methods Human peripheral blood neutrophils were isolated, and their viabilities were determined by using the Trypan Blue exclusion test. The polymorphonuclear leukocyte (PMNL) preparations contained more than 98% neutrophils as determined by morphological examination with Giemsa staining. The viabilities of cultured neutrophils with various concentrations of quercetin and vitexin (1 – 100 μM) were studied using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays. Neutrophils were cultured in complete Roswell Park Memorial Institute (RPMI) medium, pre-incubated with or without quercetin and vitexin (25 μM) for 45 min, and stimulated with phorbol 12-myristate 13-acetate (PMA) (10−7 M). NO production was carried out through nitrite determination by using the Griess method. Also, the TNF-α and the MPO productions were measured using enzyme-linked immunosorbent assay (ELISA) kits and MPO assay kits. Results Neutrophil viability was not affected up to a concentration of 100 μM of quercetin or vitexin. Both quercetin and vitexin significantly inhibited TNF-α, NO, and MPO productions in human neutrophils (P < 0.001). Conclusion The present study showed that both quercetin and vitexin had significant anti-inflammatory effects. Thus, treatment with either quercetin or vitexin may be considered as a therapeutic strategy for treating patients with neutrophil-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Bahareh Abd Nikfarjam
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.,Department of Immunology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farid Hajiali
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohtaram Adineh
- Department of Immunology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.,Department of Pharmacology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
30
|
Zhou J, Li LU, Fang LI, Xie H, Yao W, Zhou X, Xiong Z, Wang LI, Li Z, Luo F. Quercetin reduces cyclin D1 activity and induces G1 phase arrest in HepG2 cells. Oncol Lett 2016; 12:516-522. [PMID: 27347174 PMCID: PMC4906932 DOI: 10.3892/ol.2016.4639] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/29/2016] [Indexed: 02/05/2023] Open
Abstract
Quercetin is able to inhibit proliferation of malignant tumor cells; however, the exact mechanism involved in this biological process remains unclear. The current study utilized a quantitative proteomic analysis to explore the antitumor mechanisms of quercetin. The leucine of HepG2 cells treated with quercetin was labeled as d3 by stable isotope labeling by amino acids in cell culture (SILAC). The isotope peaks of control HepG2 cells were compared with the d3-labeled HepG2 cells by mass spectrometry (MS) to identify significantly altered proteins. Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analyses were subsequently employed to verify the results of the MS analysis. A flow cytometry assay was designed to observe the influence of various quercetin treatment concentrations on the cell cycle distribution of HepG2 cells. The results indicated that quercetin is able to substantially inhibit proliferation of HepG2 cells and induce an obvious morphological alteration of cells. According to the MS results, the 70 credibly-changed proteins that were identified may play important roles in multiple cellular processes, including protein synthesis, signaling, cytoskeletal processes and metabolism. Among these functional proteins, the expression of cyclin D1 (CCND1) was found to be significantly decreased. RT-PCR and western blot analyses verified the SILAC-MS results of decreased CCND1 expression. In summary, flow cytometry revealed that quercetin is able to induce G1 phase arrest in HepG2 cells. Based on the aforementioned observations, it is suggested that quercetin exerts antitumor activity in HepG2 cells through multiple pathways, including interfering with CCND1 gene expression to disrupt the cell cycle and proliferation of HepG2 cells. In the future, we aim to explore this effect in vivo.
Collapse
Affiliation(s)
- Jin Zhou
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China; Department of Chemotherapy, Sichuan Cancer Hospital, Chengdu, Sichuan 610041, P.R. China
| | - L U Li
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - L I Fang
- Department of Gastroenterology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan 610041, P.R. China
| | - Hua Xie
- Department of Chemotherapy, Sichuan Cancer Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Wenxiu Yao
- Department of Chemotherapy, Sichuan Cancer Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Xiang Zhou
- Department of Chemotherapy, Sichuan Cancer Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Zhujuan Xiong
- Department of Chemotherapy, Sichuan Cancer Hospital, Chengdu, Sichuan 610041, P.R. China
| | - L I Wang
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhixi Li
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Feng Luo
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
31
|
Therapeutic Implications for Overcoming Radiation Resistance in Cancer Therapy. Int J Mol Sci 2015; 16:26880-913. [PMID: 26569225 PMCID: PMC4661850 DOI: 10.3390/ijms161125991] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/29/2015] [Accepted: 10/29/2015] [Indexed: 12/17/2022] Open
Abstract
Ionizing radiation (IR), such as X-rays and gamma (γ)-rays, mediates various forms of cancer cell death such as apoptosis, necrosis, autophagy, mitotic catastrophe, and senescence. Among them, apoptosis and mitotic catastrophe are the main mechanisms of IR action. DNA damage and genomic instability contribute to IR-induced cancer cell death. Although IR therapy may be curative in a number of cancer types, the resistance of cancer cells to radiation remains a major therapeutic problem. In this review, we describe the morphological and molecular aspects of various IR-induced types of cell death. We also discuss cytogenetic variations representative of IR-induced DNA damage and genomic instability. Most importantly, we focus on several pathways and their associated marker proteins responsible for cancer resistance and its therapeutic implications in terms of cancer cell death of various types and characteristics. Finally, we propose radiation-sensitization strategies, such as the modification of fractionation, inflammation, and hypoxia and the combined treatment, that can counteract the resistance of tumors to IR.
