1
|
Zheng M, Li S, Deng J, Huang C, Zhang H. Identification and Clinical Validation of High HSP60 Expression Predicts Poor Prognosis in Patients with Ovarian Cancer. Int J Gen Med 2025; 18:103-111. [PMID: 39801927 PMCID: PMC11725283 DOI: 10.2147/ijgm.s499524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
Objective This study aimed to investigate the clinical significance of heat shock protein 60 (HSP60) expression in ovarian cancer and evaluate its correlation with patient survival outcomes. Methods A total of 260 ovarian cancer patients diagnosed between 2017 and 2019 were enrolled. Immunohistochemistry was performed to assess HSP60 expression in tumor tissues. Patients were categorized into high- or low-HSP60 expression groups based on immunohistochemical staining intensity. The correlation between HSP60 expression status and the clinicopathological features of ovarian cancer patients was analyzed. Kaplan-Meier survival curves and Cox regression models were utilized to evaluate overall survival and disease-free survival. Results HSP60 expression was significantly higher in ovarian cancer tissues compared to normal ovarian tissues. High HSP60 expression was associated with larger tumor size, advanced FIGO stage, and increased lymph node metastasis. Patients with high HSP60 expression exhibited significantly shorter overall survival and disease-free survival than those with low expression. Multivariate Cox analysis identified HSP60 as an independent prognostic factor for both overall survival and disease-free survival. Conclusion High HSP60 expression is associated with poor prognosis and aggressive tumor characteristics in ovarian cancer. HSP60 may serve as a valuable biomarker for prognosis and a potential therapeutic target. Further randomized clinical trials are warranted to explore its role in ovarian cancer progression and treatment strategies.
Collapse
Affiliation(s)
- Min Zheng
- Department of Gynecology and Obstetrics, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, People’s Republic of China
| | - Shaoxing Li
- Department of Gynecology and Obstetrics, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, People’s Republic of China
| | - Jie Deng
- Department of Gynecology and Obstetrics, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, People’s Republic of China
| | - Chaolin Huang
- Department of Gynecology and Obstetrics, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, People’s Republic of China
| | - Hua Zhang
- Department of Rehabilitation Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, People’s Republic of China
| |
Collapse
|
2
|
Caraballo EV, Centeno-Girona H, Torres-Velásquez BC, Martir-Ocasio MM, González-Pons M, López-Acevedo SN, Cruz-Correa M. Diagnostic Accuracy of a Blood-Based Biomarker Panel for Colorectal Cancer Detection: A Pilot Study. Cancers (Basel) 2024; 16:4176. [PMID: 39766076 PMCID: PMC11674677 DOI: 10.3390/cancers16244176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Colorectal cancer (CRC) is a leading cause of death worldwide. Despite its preventability through screening, compliance still needs to improve due to the invasiveness of current tools. There is a growing demand for validated molecular biomarker panels for minimally invasive blood-based CRC screening. This study assessed the diagnostic accuracy of four promising blood-based CRC biomarkers, individually and in combination. Methods: This case-control study involved plasma samples from 124 CRC cases and 124 age- and sex-matched controls. Biomarkers tested included methylated DNA encoding the Septin-9 gene (mSEPT9) using Epi proColon® 2.0 CE, insulin-like growth factor binding protein 2 (IGFBP2), dickkopf-3 (DKK3), and pyruvate kinase M2 (PKM2) by ELISA. Diagnostic accuracy was measured using the receiver operating characteristic (ROC), area under the curve (AUC), as well as sensitivity and specificity. Results: Diagnostic accuracy for mSEPT9, IGFBP2, DKK3, and PKM2 was 62.9% (95% CI: 56.8-62.9%), 69.7% (95% CI: 63.1-69.7%), 61.6% (95% CI: 54.6-61.6%), and 50.8% (95% CI: 43.4-50.8%), respectively. The combined biomarkers yielded an AUC of 74.4% (95% CI: 68.1-80.6%), outperforming all biomarkers except IGFBP2. Conclusions: These biomarkers show potential for developing a minimally invasive CRC detection tool as an alternative to existing approaches, potentially increasing adherence, early detection, and survivorship.
