1
|
Almeida TAG, Dos Santos OP, Saddi VA, Pereira JX, da Costa Machado H, Santos Carneiro MA, de Paula HM, Figueiredo-Alves RR, Zeferino LC, Rabelo-Santos SH. Association of CD133, ALDH1, CD117 and OCT4 expression with prognosis of patients with cervical cancer. Virchows Arch 2025; 486:791-801. [PMID: 38981932 DOI: 10.1007/s00428-024-03862-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/10/2024] [Accepted: 06/30/2024] [Indexed: 07/11/2024]
Abstract
Cancer stem cells (CSC), a small population of neoplastic cells, are associated with worse prognosis. The aim of this study was to evaluate the expression of ALDH1, CD117, CD133 and OCT4; potential markers of CSC; and their associations with the prognosis of women diagnosed with cervical cancer. This retrospective cohort study included 126 women diagnosed with cervical cancer whose biopsies were analyzed by immunohistochemistry. Median values of marked cells were used to define cutoff points for low and high expression. For specific survival, multivariate analyses showed statistical significance for lymph node metastases (HR 8.15; 95% CI 3.00-22.18) and borderline significance for high CD133 expression (p = 0.058). For overall survival, multivariate analyses showed statistical significance for IIA-IVB staging (HR 4.60; 95% CI 1.46-14.56), lymph node metastases (HR 5.13; 95% CI 12.02-13.03) and high CD133 expression (2.67; 95% CI 1.11-6.43). Considering only women with SCC, the same clinicopathological variables were associated with worse specific and overall survival in univariate analyses. However, higher expression of CD 133 (HR 11.10; 95% CI 2.42-50.94 and 6.00; 95% CI 2.02-17.87) and staging IIA-IVB (HR 5.96; 95% CI 1.30-27.34 and HR 12.47; 95% CI 2.45-63.54) respectively impacted negatively specific and overall survival, as multivariate analyses showed. Secondarily, it was observed that ALDH1 expression was associated with adenocarcinoma and CD117 expression with squamous cells carcinoma. Higher expression of CD133 was associated with worse specific and overall survival, indicating that it could have relevance as a clinical marker and therapeutic target.
Collapse
Affiliation(s)
| | - Odeony Paulo Dos Santos
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
- Center for Social Sciences, Health and Technology, Federal University of Maranhão, Imperatriz, Brazil
| | | | - Jonathas Xavier Pereira
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | | | | | | | | | - Luiz Carlos Zeferino
- Department of Obstetrics and Gynecology, State University of Campinas, São Paulo, Brazil
| | - Silvia Helena Rabelo-Santos
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil.
- School of Pharmacy, Federal University of Goiás, S/N - Setor Leste Universitário, Rua 240, esquina com a 5ª Avenida, s/nº, Goiânia, 74605-170, Brazil.
| |
Collapse
|
2
|
Kevat S, Mistry A, Oza N, Majmudar M, Patel N, Shah R, Ramachandran AV, Chauhan R, Haque S, Parashar NC, Tuli HS, Parashar G. Cancer Stem Cell Regulation as a Target of Therapeutic Intervention: Insights into Breast, Cervical and Lung Cancer. Cell Biochem Biophys 2025:10.1007/s12013-025-01666-w. [PMID: 39843681 DOI: 10.1007/s12013-025-01666-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 01/24/2025]
Abstract
Cancer Stem Cells (CSCs) play an important role in the development, resistance, and recurrence of many malignancies. These subpopulations of tumor cells have the potential to self-renew, differentiate, and resist conventional therapy, highlighting their importance in cancer etiology. This review explores the regulatory mechanisms of CSCs in breast, cervical, and lung cancers, highlighting their plasticity, self-renewal, and differentiation capabilities. CD44+/CD24- cells are a known marker for breast CSCs. Markers like as CD133 and ALDH have been discovered in cervical cancer CSCs. Similarly, in lung cancer, CSCs identified by CD44, CD133, and ALDH are linked to aggressive tumor behavior and poor therapy results. The commonalities between these tumors highlight the general necessity of targeting CSCs in treatment efforts. However, the intricacies of CSC activity, such as their interaction with the tumor microenvironment and particular signaling pathways differ between cancer types, demanding specialized methods. Wnt/β-catenin, Notch, and Hedgehog pathways are one of the essential signaling pathways, targeting them, may show ameliorative effects on breast, lung and cervical carcinomas and their respective CSCs. Pre-clinical data suggests targeting specific signaling pathways can eliminate CSCs, but ongoing clinical trials are on utilizing signaling pathway inhibitors in patients. In recent studies it has been reported that CAR T based targeting of specific markers may be used as combination therapy. Ongoing research related to nanobiotechnology can also play a significant role in diagnosis and treatment purpose targeting CSCs, as nanomaterials can be used for precise targeting and identification of CSCs. Further research into the targeting of signaling pathways and its precursors could prove to be right step into directing therapies towards CSCs for cancer therapy.
Collapse
Affiliation(s)
- Sakshi Kevat
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Archie Mistry
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Naman Oza
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Mohit Majmudar
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Netra Patel
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Rushabh Shah
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - A V Ramachandran
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Ritu Chauhan
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- School Of Medicine, Universidad Espiritu Santo, Samborondon, Ecuador
| | | | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Gaurav Parashar
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India.
| |
Collapse
|
3
|
de Sousa C, Eksteen C, Riedemann J, Engelbrecht AM. Highlighting the role of CD44 in cervical cancer progression: immunotherapy's potential in inhibiting metastasis and chemoresistance. Immunol Res 2024; 72:592-604. [PMID: 38816670 PMCID: PMC11347469 DOI: 10.1007/s12026-024-09493-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Cervical cancer affects thousands of women globally with recurring high-risk HPV infections being at the centre of cervical pathology. Oncological treatment strategies are continually challenged by both chemoresistance and metastasis within patients. Although both work hand-in-hand, targeting their individual mechanisms could prove highly beneficial for treatment outcomes. Such targets include the metastatic-promoting stem cell marker, CD44, which is abundant in cervical cancer cells and is common to both chemoresistance and metastatic mechanisms. Seeing that many existing advanced-stage cervical cancer treatment regimes, such as platinum-based chemotherapy regimens, remain limited and are rarely curative, alternative treatment options within the field of immunology are being considered. The use of immune checkpoint inhibition therapy, which targets immune checkpoints, CTLA-4 and PD-1/PD-L1, has shown promise as an alternate standard of care for patients suffering from advanced-stage cervical cancer. Therefore, this review aims to assess whether immune checkpoint inhibition can mitigate the pathological effects of CD44-induced EMT, metastasis, and chemoresistance in cervical cancer patients.
