1
|
Xu L, Shen Y, Zhang C, Shi T, Sheng X. Exploring the Link Between Noncoding RNAs and Glycolysis in Colorectal Cancer. J Cell Mol Med 2025; 29:e70443. [PMID: 39993964 PMCID: PMC11850098 DOI: 10.1111/jcmm.70443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/22/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Glycolysis is implicated in the onset and progression of colorectal cancer (CRC) through its influence on the proliferation, invasiveness, chemoresistance and immune system evasion of neoplasm cells. Increasing evidence has shown that the abnormal expression of noncoding RNAs (ncRNAs), especially microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), in CRC is closely related to glycolysis. In this review, we present a synthesis of the latest research insights into the modulatory roles and distinct pathways of ncRNAs in the glycolytic process in CRC. This knowledge may pave the way for identifying novel therapeutic targets, as well as novel prognostic and diagnostic biomarkers for CRC.
Collapse
Affiliation(s)
- Liang Xu
- Neonatal Department, Suzhou Ninth People's HospitalSuzhou Ninth Hospital Affiliated to Soochow UniversitySuzhouJiangsuChina
| | - Yu Shen
- Department of General Surgery, Suzhou Ninth People's HospitalSuzhou Ninth Hospital Affiliated to Soochow UniversitySuzhouJiangsuChina
| | - Chuanqiang Zhang
- Department of General SurgeryThe Affiliated Jiangsu Shengze Hospital of Nanjing Medical UniversitySuzhouChina
- Shengze Clinical Medical CollegeKangda College of Nanjing Medical UniversityNanjingChina
| | - Tongguo Shi
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xuejuan Sheng
- Health Management Center, Suzhou Ninth People's HospitalSuzhou Ninth Hospital Affiliated to Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
2
|
Kandasamy T, Sarkar S, Ghosh SS. Harnessing Drug Repurposing to Combat Breast Cancer by Targeting Altered Metabolism and Epithelial-to-Mesenchymal Transition Pathways. ACS Pharmacol Transl Sci 2024; 7:3780-3794. [PMID: 39698277 PMCID: PMC11650739 DOI: 10.1021/acsptsci.4c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 12/20/2024]
Abstract
Breast cancer remains one of the most prevalent and challenging cancers to treat due to its complexity and heterogenicity. Cellular processes such as metabolic reprogramming and epithelial-to-mesenchymal transition (EMT) contribute to the complexity of breast cancer by driving uncontrolled cell division, metastasis, and resistance to therapies. Strategically targeting these intricate pathways can effectively impede breast cancer progression, thereby revealing significant potential for therapeutic interventions. Among various emerging therapeutic approaches, drug repurposing offers a promising avenue for enhancing clinical outcomes. In recent years, high-throughput screening, QSAR, and network pharmacology have been widely employed to identify promising repurposed drugs. As an outcome, several drugs, such as Metformin, Itraconazole, Pimozide, and Disulfiram, were repurposed to regulate metabolic and EMT pathways. Moreover, strategies such as combination therapy, targeted delivery, and personalized medicine were utilized to enhance the efficacy and specificity of the repurposed drugs. This review focuses on the potential of targeting altered metabolism and EMT in breast cancer through drug repurposing. It also highlights recent advancements in drug screening techniques, associated limitations, and strategies to overcome these challenges.