Collapse
Affiliation(s)
- Elba V. Caraballo
- Division of Clinical and Translational Cancer Research, University of Puerto Rico Comprehensive Cancer Center, San Juan 00921, Puerto Rico; (H.C.-G.); (B.C.T.-V.); (M.M.M.-O.); (M.G.-P.); (S.N.L.-A.); (M.C.-C.)
| | - Hilmaris Centeno-Girona
- Division of Clinical and Translational Cancer Research, University of Puerto Rico Comprehensive Cancer Center, San Juan 00921, Puerto Rico; (H.C.-G.); (B.C.T.-V.); (M.M.M.-O.); (M.G.-P.); (S.N.L.-A.); (M.C.-C.)
| | - Brenda Carolina Torres-Velásquez
- Division of Clinical and Translational Cancer Research, University of Puerto Rico Comprehensive Cancer Center, San Juan 00921, Puerto Rico; (H.C.-G.); (B.C.T.-V.); (M.M.M.-O.); (M.G.-P.); (S.N.L.-A.); (M.C.-C.)
| | - Madeline M. Martir-Ocasio
- Division of Clinical and Translational Cancer Research, University of Puerto Rico Comprehensive Cancer Center, San Juan 00921, Puerto Rico; (H.C.-G.); (B.C.T.-V.); (M.M.M.-O.); (M.G.-P.); (S.N.L.-A.); (M.C.-C.)
| | - María González-Pons
- Division of Clinical and Translational Cancer Research, University of Puerto Rico Comprehensive Cancer Center, San Juan 00921, Puerto Rico; (H.C.-G.); (B.C.T.-V.); (M.M.M.-O.); (M.G.-P.); (S.N.L.-A.); (M.C.-C.)
| | - Sheila N. López-Acevedo
- Division of Clinical and Translational Cancer Research, University of Puerto Rico Comprehensive Cancer Center, San Juan 00921, Puerto Rico; (H.C.-G.); (B.C.T.-V.); (M.M.M.-O.); (M.G.-P.); (S.N.L.-A.); (M.C.-C.)
| | - Marcia Cruz-Correa
- Division of Clinical and Translational Cancer Research, University of Puerto Rico Comprehensive Cancer Center, San Juan 00921, Puerto Rico; (H.C.-G.); (B.C.T.-V.); (M.M.M.-O.); (M.G.-P.); (S.N.L.-A.); (M.C.-C.)
- School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan 00921, Puerto Rico
| |
Collapse
|
3
|
Sheida A, Farshadi M, Mirzaei A, Najjar Khalilabad S, Zarepour F, Taghavi SP, Hosseini Khabr MS, Ravaei F, Rafiei S, Mosadeghi K, Yazdani MS, Fakhraie A, Ghattan A, Zamani Fard MM, Shahyan M, Rafiei M, Rahimian N, Talaei Zavareh SA, Mirzaei H. Potential of Natural Products in the Treatment of Glioma: Focus on Molecular Mechanisms. Cell Biochem Biophys 2024; 82:3157-3208. [PMID: 39150676 DOI: 10.1007/s12013-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Despite the waning of traditional treatments for glioma due to possible long-term issues, the healing possibilities of substances derived from nature have been reignited in the scientific community. These natural substances, commonly found in fruits and vegetables, are considered potential alternatives to pharmaceuticals, as they have been shown in prior research to impact pathways surrounding cancer progression, metastases, invasion, and resistance. This review will explore the supposed molecular mechanisms of different natural components, such as berberine, curcumin, coffee, resveratrol, epigallocatechin-3-gallate, quercetin, tanshinone, silymarin, coumarin, and lycopene, concerning glioma treatment. While the benefits of a balanced diet containing these compounds are widely recognized, there is considerable scope for investigating the efficacy of these natural products in treating glioma.
Collapse
Affiliation(s)
- Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Najjar Khalilabad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Rafiei
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Mosadeghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sepehr Yazdani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Fakhraie
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shahyan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Hua H, Wang T, Pan L, Du X, Xia T, Fa Z, Gu L, Gao F, Yu C, Gao F, Liao L, Shen Z. A proteomic classifier panel for early screening of colorectal cancer: a case control study. J Transl Med 2024; 22:188. [PMID: 38383428 PMCID: PMC10880210 DOI: 10.1186/s12967-024-04983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Diagnosis of colorectal cancer (CRC) during early stages can greatly improve patient outcome. Although technical advances in the field of genomics and proteomics have identified a number of candidate biomarkers for non-invasive screening and diagnosis, developing more sensitive and specific methods with improved cost-effectiveness and patient compliance has tremendous potential to help combat the disease. METHODS We enrolled three cohorts of 479 subjects, including 226 CRC cases, 197 healthy controls, and 56 advanced precancerous lesions (APC). In the discovery cohort, we used quantitative mass spectrometry to measure the expression profile of plasma proteins and applied machine-learning to select candidate proteins. We then developed a targeted mass spectrometry assay to measure plasma concentrations of seven proteins and a logistic regression classifier to distinguish CRC from healthy subjects. The classifier was further validated using two independent cohorts. RESULTS The seven-protein panel consisted of leucine rich alpha-2-glycoprotein 1 (LRG1), complement C9 (C9), insulin-like growth factor binding protein 2 (IGFBP2), carnosine dipeptidase 1 (CNDP1), inter-alpha-trypsin inhibitor heavy chain 3 (ITIH3), serpin family A member 1 (SERPINA1), and alpha-1-acid glycoprotein 1 (ORM1). The panel classified CRC and healthy subjects with high accuracy, since the area under curve (AUC) of the training and testing cohort reached 0.954 and 0.958. The AUC of the two independent validation cohorts was 0.905 and 0.909. In one validation cohort, the panel had an overall sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 89.9%, 81.8%, 89.2%, and 82.9%, respectively. In another blinded validation cohort, the panel classified CRC from healthy subjects with a sensitivity of 81.5%, specificity of 97.9%, and overall accuracy of 92.0%. Finally, the panel was able to detect APC with a sensitivity of 49%. CONCLUSIONS This seven-protein classifier is a clear improvement compared to previously published blood-based protein biomarkers for detecting early-stage CRC, and is of translational potential to develop into a clinically useful assay.