Collapse
Affiliation(s)
- Cayleigh de Sousa
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Mike de Vries Building, C/o Merriman and Bosman Street, Stellenbosch, 7600, South Africa
| | - Carla Eksteen
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Mike de Vries Building, C/o Merriman and Bosman Street, Stellenbosch, 7600, South Africa
| | | | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Mike de Vries Building, C/o Merriman and Bosman Street, Stellenbosch, 7600, South Africa.
| |
Collapse
|
4
|
Faghihkhorasani A, Dalvand A, Derafsh E, Tavakoli F, Younis NK, Yasamineh S, Gholizadeh O, Shokri P. The role of oncolytic virotherapy and viral oncogenes in the cancer stem cells: a review of virus in cancer stem cells. Cancer Cell Int 2023; 23:250. [PMID: 37880659 PMCID: PMC10599042 DOI: 10.1186/s12935-023-03099-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
Cancer Stem Cells (CSCs) are the main "seeds" for the initiation, growth, metastasis, and recurrence of tumors. According to many studies, several viral infections, including the human papillomaviruses, hepatitis B virus, Epstein-Barr virus, and hepatitis C virus, promote the aggressiveness of cancer by encouraging the development of CSC features. Therefore, a better method for the targeted elimination of CSCs and knowledge of their regulatory mechanisms in human carcinogenesis may lead to the development of a future tool for the management and treatment of cancer. Oncolytic viruses (OVs), which include the herpes virus, adenovirus, vaccinia, and reovirus, are also a new class of cancer therapeutics that have favorable properties such as selective replication in tumor cells, delivery of numerous eukaryotic transgene payloads, induction of immunogenic cell death and promotion of antitumor immunity, as well as a tolerable safety profile that essentially differs from that of other cancer therapeutics. The effects of viral infection on the development of CSCs and the suppression of CSCs by OV therapy were examined in this paper. The purpose of this review is to investigate the dual role of viruses in CSCs (oncolytic virotherapy and viral oncogenes).
Collapse
Affiliation(s)
| | - Alaleh Dalvand
- Tehran Medical Branch, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Ehsan Derafsh
- Department of Basic Medical Science, Windsor University School of Medicine, Brighton's Estate, Cayton, St. Kitts And Nevis
| | - Farnaz Tavakoli
- Nephrology and Transplantation Ward, Shariati Hospital Tehran University of Medical Sciences, Tehran, Iran
| | | | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Pooria Shokri
- Department of Medical Science, Faculty of Medical Science, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
5
|
Orekoya AA, Abdus-Salam AA, Oyesegun AR, Ntekim AI, Folasire AM, Okolo CA, Olabumuyi AA, Dada AA, Adenipekun AA. EGFR and HER2 expression in cervical cancer patients in Ibadan, Nigeria. Ecancermedicalscience 2023; 17:1607. [PMID: 38414930 PMCID: PMC10898916 DOI: 10.3332/ecancer.2023.1607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Indexed: 02/29/2024] Open
Abstract
Cervical cancer is a leading cause of cancer-related deaths in developing countries, including Nigeria where it is the second most common female malignancy. Studies from elsewhere have demonstrated the relationship between epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) and advanced cervical cancer. However, we are not aware of such studies in Nigerian patients. The main objective of the study was to determine the prevalence of EGFR or HER1 and HER2 protein expression in cervical cancers and to determine their impact on overall survival. Clinical data and formalin-embedded tissue blocks of 124 patients who presented in the Radiation Oncology Department, University College Hospital (UCH), from 2006 to 2015 and had their histological diagnosis at the Pathology Department, UCH were retrieved and analysed for EGFR and HER2 expression using immunohistochemistry. EGFR expression was analysed using the immunoreactivity score by Remmele and Stegner. HER2 was analysed using the Hercep® test kit guidelines. Survival analysis was done using Kaplan-Meier and Cox regression analysis. Missing data were reported as missing, not documented. EGFR (immunoreactivity score > 4) was overexpressed in 26.6% of the 124 cervical tissue samples tested. Most patients whose samples were positive for EGFR were young, had squamous cell carcinoma and advanced diseases. HER2 was overexpressed in two samples (1.6%). The 5-year overall survival rate of the patients was 28.3%. The 5-year survival rate of patients who were EGFR positive was 9.5% and 34.1% for those who were EGFR negative. Screening for EGFR should be considered in cervical cancer patients. HER2 was overexpressed in two cervical tissue samples in this study and may be of poor interest as a potential target in the management of cervical cancer patients. Large prospective multi-institutional studies should be considered to further explore the relationship between EGFR and survival in cervical cancer patients.
Collapse
Affiliation(s)
| | - Abbas A Abdus-Salam
- Radiation Oncology Department, University College Hospital, Ibadan 200212, Oyo State, Nigeria
| | | | - Atara I Ntekim
- Radiation Oncology Department, University College Hospital, Ibadan 200212, Oyo State, Nigeria
| | - Ayorinde M Folasire
- Radiation Oncology Department, University College Hospital, Ibadan 200212, Oyo State, Nigeria
| | - Clement A Okolo
- Pathology Department, University College Hospital, Ibadan 200212, Oyo State, Nigeria
| | - Adeniyi A Olabumuyi
- Radiation Oncology Department, University College Hospital, Ibadan 200212, Oyo State, Nigeria
| | - Adedamola A Dada
- Federal Medical Centre Ebute-Metta, Lagos 101211, Lagos State, Nigeria
| | - Adeniyi A Adenipekun
- Radiation Oncology Department, University College Hospital, Ibadan 200212, Oyo State, Nigeria
| |
Collapse
|
6
|
Sicking M, Falke I, Löblein MT, Eich HT, Götte M, Greve B, Troschel FM. The Musashi RNA-binding proteins in female cancers: insights on molecular mechanisms and therapeutic relevance. Biomark Res 2023; 11:76. [PMID: 37620963 PMCID: PMC10463710 DOI: 10.1186/s40364-023-00516-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
RNA-binding proteins have increasingly been identified as important regulators of gene expression given their ability to bind distinct RNA sequences and regulate their fate. Mounting evidence suggests that RNA-binding proteins are involved in the onset and progression of multiple malignancies, prompting increasing interest in their potential for therapeutic intervention.The Musashi RNA binding proteins Musashi-1 and Musashi-2 were initially identified as developmental factors of the nervous system but have more recently been found to be ubiquitously expressed in physiological tissues and may be involved in pathological cell behavior. Both proteins are increasingly investigated in cancers given dysregulation in multiple tumor entities, including in female malignancies. Recent data suggest that the Musashi proteins serve as cancer stem cell markers as they contribute to cancer cell proliferation and therapy resistance, prompting efforts to identify mechanisms to target them. However, as the picture remains incomplete, continuous efforts to elucidate their role in different signaling pathways remain ongoing.In this review, we focus on the roles of Musashi proteins in tumors of the female - breast, endometrial, ovarian and cervical cancer - as we aim to summarize current knowledge and discuss future perspectives.
Collapse
Affiliation(s)
- Mark Sicking
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Isabel Falke
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Maria T Löblein
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Hans Th Eich
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Burkhard Greve
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Fabian M Troschel
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany.
| |
Collapse
|
7
|
Naumova LA, Starodumova VA. Modern concepts in cervical carcinogenesis. BULLETIN OF SIBERIAN MEDICINE 2023; 22:145-155. [DOI: 10.20538/1682-0363-2023-2-145-155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The article discusses modern ideas about cervical carcinogenesis as a multi-stage process of multifactorial genesis. Currently, ideas about the pathogenesis of cervical cancer (CC) are based not only on understanding the role of high-risk oncogenic human papillomavirus (HPV) in this process and accumulation of genetic changes caused by it, but also on formation of a complex HPV interactome, or a network of intermolecular interactions of HPV oncoproteins with host cell proteins. Carcinogenesis also involves a wide range of epigenetic events and, above all, impairment of the regulatory function of miRNAs. An important role in cervical carcinogenesis is attributed to the concept of cancer stem cells (CSCs) formulated in recent years, which is closely related to the explanation of disease recurrence and treatment resistance, as well as to new approaches to treatment. The cervicovaginal microbiome and cervical microenvironment, which are responsible for natural clearance of HPV, regression of epithelial lesions, and modeling of the immune response, are becoming promising objects for research.The aim of the review was to present up-to-date information on the most important mechanisms of cervical carcinogenesis, as well as on new approaches to the treatment of CC, based, in particular, on the use of knowledge about regulatory miRNAs, CSC markers, and the state of the cervicovaginal microbiota.