Collapse
|
32
|
Lee SJ, Yi CO, Heo RW, Song DH, Cho YJ, Jeong YY, Kang KM, Roh GS, Lee JD. Clarithromycin Attenuates Radiation-Induced Lung Injury in Mice. PLoS One 2015; 10:e0131671. [PMID: 26114656 PMCID: PMC4482753 DOI: 10.1371/journal.pone.0131671] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/04/2015] [Indexed: 02/06/2023] Open
Abstract
Radiation-induced lung injury (RILI) is a common and unavoidable complication of thoracic radiotherapy. The current study was conducted to evaluate the ability of clarithromycin (CLA) to prevent radiation-induced pneumonitis, oxidative stress, and lung fibrosis in an animal model. C57BL/6J mice were assigned to control, irradiation only, irradiation plus CLA, and CLA only groups. Test mice received single thoracic exposures to radiation and/or oral CLA (100 mg/kg/day). Histopathologic findings and markers of inflammation, fibrosis, and oxidative stress were compared by group. On a microscopic level, CLA inhibited macrophage influx, alveolar fibrosis, parenchymal collapse, consolidation, and epithelial cell changes. The concentration of collagen in lung tissue was lower in irradiation plus CLA mice. Radiation-induced expression of tumor necrosis factor (TNF)-α, TNF receptor 1, acetylated nuclear factor kappa B, cyclooxygenase 2, vascular cell adhesion molecule 1, and matrix metallopeptidase 9 were also attenuated by CLA. Expression levels of nuclear factor erythroid 2-related factor 2 and heme oxygenase 1, transforming growth factor-β1, connective tissue growth factor, and type I collagen in radiation-treated lungs were also attenuated by CLA. These findings indicate that CLA ameliorates the deleterious effects of thoracic irradiation in mice by reducing pulmonary inflammation, oxidative damage, and fibrosis.
Collapse
Affiliation(s)
- Seung Jun Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Chin-ok Yi
- Department of Anatomy & Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Rok Won Heo
- Department of Anatomy & Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Dae Hyun Song
- Department of Pathology, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Yu Ji Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Yi Yeong Jeong
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Ki Mun Kang
- Department of Radiation Oncology, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy & Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Jong Deog Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| |
Collapse
|
33
|
Integration of Quercetin-Iron Complexes into Phosphatidylcholine or Phosphatidylethanolamine Liposomes. Appl Biochem Biotechnol 2015; 176:1904-13. [PMID: 26047928 DOI: 10.1007/s12010-015-1686-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/25/2015] [Indexed: 12/19/2022]
Abstract
It is well known that flavonoids can chelate transition metals. Flavonoid-metal complexes exhibit a high antioxidative and therapeutic potential. However, the complexes are frequently hydrophobic ones and low soluble in water, which restricts their medical applications. Integration of these complexes into liposomes may increase their bioavailability and therapeutic effect. Here, we studied the interaction of quercetin-iron complexes with dimyristoylphosphatidylcholine (DMPC) or palmitoyl-oleoyl phosphatidylethanolamine (POPE) multilamellar liposomes. Differential scanning calorimetry (DSC) and freeze-fracture electron microscopy revealed that quercetin-iron complexes did not interact with liposomes. Quercetin however could penetrate lipid bilayers, when added to liposomes at a temperature above lipid melting. Iron cations added later penetrated into the lipid bilayers and produced complexes with quercetin in the liposomes. The quercetin-iron entry in POPE liposomes was improved when the suspension was heated above the temperature of the bilayer-hexagonal HII phase transition of the lipid. The approach proposed facilitates the integration of quercetin-iron complexes into liposomes and may promote their use in medicine.