Collapse
Affiliation(s)
- Thirukumaran Kandasamy
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati-39, Assam India
| | - Shilpi Sarkar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati-39, Assam India
| | - Siddhartha Sankar Ghosh
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati-39, Assam India
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati-39, Assam India
| |
Collapse
|
3
|
Geng Y, Zheng X, Zhang D, Wei S, Feng J, Wang W, Zhang L, Wu C, Hu W. CircHIF1A induces cetuximab resistance in colorectal cancer by promoting HIF1α-mediated glycometabolism alteration. Biol Direct 2024; 19:36. [PMID: 38715141 PMCID: PMC11075259 DOI: 10.1186/s13062-024-00478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Epidermal growth factor receptor (EGFR)-targeted therapy is an important treatment for RAS wild-type metastatic colorectal cancer (mCRC), but the resistance mechanism remains unclear. Here, the differential expression of circRNAs between Cetuximab sensitive and resistant cell lines was analyzed using whole-transcriptome sequencing. We identified that the expression of circHIF1A was significantly higher in LIM1215-R than in LIM1215. When treated with Cetuximab, downregulation of circHIF1A level weakened the proliferation and clonal formation ability of LIM1215-R, caused more cells to enter G0-G1 phase, and significantly reduced the basal respiration, ATP production, and maximal respiration, as well as the glycolytic capacity and glycolytic reserve. The response rate and prognosis of circHIF1A-positive patients were inferior to those of negative patients. Mechanistically, circHIF1A can upregulate the level of hypoxia-inducible factor 1 A (HIF1A) by competitively binding to miR-361-5p, inducing the overexpression of enzymes such as glucose transporter 1 (GLUT1) and lactate dehydrogenase A (LDHA). In a xenograft model, inhibition of circHIF1A expression increased the sensitivity to Cetuximab treatment. In conclusion, circHIF1A can promote HIF1α-mediated glycometabolism alteration to induce Cetuximab resistance in CRC. It has the potential to become a screening indicator for the Cetuximab beneficial population in mCRC and a new therapeutic target for enhancing treatment efficacy.
Collapse
Affiliation(s)
- Yiting Geng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Dachuan Zhang
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Shanshan Wei
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Jun Feng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Wei Wang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Luo Zhang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Changping Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
| | - Wenwei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
4
|
Wang K, Lu Y, Li H, Zhang J, Ju Y, Ouyang M. Role of long non-coding RNAs in metabolic reprogramming of gastrointestinal cancer cells. Cancer Cell Int 2024; 24:15. [PMID: 38184562 PMCID: PMC10770979 DOI: 10.1186/s12935-023-03194-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024] Open
Abstract
Metabolic reprogramming, which is recognized as a hallmark of cancer, refers to the phenomenon by which cancer cells change their metabolism to support their increased biosynthetic demands. Tumor cells undergo substantial alterations in metabolic pathways, such as glycolysis, oxidative phosphorylation, pentose phosphate pathway, tricarboxylic acid cycle, fatty acid metabolism, and amino acid metabolism. Latest studies have revealed that long non-coding RNAs (lncRNAs), a group of non-coding RNAs over 200 nucleotides long, mediate metabolic reprogramming in tumor cells by regulating the transcription, translation and post-translational modification of metabolic-related signaling pathways and metabolism-related enzymes through transcriptional, translational, and post-translational modifications of genes. In addition, lncRNAs are closely related to the tumor microenvironment, and they directly or indirectly affect the proliferation and migration of tumor cells, drug resistance and other processes. Here, we review the mechanisms of lncRNA-mediated regulation of glucose, lipid, amino acid metabolism and tumor immunity in gastrointestinal tumors, aiming to provide more information on effective therapeutic targets and drug molecules for gastrointestinal tumors.
Collapse
Affiliation(s)
- Kang Wang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Yan Lu
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China
| | - Haibin Li
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Jun Zhang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China
- Guangdong Medical University, Dongguan, 523808, China
| | - Yongle Ju
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, Guangdong, China.
| | - Manzhao Ouyang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
5
|
Ghasemi F, Farkhondeh T, Samarghandian S, Ghasempour A, Shakibaie M. Oncogenic Alterations of Metabolism Associated with Resistance to Chemotherapy. Curr Mol Med 2024; 24:856-866. [PMID: 37350008 DOI: 10.2174/1566524023666230622104625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 06/24/2023]
Abstract
Metabolic reprogramming in cancer cells is a strategy to meet high proliferation rates, invasion, and metastasis. Also, several researchers indicated that the cellular metabolism changed during the resistance to chemotherapy. Since glycolytic enzymes play a prominent role in these alterations, the ability to reduce resistance to chemotherapy drugs is promising for cancer patients. Oscillating gene expression of these enzymes was involved in the proliferation, invasion, and metastasis of cancer cells. This review discussed the roles of some glycolytic enzymes associated with cancer progression and resistance to chemotherapy in the various cancer types.