Collapse
|
8
|
Wang XL, Cao XZ, Wang DY, Qiu YB, Deng KY, Cao JG, Lin SQ, Xu Y, Ren KQ. Casticin Attenuates Stemness in Cervical Cancer Stem-Like Cells by Regulating Activity and Expression of DNMT1. Chin J Integr Med 2023; 29:224-232. [PMID: 35809177 DOI: 10.1007/s11655-022-3469-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To explore whether casticin (CAS) suppresses stemness in cancer stem-like cells (CSLCs) obtained from human cervical cancer (CCSLCs) and the underlying mechanism. METHODS Spheres from HeLa and CaSki cells were used as CCSLCs. DNA methyltransferase 1 (DNMT1) activity and mRNA levels, self-renewal capability (Nanog and Sox2), and cancer stem cell markers (CD133 and CD44), were detected by a colorimetric DNMT activity/inhibition assay kit, quantitative real-time reverse transcription-polymerase chain reaction, sphere and colony formation assays, and immunoblot, respectively. Knockdown and overexpression of DNMT1 by transfection with shRNA and cDNA, respectively, were performed to explore the mechanism for action of CAS (0, 10, 30, and 100 nmol/L). RESULTS DNMT1 activity was increased in CCSLCs compared with HeLa and CaSki cells (P<0.05). In addition, HeLa-derived CCSLCs transfected with DNMT1 shRNA showed reduced sphere and colony formation abilities, and lower CD133, CD44, Nanog and Sox2 protein expressions (P<0.05). Conversely, overexpression of DNMT1 in HeLa cells exhibited the oppositive effects. Furthermore, CAS significantly reduced DNMT1 activity and transcription levels as well as stemness in HeLa-derived CCSLCs (P<0.05). Interestingly, DNMT1 knockdown enhanced the inhibitory effect of CAS on stemness. As expected, DNMT1 overexpression reversed the inhibitory effect of CAS on stemness in HeLa cells. CONCLUSION CAS effectively inhibits stemness in CCSLCs through suppression of DNMT1 activation, suggesting that CAS acts as a promising preventive and therapeutic candidate in cervical cancer.
Collapse
Affiliation(s)
- Xue-Li Wang
- Medical College, Hunan University of Medicine, Huaihua, Hunan Province, 418000, China
| | - Xiao-Zheng Cao
- Clinical Department of Guangdong Metabolic Disease Research Centre of Integrated Chinese and Western Medicine, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510062, China
- Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Dao-Yuan Wang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Medical College, Hunan Normal University, Changsha, 410013, China
- The Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Medical College, Hunan Normal University, Changsha, 410013, China
| | - Ye-Bei Qiu
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Medical College, Hunan Normal University, Changsha, 410013, China
- The Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Medical College, Hunan Normal University, Changsha, 410013, China
| | - Kai-Yu Deng
- Medical College, Hunan University of Medicine, Huaihua, Hunan Province, 418000, China
| | - Jian-Guo Cao
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Medical College, Hunan Normal University, Changsha, 410013, China
- The Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Medical College, Hunan Normal University, Changsha, 410013, China
| | - Shao-Qiang Lin
- Clinical Department of Guangdong Metabolic Disease Research Centre of Integrated Chinese and Western Medicine, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510062, China
| | - Yong Xu
- Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Kai-Qun Ren
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Medical College, Hunan Normal University, Changsha, 410013, China.
| |
Collapse
|
9
|
Wei Y, Li Y, Chen Y, Liu P, Huang S, Zhang Y, Sun Y, Wu Z, Hu M, Wu Q, Wu H, Liu F, She T, Ning Z. ALDH1: A potential therapeutic target for cancer stem cells in solid tumors. Front Oncol 2022; 12:1026278. [PMID: 36387165 PMCID: PMC9650078 DOI: 10.3389/fonc.2022.1026278] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
Solid tumors can be divided into benign solid tumors and solid malignant tumors in the academic community, among which malignant solid tumors are called cancers. Cancer is the second leading cause of death in the world, and the global incidence of cancer is increasing yearly New cancer patients in China are always the first. After the concept of stem cells was introduced in the tumor community, the CSC markers represented by ALDH1 have been widely studied due to their strong CSC cell characteristics and potential to be the driving force of tumor metastasis. In the research results in the past five years, it has been found that ALDH1 is highly expressed in various solid cancers such as breast cancer, lung cancer, colorectal cancer, liver cancer, gastric cancer, cervical cancer, esophageal cancer, ovarian cancer, head,and neck cancer. ALDH1 can activate and transform various pathways (such as the USP28/MYC signaling pathway, ALDH1A1/HIF-1α/VEGF axis, wnt/β-catenin signaling pathway), as well as change the intracellular pH value to promote formation and maintenance, resulting in drug resistance in tumors. By targeting and inhibiting ALDH1 in tumor stem cells, it can enhance the sensitivity of drugs and inhibit the proliferation, differentiation, and metastasis of solid tumor stem cells to some extent. This review discusses the relationship and pathway of ALDH1 with various solid tumors. It proposes that ALDH1 may serve as a diagnosis and therapeutic target for CSC, providing new insights and new strategies for reliable tumor treatment.
Collapse
Affiliation(s)
- Yaolu Wei
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yan Li
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yenan Chen
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Pei Liu
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Sheng Huang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yuping Zhang
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanling Sun
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhe Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Hongnian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Fuxing Liu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Tonghui She
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Zhifeng Ning
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| |
Collapse
|
10
|
Cancer Stem Cells: From an Insight into the Basics to Recent Advances and Therapeutic Targeting. Stem Cells Int 2022; 2022:9653244. [PMID: 35800881 PMCID: PMC9256444 DOI: 10.1155/2022/9653244] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/07/2022] [Indexed: 12/22/2022] Open
Abstract
Cancer is characterized by an abnormal growth of the cells in an uncontrolled manner. These cells have the potential to invade and can eventually turn into malignancy, leading to highly fatal forms of tumor. Small subpopulations of cancer cells that are long-lived with the potential of excessive self-renewal and tumor formation are called cancer stem cells (CSCs) or cancer-initiating cells or tumor stem cells. CSCs can be found in tissues, such as breast, brain, lung, liver, ovary, and testis; however, their origin is still a matter of debate. These cells can differentiate and possess self-renewal capacity maintained by numerous intracellular signal transduction pathways, such as the Wnt/β-catenin signaling, Notch signaling, transforming growth factor-β signaling, and Hedgehog signaling. They can also contribute to numerous malignancies and are an important reason for tumor recurrence and metastasis because they are resistant to the known therapeutic strategies that mainly target the bulk of the tumor cells. This review contains collected and compiled information after analyzing published works of the last three decades. The goal was to gather information of recent breakthroughs related to CSCs, strategies to target CSCs' niche (e.g., nanotechnology with tumor biology), and their signaling pathways for cancer therapy. Moreover, the role of metformin, an antidiabetic drug, acting as a chemotherapeutic agent on CSCs by inhibiting cellular transformation and its selective killing is also addressed.