Collapse
Affiliation(s)
- Hanju Hua
- Department of Colorectal Surgery (H.H), and Department of Gastroenterology (C.Y. and Z.S.), College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Tingting Wang
- Durbrain Medical Laboratory, Hangzhou, 310000, Zhejiang, China
| | - Liangxuan Pan
- Durbrain Medical Laboratory, Hangzhou, 310000, Zhejiang, China
| | - Xiaoyao Du
- Durbrain Medical Laboratory, Hangzhou, 310000, Zhejiang, China
| | - Tianxue Xia
- Department of Colorectal Surgery (H.H), and Department of Gastroenterology (C.Y. and Z.S.), College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Zhenzhong Fa
- Changzhou Wujin People's Hospital, Changzhou, 213000, Jiangsu, China
| | - Lei Gu
- Department of General Surgery, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Fei Gao
- Durbrain Medical Laboratory, Hangzhou, 310000, Zhejiang, China
| | - Chaohui Yu
- Department of Colorectal Surgery (H.H), and Department of Gastroenterology (C.Y. and Z.S.), College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310006, Zhejiang, China.
| | - Feng Gao
- Changzhou Wujin People's Hospital, Changzhou, 213000, Jiangsu, China.
| | - Lujian Liao
- Durbrain Medical Laboratory, Hangzhou, 310000, Zhejiang, China.
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhe Shen
- Department of Colorectal Surgery (H.H), and Department of Gastroenterology (C.Y. and Z.S.), College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
5
|
Duan Y, Yu J, Chen M, Lu Q, Ning F, Gan X, Liu H, Ye Y, Lu S, Lash GE. Knockdown of heat shock protein family D member 1 (HSPD1) promotes proliferation and migration of ovarian cancer cells via disrupting the stability of mitochondrial 3-oxoacyl-ACP synthase (OXSM). J Ovarian Res 2023; 16:81. [PMID: 37087461 PMCID: PMC10122320 DOI: 10.1186/s13048-023-01156-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/06/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Heat shock protein 60 (HSP60) is essential for the folding and assembly of newly imported proteins to the mitochondria. HSP60 is overexpressed in most types of cancer, but its association with ovarian cancer is still in dispute. SKOV3 and OVCAR3 were used as experimental models after comparing the expression level of mitochondrial HSP60 in a normal human ovarian epithelial cell line and four ovarian cancer cell lines. RESULTS Low HSPD1 (Heat Shock Protein Family D (HSP60) Member 1) expression was associated with unfavorable prognosis in ovarian cancer patients. Knockdown of HSPD1 significantly promoted the proliferation and migration of ovarian cancer cells. The differentially expressed proteins after HSPD1 knockdown were enriched in the lipoic acid (LA) biosynthesis and metabolism pathway, in which mitochondrial 3-oxoacyl-ACP synthase (OXSM) was the most downregulated protein and responsible for lipoic acid synthesis. HSP60 interacted with OXSM and overexpression of OXSM or LA treatment could reverse proliferation promotion mediated by HSPD1 knockdown. CONCLUSIONS HSP60 interacted with OXSM and maintained its stability. Knockdown of HSPD1 could promote the proliferation and migration of SKOV3 and OVCAR3 via lowering the protein level of OXSM and LA synthesis.