Collapse
Affiliation(s)
- Fahimeh Ghasemi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Medical Biotechnology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Alireza Ghasempour
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehdi Shakibaie
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
6
|
Pak JN, Lee HJ, Sim DY, Park JE, Ahn CH, Park SY, Khil JH, Shim B, Kim B, Kim SH. Anti-Warburg effect via generation of ROS and inhibition of PKM2/β-catenin mediates apoptosis of lambertianic acid in prostate cancer cells. Phytother Res 2023; 37:4224-4235. [PMID: 37235481 DOI: 10.1002/ptr.7903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
To elucidate the underlying antitumor mechanism of lambertianic acid (LA) derived from Pinus koraiensis, the role of cancer metabolism related molecules was investigated in the apoptotic effect of LA in DU145 and PC3 prostate cancer cells. MTT assay for cytotoxicity, RNA interference, cell cycle analysis for sub G1 population, nuclear and cytoplasmic extraction, lactate, Glucose and ATP assay by ELISA, Measurement of reactive oxygen species (ROS) generation, Western blotting, and immunoprecipitation assay were conducted in DU145 and PC3 prostate cancer cells. Herein LA exerted cytotoxicity, increased sub G1 population and attenuated the expression of pro-Caspase3 and pro-poly (ADP-ribose) polymerase (pro-PARP) in DU145 and PC3 cells. Also, LA reduced the expression of lactate dehydrogenase A (LDHA), glycolytic enzymes such as hexokinase 2 and pyruvate kinase M2 (PKM2) with reduced production of lactate in DU145 and PC3 cells. Notably, LA decreased phosphorylation of PKM2 on Tyr105 and inhibited the expression of p-STAT3, cyclin D1, C-Myc, β-catenin, and p-GSK3β with the decrease of nuclear translocation of p-PKM2. Furthermore, LA disturbed the binding of p-PKM2 and β-catenin in DU145 cells, which was supported by Spearman coefficient (0.0463) of cBioportal database. Furthermore, LA generated ROS in DU145 and PC3 cells, while ROS scavenger NAC (N-acetyl L-cysteine) blocked the ability of LA to reduce p-PKM2, PKM2, β-catenin, LDHA, and pro-caspase3 in DU145 cells. Taken together, these findings provide evidence that LA induces apoptosis via ROS generation and inhibition of PKM2/β-catenin signaling in prostate cancer cells.
Collapse
Affiliation(s)
- Ji-Na Pak
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Eon Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chi-Hoon Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Su-Yeon Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Ho Khil
- Institute of Sports Science, Kyung Hee University, Yongin, Republic of Korea
| | - Bumsang Shim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Li H, Liu L, Huang T, Jin M, Zheng Z, Zhang H, Ye M, Liu K. Establishment of a novel ferroptosis-related lncRNA pair prognostic model in colon adenocarcinoma. Aging (Albany NY) 2021; 13:23072-23095. [PMID: 34610581 PMCID: PMC8544324 DOI: 10.18632/aging.203599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been reported to be prognostic factors for cancer. Ferroptosis is an iron-dependent process of programmed cell death. Here, we established a ferroptosis-related lncRNA (frlncRNA) pair signature and revealed its prognostic value in colon adenocarcinoma (COAD) by analyzing the data from The Cancer Genome Atlas (TCGA). FrlncRNAs were identified based on co-expression analysis using the Pearson correlation. Differentially expressed frlncRNAs (DEfrlncRNAs) were recognized and paired, followed by prognostic assessment using univariate Cox regression analysis. The least absolute shrinkage and selection operator (LASSO) penalized Cox analysis was used to determine and construct a risk score prognostic model, by which the receiver operating characteristic (ROC) curves for predicting the overall survival (OS) were conducted. Following the evaluation of whether it was an independent prognostic factor, correlations between the risk score model and clinicopathological characteristics, hypoxia- and immune-related factors, and somatic variants were investigated. In total, 148 DEfrlncRNA pairs were identified, 25 of which were involved in a risk score prognostic signature. The area under ROC curves (AUCs) representing the predictive effect for 1-, 3-, and 5-year survival rates were 0.860, 0.885, and 0.934, respectively. The risk score model was confirmed as an independent prognostic factor and was significantly superior to the clinicopathological characteristics. Correlation analyses showed disparities in clinicopathological characteristics, hypoxia- and immune-related factors, and somatic variants, as well as specific signaling pathways between high- and low-risk groups. The novel risk score prognostic model constructed by pairing DEfrlncRNAs showed promising clinical prediction value in COAD.