Collapse
|
11
|
Wilczyński JR. Cancer Stem Cells: An Ever-Hiding Foe. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:219-251. [PMID: 35165866 DOI: 10.1007/978-3-030-91311-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cancer stem cells are a population of cells enable to reproduce the original phenotype of the tumor and capable to self-renewal, which is crucial for tumor proliferation, differentiation, recurrence, and metastasis, as well as chemoresistance. Therefore, the cancer stem cells (CSCs) have become one of the main targets for anticancer therapy and many ongoing clinical trials test anti-CSCs efficacy of plenty of drugs. This chapter describes CSCs starting from general description of this cell population, through CSCs markers, signaling pathways, genetic and epigenetic regulation, role of epithelial-mesenchymal transition (EMT) transition and autophagy, cooperation with microenvironment (CSCs niche), and finally role of CSCs in escaping host immunosurveillance against cancer.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecologic Surgery and Gynecologic Oncology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
12
|
Yang H, Hou H, Zhao H, Yu T, Hu Y, Hu Y, Guo J. HK2 Is a Crucial Downstream Regulator of miR-148a for the Maintenance of Sphere-Forming Property and Cisplatin Resistance in Cervical Cancer Cells. Front Oncol 2021; 11:794015. [PMID: 34858863 PMCID: PMC8631922 DOI: 10.3389/fonc.2021.794015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 01/10/2023] Open
Abstract
The acquisition of cancer stem-like properties is believed to be responsible for cancer metastasis and therapeutic resistance in cervical cancer (CC). CC tissues display a high expression level of hexokinase 2 (HK2), which is critical for the proliferation and migration of CC cells. However, little is known about the functional role of HK2 in the maintenance of cancer stem cell-like ability and cisplatin resistance of CC cells. Here, we showed that the expression of HK2 is significantly elevated in CC tissues, and high HK2 expression correlates with poor prognosis. HK2 overexpression (or knockdown) can promote (or inhibit) the sphere-forming ability and cisplatin resistance in CC cells. In addition, HK2-overexpressing CC cells show enhanced expression of cancer stem cell-associated genes (including SOX2 and OCT4) and drug resistance-related gene MDR1. The expression of HK2 is mediated by miR-145, miR-148a, and miR-497 in CC cells. Overexpression of miR-148a is sufficient to reduce sphere formation and cisplatin resistance in CC cells. Our results elucidate a novel mechanism through which miR-148a regulates CC stem cell-like properties and chemoresistance by interfering with the oncogene HK2, providing the first evidence that dysregulation of the miR-148a/HK2 signaling plays a critical role in the maintenance of sphere formation and cisplatin resistance of CC cells. Our findings may guide future studies on therapeutic strategies that reverse cisplatin resistance by targeting this pathway.
Collapse
Affiliation(s)
- Hao Yang
- Department of Radiation Oncology, Inner Mongolia Cancer Hospital and Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hui Hou
- Department of Pediatric Hematology and Oncology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Haiping Zhao
- Department of Abdominal Tumor Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Tianwei Yu
- Department of Transfusion Medicine, Inner Mongolia Cancer Hospital and Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yuchong Hu
- Department of Gynaecology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Yue Hu
- Department of Radiation Oncology, Inner Mongolia Cancer Hospital and Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Junmei Guo
- Department of Radiation Oncology, Inner Mongolia Cancer Hospital and Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
13
|
Wang Q, Yen YT, Xie C, Liu F, Liu Q, Wei J, Yu L, Wang L, Meng F, Li R, Liu B. Combined delivery of salinomycin and docetaxel by dual-targeting gelatinase nanoparticles effectively inhibits cervical cancer cells and cancer stem cells. Drug Deliv 2021; 28:510-519. [PMID: 33657950 PMCID: PMC7935125 DOI: 10.1080/10717544.2021.1886378] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/02/2021] [Indexed: 01/05/2023] Open
Abstract
Intra-tumor heterogeneity is widely accepted as one of the key factors, which hinders cancer patients from achieving full recovery. Especially, cancer stem cells (CSCs) may exhibit self-renewal capacity, which makes it harder for complete elimination of tumor. Therefore, simultaneously inhibiting CSCs and non-CSCs in tumors becomes a promising strategy to obtain sustainable anticancer efficacy. Salinomycin (Sal) was reported to be critical to inhibit CSCs. However, the poor bioavailability and catastrophic side effects brought about limitations to clinical practice. To solve this problem, we previously constructed gelatinase-stimuli nanoparticles composed of nontoxic, biocompatible polyethylene glycol-polycaprolactone (PEG-PCL) copolymer with a gelatinase-cleavable peptide Pro-Val-Gly-Leu-Iso-Gly (PVGLIG) inserted between the two blocks of the copolymer. By applying our "smart" gelatinase-responsive nanoparticles for Sal delivery, we have demonstrated specific accumulation in tumor, anti-CSCs ability and reduced toxicity of Sal-NPs in our previous study. In the present study, we synthesized Sal-Docetaxel-loaded gelatinase-stimuli nanoparticles (Sal-Doc NP) and confirmed single emulsion as the optimal method of producing Sal-Doc NPs (Sal-Doc SE-NP) in comparison with nanoprecipitation. Sal-Doc SE-NPs inhibited both CSCs and non-CSCs in mice transplanted with cervical cancer, and might be associated with enhanced restriction of epithelial-mesenchymal transition (EMT) pathway. Besides, the tumorigenic capacity and growing speed were obviously suppressed in Sal-Doc-SE-NPs-treated group in rechallenge experiment. Our results suggest that Sal-Doc-loaded gelatinase-stimuli nanoparticles could be a promising strategy to enhance antitumor efficacy and reduce side effects by simultaneously suppressing CSCs and non-CSCs.