Collapse
|
34
|
Dong C, He M, Tu W, Konishi T, Liu W, Xie Y, Dang B, Li W, Uchihori Y, Hei TK, Shao C. The differential role of human macrophage in triggering secondary bystander effects after either gamma-ray or carbon beam irradiation. Cancer Lett 2015; 363:92-100. [PMID: 25896631 DOI: 10.1016/j.canlet.2015.04.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/21/2015] [Accepted: 04/14/2015] [Indexed: 12/30/2022]
Abstract
The abscopal effect could be an underlying factor in evaluating prognosis of radiotherapy. This study established an in vitro system to examine whether tumor-generated bystander signals could be transmitted by macrophages to further trigger secondary cellular responses after different irradiations, where human lung cancer NCI-H446 cells were irradiated with either γ-rays or carbon ions and co-cultured with human macrophage U937 cells, then these U937 cells were used as a bystander signal transmitter and co-cultured with human bronchial epithelial cells BEAS-2B. Results showed that U937 cells were only activated by γ-irradiated NCI-H446 cells so that the secondary injuries in BEAS-2B cells under carbon ion irradiation were weaker than γ-rays. Both TNF-α and IL-1α were involved in the γ-irradiation induced secondary bystander effect but only TNF-α contributed to the carbon ion induced response. Further assay disclosed that IL-1α but not TNF-α was largely responsible for the activation of macrophages and the formation of micronucleus in BEAS-2B cells. These data suggest that macrophages could transfer secondary bystander signals and play a key role in the secondary bystander effect of photon irradiation, while carbon ion irradiation has conspicuous advantage due to its reduced secondary injury.
Collapse
Affiliation(s)
- Chen Dong
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Mingyuan He
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China; Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Wenzhi Tu
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Teruaki Konishi
- Research Development and Support Center, National Institute of Radiological Sciences, Inage, Chiba 263-8555, Japan
| | - Weili Liu
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Yuexia Xie
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China; Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Bingrong Dang
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou 730000, China
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou 730000, China
| | - Yukio Uchihori
- Research Development and Support Center, National Institute of Radiological Sciences, Inage, Chiba 263-8555, Japan
| | - Tom K Hei
- Department of Radiation Oncology, Columbia University Medical Center, New York, NY 10032, USA
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China.
| |
Collapse
|
35
|
Kunwar A, Haston CK. Basal levels of glutathione peroxidase correlate with onset of radiation induced lung disease in inbred mouse strains. Am J Physiol Lung Cell Mol Physiol 2014; 307:L597-604. [PMID: 25150064 DOI: 10.1152/ajplung.00088.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Biomarkers predicting for the radiation-induced lung responses of pneumonitis or fibrosis are largely unknown. Herein we investigated whether markers of oxidative stress and intracellular antioxidants, measured within days of radiation exposure, are correlated with the lung tissue injury response occurring weeks later. Mice of the eight inbred strains differing in their susceptibility to radiation-induced pulmonary fibrosis, and in the duration of asymptomatic survival, received 18 Gy whole thorax irradiation and were killed 6 h, 24 h, or 7 days later. Control mice were not irradiated. Lung levels of antioxidants superoxide dismutase, catalase, glutathione peroxidase (GPx), and glutathione, and of oxidative damage [reactive oxygen species (ROS) and 8-hydroxydeoxyguanosine (8-OHdG)], were biochemically determined. GPx was additionally measured through gene expression and immunohistochemical assessment of lung tissue, and activity in serum. ROS and 8-OHdG were increased postirradiation and exhibited significant strain and time-dependent variability, but were not strongly predictive of radiation-induced lung diseases. Antioxidant measures were not dramatically changed postirradiation and varied significantly among the strains. Basal GPx activity (r = 0.73, P = 0.04) in the lung and the pulmonary expression of GPx2 (r = 0.94, P = 0.0003) correlated with postirradiation asymptomatic survival, whereas serum GPx activity was inversely correlated (r = -0.80, P = 0.01) with fibrosis development. In conclusion, pulmonary oxidative stress and antioxidant markers were more affected by inbred strain than radiation over 7 days posttreatment. Lung GPx activity, and GPx2 expression, predicted for survival from lethal pneumonitis, and serum GPx for fibrosis, in this panel of mice.
Collapse
Affiliation(s)
- Amit Kunwar
- Department of Human Genetics and the Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada; and
| | - Christina K Haston
- Department of Human Genetics and the Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada; and Department of Medicine and the Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
36
|
Modulatory effect of moringa oleifera against gamma-radiation-induced oxidative stress in rats. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.biomag.2014.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|