Collapse
Affiliation(s)
- Hong Li
- Department of General Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Lili Liu
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tianyi Huang
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Ming Jin
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Zhen Zheng
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Hui Zhang
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Meng Ye
- Department of Oncology and Hematology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Kaitai Liu
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
8
|
Deng B, Deng J, Yi X, Zou Y, Li C. ROCK2 Promotes Osteosarcoma Growth and Glycolysis by Up-Regulating HKII via Phospho-PI3K/AKT Signalling. Cancer Manag Res 2021; 13:449-462. [PMID: 33500659 PMCID: PMC7823140 DOI: 10.2147/cmar.s279496] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/24/2020] [Indexed: 01/14/2023] Open
Abstract
Background Osteosarcoma (OS) is a malignant bone tumour that exhibits a high mortality. While tumours thrive in a state of malnutrition, the mechanism by which OS cells adapt to metabolic stress through metabolic reprogramming remains unclear. Methods We analysed the expression of ROCK2 in osteosarcoma tissues by RT-qPCR and Western blot. Cell proliferation were analysed using CCK8, EdU and colony formation assays. The level of cell glycolysis was detected by glucose-6 phosphate, glucose consumption, lactate production and ATP levels. Results Herein, our study showed that ROCK2 expression in OS tissues was higher than in adjacent tissues. Functional assays have demonstrated that ROCK2 contributes to the growth of OS cells by inducing aerobic glycolysis. The current study revealed that ROCK2 knockdown decreased the levels of mitochondrial hexokinase II (HKII). And also indicated that ROCK2 served as a key enzyme in glycolysis and that it served an important role in tumour growth. A significant positive correlation was identified between the mRNA and protein expressions of ROCK2 and HKII, further demonstrating that ROCK2-induced glycolysis and proliferation was dependent on HKII expression in OS cells. Mechanistically, ROCK2 promotes HKII expression by activating the phospho-PI3K/AKT signalling pathway. Conclusion Taken together, the results of the current study linked the two drivers of OS growth and aerobic glycolysis and identified a new mechanism of ROCK2 control in OS.
Collapse
Affiliation(s)
- Binbin Deng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Jianyong Deng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Xuan Yi
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yeqing Zou
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Chen Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
9
|
Cui G, Huang Y, Feng W, Yao Y, Zhou H, Li X, Gong H, Liu J, Luo Y, Sun Y, Zhang M, Luo Y, Zhang T. Colon cancer-associated transcript-1 enhances glucose metabolism and colon cancer cell activity in a high-glucose environment in vitro and in vivo. J Gastrointest Oncol 2020; 11:1164-1185. [PMID: 33456991 PMCID: PMC7807285 DOI: 10.21037/jgo-20-474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/04/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Our study aims to investigate the effect of colon cancer-associated transcript-1 (CCAT-1) on colon cancer cells' activity and metabolism under different glucose environments in vitro and in vivo. METHODS The levels of proliferation, migration, glucose, lactic acid, glucose metabolism-related enzymes, apoptosis genes, epithelial-mesenchymal transition (EMT) marker proteins, and PI3K/Akt/C-MYC pathway in CCAT-1-silenced SW620 cells cultured with different glucose levels were tested. Twenty BALB/C nude mice with hyperglycemia or normal blood sugar were transplanted with CCAT-1-silenced SW620 cells, blood glucose levels, lactic acid, insulin, and volume of transplanted tumor cells, the expression of EMT marker proteins, and PI3K/Akt/C-MYC pathway was detected. RESULTS The levels of proliferation, migration, glucose, lactic acid, LDH-A, PKM2, and HK2 decreased, apoptosis increased in SW620 cells cultured with low glucose or silenced CCAT-1 (P<0.05); levels of E-cadherin and ZO-1 significantly increased, and levels of N-cadherin, vimentin, and p-Akt decreased in CCAT-1-silenced SW620 cells cultured with high glucose (P<0.05). Hyperglycemic nude mice transplanted with CCAT-1-silenced colon cancer cells showed decreased tumor volume, blood glucose, lactic acid, insulin, P-AKT, and P-C-MYC than EV group (P<0.05). CONCLUSIONS CCAT-1 can enhance glucose metabolism and proliferation and migration of colon cancer cells by upregulating the expression of glycolysis enzymes, inhibiting apoptosis, activating the Akt/C-MYC pathway, and promoting EMT expression.