Collapse
Affiliation(s)
- Qin Wang
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Ying-Tzu Yen
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Chen Xie
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Fangcen Liu
- Department of pathology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qin Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Jia Wei
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Lixia Yu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Lifeng Wang
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Fanyan Meng
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Rutian Li
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
14
|
Fahmi MN, Hertapanndika IN, Kusuma F. The Prognostic Value of Cancer Stem Cell Markers in Cervical Cancer: A Systematic Review and Meta-Analysis. Asian Pac J Cancer Prev 2021; 22:4057-4065. [PMID: 34967589 PMCID: PMC9080387 DOI: 10.31557/apjcp.2021.22.12.4057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/18/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES Prognostic biomarkers in cervical cancer are widely investigated, including cancer stem cell (CSC) markers. However, their significance remains uncertain. This study aimed to determine the role of cervical cancer stem cell (CCSC) markers for survival. MATERIALS AND METHODS We conducted a systematic review and meta-analysis (PROSPERO CRD42021237072) of studies reporting CCSC markers as the prognostic predictor based on PRISMA guidelines. We included English articles investigating associations of CCSCs expression in tissue tumor with overall survival (OS) or disease-free survival (DFS) from PubMed, EBSCO, and The Cochrane Library databases. The quality of studies was analyzed based on Newcastle-Ottawa Quality Assessment Scale. RESULTS From 413 publications, after study selection with inclusion and exclusion criteria, 22 studies were included. High expressions of CCSC markers were associated with poor OS and DFS (HR= 1.05, 95% CI: 1.03 - 1.07, P <0.0001; HR= 1.31, 95% CI: 1.09 - 1.17, P <0.00001; respectively). Sub-analysis of individual CCSC markers indicated significant correlations between CD44 (HR= 1.14, 95% CI: 1.07 - 1.22, P 0.0001), SOX2 (HR= 1.58, 95% CI: 1.17 - 2.14, P 0.003), OCT4 (HR= 1.03, 95% CI: 1.01 - 1.06, P 0.008), ALDH1 (HR= 1.36, 95% CI: 1.13 - 1.64, P 0.001), and CD49f (HR= 3.02, 95% CI: 1.37 - 6.64, P 0.006) with worse OS; OCT4 (HR= 1.14, 95% CI 1.06 - 1.22, P 0.0003), SOX2 (HR= 1.11, 95% CI: 1.06 - 1.16, P <0.0001), and ALDH1 (HR= 1.22, 95% CI: 1.10 - 1.35, P 0.0002) with poor DFS. We did not conduct a meta-analysis for MSI-1 and CK17 because only one study investigated those markers. CONCLUSION Expressions of OCT4, SOX2, and ALDH1 were associated with poor OS and DFS in cervical cancer tissue. These markers might have potential roles as prognostic biomarkers to predict unfavorable survival.
Collapse
Affiliation(s)
- Moh Nailul Fahmi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Yogyakarta, Indonesia.
- Fellowship Gynecology Oncology Division, Department of Obstetrics and Gynecology, Universitas Indonesia, Dr. Cipto Mangunkusumo General Hospital, Faculty of Medicine, Jakarta, Indonesia.
| | | | - Fitriyadi Kusuma
- Gynecology Oncology Division, Department of Obstetrics and Gynecology, Universitas Indonesia, Dr. Cipto Mangunkusumo General Hospital, Faculty of Medicine, Jakarta, Indonesia.
| |
Collapse
|
15
|
Kim SI, Kim JY, Wee CW, Lee M, Kim HS, Chung HH, Lee TS, Jeon HW, Park NH, Song YS, Kim TH. Survival impact of additional chemotherapy after adjuvant concurrent chemoradiation in patients with early cervical cancer who underwent radical hysterectomy. BMC Cancer 2021; 21:1260. [PMID: 34809599 PMCID: PMC8609857 DOI: 10.1186/s12885-021-08940-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To determine whether additional chemotherapy after concurrent chemoradiation (CCRT) improves survival outcomes in patients with early cervical cancer who undergo radical hysterectomy (RH). METHODS We included high- or intermediate-risk patients from two institutions, with 2009 FIGO stage IB-IIA, who underwent primary RH and pelvic lymphadenectomy between January 2007 and June 2020, and had completed adjuvant CCRT. Survival outcomes were compared between patients who received additional chemotherapy (study group) and those who did not (control group). RESULTS A total of 198 patients were included in this analysis. The study (n = 61) and control groups (n = 137) had similar patient age, histologic cancer type, 2009 FIGO stage, and tumor size. However, minimally invasive surgery was performed less frequently in the study group than in the control group (19.7% vs. 46.0%, P < 0.001). The presence of pathologic risk factors was similar, except for lymph node metastasis, which was more frequent in the study group (72.1% vs. 46.0%; P = 0.001). In survival analyses, no differences in the disease-free survival (DFS; P = 0.539) and overall survival (OS; P = 0.121) were observed between the groups. Multivariate analyses adjusting for surgical approach and other factors revealed that additional chemotherapy was not associated with DFS (adjusted HR, 1.149; 95% CI, 0.552-2.391; P = 0.710) and OS (adjusted HR, 1.877; 95% CI, 0.621-5.673; P = 0.264). The recurrence patterns did not differ with additional chemotherapy. Consistent results were observed in a subset of high-risk patients (n = 139). CONCLUSIONS Additional chemotherapy after CCRT might not improve survival outcomes in patients with early cervical cancer who undergo RH.
Collapse
Affiliation(s)
- Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jeong Yun Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Chan Woo Wee
- Department of Radiation Oncology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, 20, Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
| | - Maria Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hyun Hoon Chung
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Taek Sang Lee
- Department of Obstetrics and Gynecology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, 20, Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
| | - Hye Won Jeon
- Department of Obstetrics and Gynecology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, 20, Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
| | - Noh Hyun Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Tae Hun Kim
- Department of Obstetrics and Gynecology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, 20, Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea.
| |
Collapse
|
16
|
Kaushik V, Kulkarni Y, Felix K, Azad N, Iyer AKV, Yakisich JS. Alternative models of cancer stem cells: The stemness phenotype model, 10 years later. World J Stem Cells 2021; 13:934-943. [PMID: 34367485 PMCID: PMC8316871 DOI: 10.4252/wjsc.v13.i7.934] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/05/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
The classical cancer stem cell (CSCs) theory proposed the existence of a rare but constant subpopulation of CSCs. In this model cancer cells are organized hierarchically and are responsible for tumor resistance and tumor relapse. Thus, eliminating CSCs will eventually lead to cure of cancer. This simplistic model has been challenged by experimental data. In 2010 we proposed a novel and controversial alternative model of CSC biology (the Stemness Phenotype Model, SPM). The SPM proposed a non-hierarchical model of cancer biology in which there is no specific subpopulation of CSCs in tumors. Instead, cancer cells are highly plastic in term of stemness and CSCs and non-CSCs can interconvert into each other depending on the microenvironment. This model predicts the existence of cancer cells ranging from a pure CSC phenotype to pure non-CSC phenotype and that survival of a single cell can originate a new tumor. During the past 10 years, a plethora of experimental evidence in a variety of cancer types has shown that cancer cells are indeed extremely plastic and able to interconvert into cells with different stemness phenotype. In this review we will (1) briefly describe the cumulative evidence from our laboratory and others supporting the SPM; (2) the implications of the SPM in translational oncology; and (3) discuss potential strategies to develop more effective therapeutic regimens for cancer treatment.
Collapse
Affiliation(s)
- Vivek Kaushik
- School of Pharmacy, Department of Pharmaceutical Sciences, Hampton University, Hampton, VA 23668, United States
| | - Yogesh Kulkarni
- School of Pharmacy, Department of Pharmaceutical Sciences, Hampton University, Hampton, VA 23668, United States
| | - Kumar Felix
- School of Pharmacy, Department of Pharmaceutical Sciences, Hampton University, Hampton, VA 23668, United States
| | - Neelam Azad
- School of Pharmacy, Department of Pharmaceutical Sciences, Hampton University, Hampton, VA 23668, United States
| | - Anand Krishnan V Iyer
- School of Pharmacy, Department of Pharmaceutical Sciences, Hampton University, Hampton, VA 23668, United States
| | - Juan Sebastian Yakisich
- School of Pharmacy, Department of Pharmaceutical Sciences, Hampton University, Hampton, VA 23668, United States.
| |
Collapse
|
17
|
Li C, Guo L, Li S, Hua K. Single-cell transcriptomics reveals the landscape of intra-tumoral heterogeneity and transcriptional activities of ECs in CC. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:682-694. [PMID: 33996252 PMCID: PMC8099483 DOI: 10.1016/j.omtn.2021.03.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/28/2021] [Indexed: 11/17/2022]
Abstract
Cervical cancer (CC) is the fourth leading cause of deaths in gynecological malignancies. Although the etiology of CC has been extensively investigated, the exact pathogenesis of CC remains incomplete. Recently, single-cell technologies demonstrated advantages in exploring intra-tumoral diversification among various tumor cells. However, single-cell transcriptome analysis (single-cell RNA sequencing [scRNA-seq]) of CC cells and microenvironment has not been conducted. In this study, a total of 20,938 cells from CC and adjacent normal tissues were examined by scRNA-seq. We identified four tumor cell subpopulations in tumor cells, which had specific signature genes with different biological functions and presented different prognoses. Among them, we identified a subset of cancer stem cells (CSCs) that was related to the developmental hierarchy of tumor progression. Then, we compared the expressive differences between tumor-derived endothelial cells (TECs) and normal ECs (NECs) and revealed higher expression of several metabolism-related genes in TECs. Then, we explored the potential biological function of ECs in vascularization and found several marker genes, which played a prior role in connections between cancer cells and ECs. Our findings provide valuable resources for deciphering the intra-tumoral heterogeneity of CC and uncover the developmental procedure of ECs, which paves the way for CC therapy.
Collapse
Affiliation(s)
- Chunbo Li
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Luopei Guo
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Shengli Li
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Keqin Hua
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| |
Collapse
|
18
|
Cherif S, Amine A, Thies S, Taube ET, Braicu EI, Sehouli J, Kaufmann AM. Prevalence of human papillomavirus detection in ovarian cancer: a meta-analysis. Eur J Clin Microbiol Infect Dis 2021; 40:1791-1802. [PMID: 34086102 PMCID: PMC8346400 DOI: 10.1007/s10096-021-04282-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
We conducted a meta-analysis of published data to update and estimate the prevalence of HPV in ovarian cancer. A comprehensive literature search was performed according to the PRISMA guidelines. Eligible articles published from 1989 until 2020 by searching Web of Sciences, Pubmed, Embase, and the Cochrane Library Central databases were gathered. A pooled estimation of HPV prevalence with a 95% confidence interval (CI) was calculated based on a random effect model. Quantitative assessment of heterogeneity was explored using Cochrane test and I2. Additionally, publication bias, sensitivity, meta-regression, and subgroup analyses were also performed. Twenty-nine studies involving 2280 patients with ovarian cancer were included. The statistical heterogeneity was high (I2 = 88%, P<0.0001). The pooled prevalence of HPV in ovarian cancer cases was 15.9% (95% CI, 11–22). In subgroup analyses, the highest prevalence of HPV was reported by studies from Asia (30.9%; 95% CI, 20–44) and Eastern Europe (29.3%; 95% CI, 4.4–78). Furthermore, the most frequently detected HPV genotype was HPV16 (54%; 95% CI, 27.9–55), followed by HPV18 (23.2%; 95% CI, 18.8–28.2). Our meta-analysis suggests a great difference in the prevalence of HPV detected in ovarian cancer by different studies, which is not seen in strongly HPV-associated cancers such as cervical cancer. However, the prevalence varied markedly by geographic region. Considering the substantial heterogeneity found, more studies with control groups and precise assays measuring HPV mRNA expression are needed to further evaluate the link and causative aetiology between HPV and ovarian cancer.
Collapse
Affiliation(s)
- Soumia Cherif
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gynecology, Augustenburger Platz 1, 13353, Berlin, Germany.,Laboratory of Biochemistry, Environment, and Agrifood, Faculty of Sciences and Techniques-Mohammedia, Hassan II University, 8 Casablanca, Morocco
| | - Abdessamad Amine
- Laboratory of Biochemistry, Environment, and Agrifood, Faculty of Sciences and Techniques-Mohammedia, Hassan II University, 8 Casablanca, Morocco
| | - Sarah Thies
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gynecology, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Eliane T Taube
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Pathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Elena Ioana Braicu
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gynecology, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Jalid Sehouli
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gynecology, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Andreas M Kaufmann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gynecology, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
19
|
Zuccherato LW, Machado CMT, Magalhães WCS, Martins PR, Campos LS, Braga LC, Teixeira-Carvalho A, Martins-Filho OA, Franco TMRF, Paula SOC, da Silva IT, Drummond R, Gollob KJ, Salles PGO. Cervical Cancer Stem-Like Cell Transcriptome Profiles Predict Response to Chemoradiotherapy. Front Oncol 2021; 11:639339. [PMID: 34026616 PMCID: PMC8138064 DOI: 10.3389/fonc.2021.639339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer (CC) represents a major global health issue, particularly impacting women from resource constrained regions worldwide. Treatment refractoriness to standard chemoradiotheraphy has identified cancer stem cells as critical coordinators behind the biological mechanisms of resistance, contributing to CC recurrence. In this work, we evaluated differential gene expression in cervical cancer stem-like cells (CCSC) as biomarkers related to intrinsic chemoradioresistance in CC. A total of 31 patients with locally advanced CC and referred to Mário Penna Institute (Belo Horizonte, Brazil) from August 2017 to May 2018 were recruited for the study. Fluorescence-activated cell sorting was used to enrich CD34+/CD45- CCSC from tumor biopsies. Transcriptome was performed using ultra-low input RNA sequencing and differentially expressed genes (DEGs) using Log2 fold differences and adjusted p-value < 0.05 were determined. The analysis returned 1050 DEGs when comparing the Non-Responder (NR) (n=10) and Responder (R) (n=21) groups to chemoradiotherapy. These included a wide-ranging pattern of underexpressed coding genes in the NR vs. R patients and a panel of lncRNAs and miRNAs with implications for CC tumorigenesis. A panel of biomarkers was selected using the rank-based AUC (Area Under the ROC Curve) and pAUC (partial AUC) measurements for diagnostic sensitivity and specificity. Genes overlapping between the 21 highest AUC and pAUC loci revealed seven genes with a strong capacity for identifying NR vs. R patients (ILF2, RBM22P2, ACO16722.1, AL360175.1 and AC092354.1), of which four also returned significant survival Hazard Ratios. This study identifies DEG signatures that provide potential biomarkers in CC prognosis and treatment outcome, as well as identifies potential alternative targets for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Larissa S. Campos
- Núcleo de Ensino e Pesquisa - Instituto Mário Penna, Belo Horizonte, Brazil
| | - Letícia C. Braga
- Núcleo de Ensino e Pesquisa - Instituto Mário Penna, Belo Horizonte, Brazil
| | | | | | | | | | | | - Rodrigo Drummond
- International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Kenneth J. Gollob
- Núcleo de Ensino e Pesquisa - Instituto Mário Penna, Belo Horizonte, Brazil
- Translational Immuno-Oncology Laboratory, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | | |
Collapse
|
20
|
Pu J, Wu X, Wu Y, Shao Z, Luo C, Tang Q, Wang J, Wei H, Lu Y. Anti-oncogenic effects of SOX2 silencing on hepatocellular carcinoma achieved by upregulating miR-222-5p-dependent CYLD via the long noncoding RNA CCAT1. Aging (Albany NY) 2021; 13:12207-12223. [PMID: 33952719 PMCID: PMC8109057 DOI: 10.18632/aging.103797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/01/2020] [Indexed: 01/17/2023]
Abstract
In this study, we determined the involvement of SOX2 and its downstream signaling molecules in hepatocellular carcinoma (HCC) progression. We carried out lentiviral transfection in HepG2 cells to determine the roles of SOX2, CCAT1, EGFR, miR-222-5p, and CYLD in HepG2 cells. We first determined the interaction between SOX2 and CCAT1 and that between miR-222-5p and CYLD and their effect on tumor growth in vivo was analyzed in HCC-xenograft bearing nude mice xenografts. SOX2 and CCAT1 were highly expressed in HCC tissues and HepG2 cells. SOX2 bound to the regulatory site of CCAT1. Silencing of SOX2 or CCAT1 inhibited HepG2 cell proliferation, migration, and invasion as well as decreased the expression of CCAT1 and EGFR. CCAT1 silencing reduced EGFR expression, but EGFR expression was increased in HCC tissues and HepG2 cells, which promoted proliferation, migration, and invasion in vitro. EGFR upregulated miR-222-5p, leading to downregulation of CYLD. miR-222-5p inhibition or CYLD overexpression repressed cell functions in HepG2 cells. SOX2 silencing decreased CCAT1, EGFR, and miR-222-5p expression but increased CYLD expression. Loss of SOX2 also reduced the growth rate of tumor xenografts. In summary, SOX2-mediated HCC progression through an axis involving CCAT1, EGFR, and miR-222-5p upregulation and CYLD downregulation.