Collapse
Affiliation(s)
- Ge Cui
- Department of Pathology, The First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Yuxuan Huang
- School of Medicine, Huaqiao University, Quanzhou, Fujian, China
| | - Wenming Feng
- Department of Surgery, The First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Yunliang Yao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou Central Hospital, Huzhou, China
| | - Hongchang Zhou
- Department of Pathogenic Biology, School of Medicine and Nursing Sciences, Huzhou University, Huzhou Central Hospital, Huzhou, China
| | - Xining Li
- Department of Pathology, School of Medicine and Nursing Sciences, Huzhou University, Huzhou Central Hospital, Huzhou, China
| | - Hui Gong
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Jun Liu
- School of Medicine and Nursing Sciences, Huzhou University, Huzhou Central Hospital, Huzhou, China
| | - Yifan Luo
- School of Medicine and Nursing Sciences, Huzhou University, Huzhou Central Hospital, Huzhou, China
| | - Yandi Sun
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Hangzhou, China
| | - Mengya Zhang
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Hangzhou, China
| | - Yan Luo
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Hangzhou, China
| | - Ting Zhang
- Department of Pathology, School of Medicine and Nursing Sciences, Huzhou University, Huzhou Central Hospital, Huzhou, China
| |
Collapse
|
10
|
Li Y, Zhu M, Huo Y, Zhang X, Liao M. Anti-fibrosis activity of combination therapy with epigallocatechin gallate, taurine and genistein by regulating glycolysis, gluconeogenesis, and ribosomal and lysosomal signaling pathways in HSC-T6 cells. Exp Ther Med 2018; 16:4329-4338. [PMID: 30542382 PMCID: PMC6257822 DOI: 10.3892/etm.2018.6743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/21/2017] [Indexed: 12/24/2022] Open
Abstract
A previous study by our group indicated that combined treatment with taurine, epigallocatechin gallate (EGCG) and genistein protects against liver fibrosis. The aim of the present study was to elucidate the antifibrotic mechanism of this combination treatment using isobaric tag for relative and absolute quantification (iTRAQ)-based proteomics in an activated rat hepatic stellate cell (HSC) line. In the present study, HSC-T6 cells were incubated with taurine, EGCG and genistein, and cellular proteins were extracted and processed for iTRAQ labeling. Quantification and identification of proteins was performed using two-dimensional liquid chromatography coupled with tandem mass spectrometry. Proteomic analysis indicated that the expression of 166 proteins were significantly altered in response to combination treatment with taurine, EGCG and genistein. A total 76 of these proteins were upregulated and 90 were downregulated. Differentially expressed proteins were grouped according to their association with specific Kyoto Encyclopedia of Genes and Genomes pathways. The results indicated that the differentially expressed proteins hexokinase-2 and lysosome-associated membrane glycoprotein 1 were associated with glycolysis, gluconeogenesis and lysosome signaling pathways. The expression of these proteins was validated using western blot analysis; the expression of hexokinase-2 was significantly decreased and the expression of lysosome-associated membrane glycoprotein 1 was significantly increased in HSC-T6 cells treated with taurine, EGCG and genistein compared with the control, respectively (P<0.05). These results were in accordance with the changes in protein expression identified using the iTRAQ approach. Therefore, the antifibrotic effect of combined therapy with taurine, EGCG and genistein may be associated with the activation of several pathways in HSCs, including glycolysis, gluconeogenesis, and the ribosome and lysosome signaling pathways. The differentially expressed proteins identified in the current study may be useful for treatment of liver fibrosis in the future.
Collapse
Affiliation(s)
- Yan Li
- Guangxi University Library, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Min Zhu
- Guangxi University Library, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Yani Huo
- Medical Scientific Research Centre, Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Guangxi Medical University, Ministry of Education, Nanning, Guangxi 530021, P.R. China
| | - Xuerong Zhang
- Medical Scientific Research Centre, Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Guangxi Medical University, Ministry of Education, Nanning, Guangxi 530021, P.R. China
| | - Ming Liao
- Medical Scientific Research Centre, Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Guangxi Medical University, Ministry of Education, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|