Collapse
Affiliation(s)
- Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Xianjian Wu
- Graduate College of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Yi Wu
- Graduate College of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Zesheng Shao
- Graduate College of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Chunying Luo
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Qianli Tang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Huamei Wei
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Yuan Lu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China.,Graduate College of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| |
Collapse
|
21
|
Radiation Response of Cervical Cancer Stem Cells Is Associated with Pretreatment Proportion of These Cells and Physical Status of HPV DNA. Int J Mol Sci 2021; 22:ijms22031445. [PMID: 33535561 PMCID: PMC7867083 DOI: 10.3390/ijms22031445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Radio- and chemoresistance of cancer stem cells (CSCs) is considered as one of the possible causes of adverse results of chemoradiotherapy for various malignancies, including cervical cancer. However, little is known about quantitative changes in the CSC subpopulation in the course of treatment and mechanisms for individual response of CSCs to therapy. The purpose of the study was to evaluate the association of radiation response of cervical CSCs with clinical and morphological parameters of disease and features of human papillomavirus (HPV) infection. The proportion of CD44+CD24low CSCs was determined by flow cytometry in cervical scrapings from 55 patients with squamous cell carcinoma of uterine cervix before treatment and after fractionated irradiation at a total dose of 10 Gy. Real-time PCR assay was used to evaluate molecular parameters of HPV DNA. Post-radiation increase in the CSC proportion was found in 47.3% of patients. Clinical and morphological parameters (stage, status of lymph node involvement, and histological type) were not significantly correlated with radiation changes in the CSC proportion. Single- and multifactor analyses revealed two independent indicators affecting the radiation response of CSCs: initial proportion of CSCs and physical status of HPV DNA (R = 0.86, p = 0.001 for the multiple regression model in the whole).
Collapse
|
22
|
Splicing Genomics Events in Cervical Cancer: Insights for Phenotypic Stratification and Biomarker Potency. Genes (Basel) 2021; 12:genes12020130. [PMID: 33498485 PMCID: PMC7909518 DOI: 10.3390/genes12020130] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/24/2022] Open
Abstract
Gynaecological cancers are attributed to the second most diagnosed cancers in women after breast cancer. On a global scale, cervical cancer is the fourth most common cancer and the most common cancer in developing countries with rapidly increasing mortality rates. Human papillomavirus (HPV) infection is a major contributor to the disease. HPV infections cause prominent cellular changes including alternative splicing to drive malignant transformation. A fundamental characteristic attributed to cancer is the dysregulation of cellular transcription. Alternative splicing is regulated by several splicing factors and molecular changes in these factors lead to cancer mechanisms such as tumour development and progression and drug resistance. The serine/arginine-rich (SR) proteins and heterogeneous ribonucleoproteins (hnRNPs) have prominent roles in modulating alternative splicing. Evidence shows molecular alteration and expression levels in these splicing factors in cervical cancer. Furthermore, aberrant splicing events in cancer-related genes lead to chemo- and radioresistance. Identifying clinically relevant modifications in alternative splicing events and splicing variants, in cervical cancer, as potential biomarkers for their role in cancer progression and therapy resistance is scrutinised. This review will focus on the molecular mechanisms underlying the aberrant splicing events in cervical cancer that may serve as potential biomarkers for diagnosis, prognosis, and novel drug targets.
Collapse
|
23
|
Adiga D, Eswaran S, Pandey D, Sharan K, Kabekkodu SP. Molecular landscape of recurrent cervical cancer. Crit Rev Oncol Hematol 2021; 157:103178. [PMID: 33279812 DOI: 10.1016/j.critrevonc.2020.103178] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer (CC) is a major gynecological problem in developing and underdeveloped countries. Despite the significant advancement in early detection and treatment modalities, several patients recur. Moreover, the molecular mechanisms responsible for CC recurrence remains obscure. The patients with CC recurrence often show poor prognosis and significantly high mortality rates. The clinical management of recurrent CC depends on treatment history, site, and extent of the recurrence. Owing to poor prognosis and limited treatment options, recurrent CC often presents a challenge to the clinicians. Several in vitro, in vivo, and patient studies have led to the identification of the critical molecular changes responsible for CC recurrence. Both aberrant genetic and epigenetic modifications leading to altered cell signaling pathways have been reported to impact CC recurrence. Researchers are currently trying to dissect the molecular pathways in CC and translate these findings for better management of disease. This article attempts to review the existing knowledge of disease relapse, accompanying challenges, and associated molecular players in CC.
Collapse
Affiliation(s)
- Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sangavi Eswaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Deeksha Pandey
- Department of OBGYN, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishna Sharan
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
24
|
Choi YS, Han JM, Kang YJ, Jung HJ. Chloroform extract of Citrus unshiu Markovich peel induces apoptosis and inhibits stemness in HeLa human cervical cancer cells. Mol Med Rep 2020; 23:86. [PMID: 33236129 PMCID: PMC7716394 DOI: 10.3892/mmr.2020.11727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer is the second most common cancer among women worldwide. However, chemotherapies for this cancer often cause many side effects and chemoresistance. Citrus unshiu Markovich peel (CECU) has been used as a traditional medicine for the treatment of various diseases in East Asia. Recently, the anticancer activities and mechanisms of action of CECU extract have been reported in a number of different cancer cell types, but no study has evaluated the therapeutic effect of this natural product on cervical cancer cells. In the current study, the anticancer activity and the underlying molecular mechanism of the chloroform extract of CECU was investigated on HeLa human cervical cancer cells. The results showed that CECU effectively inhibited the proliferation and migration of HeLa cells. Treatment of cells with CECU led to cell cycle arrest at the G2/M phase and activation of extrinsic and intrinsic apoptotic pathways. Furthermore, the proliferation inhibitory effect of CECU was due to the inactivation of AKT and ERK signaling, upregulation of p53 and p21, and downregulation of cyclin B1 and cyclin D1, but not reactive oxygen species (ROS) generation. Furthermore, CECU inhibited the stem‑like features of HeLa cells by downregulating key cancer stemness biomarkers. Therefore, CECU may be an effective complementary and alternative medicine for the prevention and treatment of cervical cancer.
Collapse
Affiliation(s)
- Ye Seul Choi
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan, South Chungcheong 31460, Republic of Korea
| | - Jang Mi Han
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan, South Chungcheong 31460, Republic of Korea
| | - Yue Jai Kang
- Department of Aquatic Life and Medical Sciences, Sun Moon University, Asan, South Chungcheong 31460, Republic of Korea
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan, South Chungcheong 31460, Republic of Korea
| |
Collapse
|
25
|
Cellular Functions of OCT-3/4 Regulated by Ubiquitination in Proliferating Cells. Cancers (Basel) 2020; 12:cancers12030663. [PMID: 32178477 PMCID: PMC7139964 DOI: 10.3390/cancers12030663] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
Octamer-binding transcription factor 3/4 (OCT-3/4), which is involved in the tumorigenesis of somatic cancers, has diverse functions during cancer development. Overexpression of OCT-3/4 has been detected in various human somatic tumors, indicating that OCT-3/4 activation may contribute to the development and progression of cancers. Stem cells can undergo self-renewal, pluripotency, and reprogramming with the help of at least four transcription factors, OCT-3/4, SRY box-containing gene 2 (SOX2), Krüppel-like factor 4 (KLF4), and c-MYC. Of these, OCT-3/4 plays a critical role in maintenance of undifferentiated state of embryonic stem cells (ESCs) and in production of induced pluripotent stem cells (iPSCs). Stem cells can undergo partitioning through mitosis and separate into specific cell types, three embryonic germ layers: the endoderm, the mesoderm, and the trophectoderm. It has been demonstrated that the stability of OCT-3/4 is mediated by the ubiquitin-proteasome system (UPS), which is one of the key cellular mechanisms for cellular homeostasis. The framework of the mechanism is simple, but the proteolytic machinery is complicated. Ubiquitination promotes protein degradation, and ubiquitination of OCT-3/4 leads to regulation of cellular proliferation and differentiation. Therefore, it is expected that OCT-3/4 may play a key role in proliferation and differentiation of proliferating cells.
Collapse
|
26
|
Clemente-Periván SI, Gómez-Gómez Y, Leyva-Vázquez MA, Lagunas-Martínez A, Organista-Nava J, Illades-Aguiar B. Role of Oct3/4 in Cervical Cancer Tumorigenesis. Front Oncol 2020; 10:247. [PMID: 32219062 PMCID: PMC7079573 DOI: 10.3389/fonc.2020.00247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/13/2020] [Indexed: 12/16/2022] Open
Abstract
Cervical cancer (CC) is the fourth most common type of cancer that affects women. Compared to other types of cancer, CC has a high mortality rate in women worldwide. Several factors contribute to the development of CC, but persistent high-risk human papillomavirus infection is the main etiologic agent associated with the development of CC. Moreover, several studies reported that alterations in the expression of transcription factors present in a small subpopulation of cells within tumors called cancer stem cells (CSCs), which contribute to the development of CC by promoting tumorigenicity and metastasis. These transcription factors affect self-renewal and maintenance of pluripotency and differentiation in stem cells. OCT3/4 belongs to the family of transcription factors with the POU domain. It consists of five exons and can be edited by alternative splicing into three main transcripts: OCT3/4A, OCT3/4B, and OCT3/4B1. The OCT3/4 expression in CSCs promotes carcinogenesis and the development of malignant tumors, and the loss of expression leads to the loss of self-renewal and proliferation and favors apoptosis. This review describes the main roles of OCT3/4 in CC and its importance in several biological processes that contribute to the development of CC and may serve as molecular targets to improve prognosis of CC.
Collapse
Affiliation(s)
- Sayuri Itzel Clemente-Periván
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | - Yazmín Gómez-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | - Marco Antonio Leyva-Vázquez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | - Alfredo Lagunas-Martínez
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Jorge Organista-Nava
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| |
Collapse
|
27
|
Wang Q, Liu F, Wang L, Xie C, Wu P, Du S, Zhou S, Sun Z, Liu Q, Yu L, Liu B, Li R. Enhanced and Prolonged Antitumor Effect of Salinomycin-Loaded Gelatinase-Responsive Nanoparticles via Targeted Drug Delivery and Inhibition of Cervical Cancer Stem Cells. Int J Nanomedicine 2020; 15:1283-1295. [PMID: 32161458 PMCID: PMC7049776 DOI: 10.2147/ijn.s234679] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/26/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cervical cancer stem cells (CCSCs) represent a subpopulation of tumor cells that possess self-renewal capacity and numerous intrinsic mechanisms of resistance to conventional chemotherapy and radiotherapy. These cells play a crucial role in relapse and metastasis of cervical cancer. Therefore, eradication of CCSCs is the primary objective in cervical cancer therapy. Salinomycin (Sal) is an agent used for the elimination of cancer stem cells (CSCs); however, the occurrence of several side effects hinders its application. Nanoscale drug-delivery systems offer great promise for the diagnosis and treatment of tumors. These systems can be used to reduce the side effects of Sal and improve clinical benefit. METHODS Sal-loaded polyethylene glycol-peptide-polycaprolactone nanoparticles (Sal NPs) were fabricated under mild and non-toxic conditions. The real-time biodistribution of Sal NPs was investigated through non-invasive near-infrared fluorescent imaging. The efficacy of tumor growth inhibition by Sal NPs was evaluated using tumor xenografts in nude mice. Flow cytometry, immunohistochemistry, and Western blotting were used to detect the apoptosis of CSCs after treatment with Sal NPs. Immunohistochemistry and Western blotting were used to examine epithelial-mesenchymal transition (epithelial interstitial transformation) signal-related molecules. RESULTS Sal NPs exhibited antitumor efficacy against cervical cancers by inducing apoptosis of CCSCs and inhibiting the epithelial-mesenchymal transition pathway. Besides, tumor pieces resected from Sal NP-treated mice showed decreased reseeding ability and growth speed, further demonstrating the significant inhibitory ability of Sal NPs against CSCs. Moreover, owing to targeted delivery based on the gelatinase-responsive strategy, Sal NPs was more effective and tolerable than free Sal. CONCLUSION To the best of our knowledge, this is the first study to show that CCSC-targeted Sal NPs provide a potential approach to selectively target and efficiently eradicate CCSCs. This renders them a promising strategy to improve the therapeutic effect against cervical cancer.
Collapse
Affiliation(s)
- Qin Wang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| | - Fangcen Liu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Lifeng Wang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| | - Chen Xie
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing210023, People’s Republic of China
| | - Puyuan Wu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| | - Shiyao Du
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| | - Shujuan Zhou
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| | - Zhichen Sun
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| | - Qin Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| | - Rutian Li
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| |
Collapse
|