Collapse
Affiliation(s)
- Yaoyun Duan
- Division of Uterine Vascular Biology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Juan Yu
- Division of Uterine Vascular Biology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Miaojuan Chen
- Division of Uterine Vascular Biology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Qinsheng Lu
- Division of Uterine Vascular Biology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Fen Ning
- Division of Uterine Vascular Biology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Xiaowen Gan
- Division of Uterine Vascular Biology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hanbo Liu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yixin Ye
- Division of Uterine Vascular Biology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Shenjiao Lu
- Division of Uterine Vascular Biology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Gendie E Lash
- Division of Uterine Vascular Biology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China.
| |
Collapse
|
6
|
Zhan Z, Mei J, Zhou X, Jiang S, Li D, Wang X. A study on expression level and nutritional status of IGFBP-2 after left neck anastomosis combined with placement of feeding nutritional applicators carrying ^(125)I particles in the treatment of esophageal cancer. Front Oncol 2022; 12:1085305. [PMID: 36561518 PMCID: PMC9763889 DOI: 10.3389/fonc.2022.1085305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Background To explore the changes and significance of the expression level and nutritional status of human insulin-like growth factor binding protein-2 (IGFBP2) after the treatment of esophageal cancer with left neck anastomosis combined with placement of feeding nutritional applicators carrying ^(125)I particles. Methods A total of 110 patients with esophageal cancer (observation group: left neck anastomosis combined with placement of feeding nutritional applicators carrying ^(125)I particles) and 100 healthy people (control group) were enrolled at the same period. Then enzyme-linked immunosorbent assay (ELISA) was carried out to detect level of IGFBP-2. Lymphocyte count and serum albumin were measured by immune analyzer and automatic protein analyzer to evaluate nutritional status. Logistic regression analysis was used to analyze the relationship between serum IGFBP-2, nutritional status and prognosis of esophageal cancer after combined treatment. Results The albumin, lymphocyte absolute value and PNI detection value of the control group were lower than those of the observation group 1 month after treatment, and the difference was statistically significant compared with the control group. The detection value of IGFBP-2 in early patients before and after treatment was lower than that in middle and late patients, and the detection values of albumin, lymphocyte absolute value and PNI were higher than those in middle and late patients, the differences were statistically significant. Serum IGFBP-2 level was negatively correlated with PNI, and albumin and lymphocyte absolute value were positively correlated with PNI. The detection value of IGFBP-2 in patients with good prognosis was significantly lower than that in patients with poor prognosis, and the detection values of albumin, lymphocyte absolute value and PNI were significantly higher than those in patients with poor prognosis. The AUC (0.887,95% CI: 0.799-0.975) of IGFBP-2, albumin, lymphocyte absolute value and PNI in predicting poor prognosis of esophageal cancer was the largest, and the sensitivity and specificity were 94.12% and 92.47%, respectively. Conclusions Left neck anastomosis combined with ^(125)I particle application nutritional tube is helpful for the decrease of serum IGFBP-2 and the increase of various nutritional status indicators, which is beneficial for the improvement of the patient's condition.
Collapse
Affiliation(s)
- Zhiqiang Zhan
- Department of Oncology, Jiangxi Pingxiang People’s Hospital, Pingxiang, China
| | - Jiaqi Mei
- The first clinical medical college of Nanchang University, Nanchang, China
| | - Xiangwu Zhou
- Department of Thoracic Surgery, Medical College of Nanchang University, Nanchang, China
| | - Sicong Jiang
- Division of Thoracic and Endocrine Surgery, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Daojing Li
- Department of Radiotherapy, Jiangxi Province Cancer hospital, Nanchang, China
| | - Xuefeng Wang
- Department of Hepatobiliary Surgery, Xiantao First People’s Hospital Affiliated to Yangtze University, Xiantao, China
| |
Collapse
|
7
|
EPLIN, a Putative Tumour Suppressor in Colorectal Cancer, Implications in Drug Resistance. Int J Mol Sci 2022; 23:ijms232315232. [PMID: 36499558 PMCID: PMC9736569 DOI: 10.3390/ijms232315232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Colorectal cancer is a serious threat to human health. Poor prognosis and frequently reported drug resistance urges research into novel biomarkers and mechanisms to aid in the understanding of the development and progression of colorectal cancer and to optimise therapeutic strategies. In the current study, we investigated the roles of a putative tumour suppressor, EPLIN, in colorectal cancer. Our clinical colorectal cancer cohort and online databases revealed a downregulation of EPLIN in colorectal cancer tissues compared with normal tissues. The reduced expression of EPLIN was associated with poor clinical outcomes of patients. In vitro cellular function assays showed that EPLIN elicited an inhibitory effect on cellular growth, adhesion, migration and invasion. Utilising a protein microarray on protein samples from normal and tumour patient tissues suggested HSP60, Her2 and other signalling events were novel potential interacting partners of EPLIN. It was further revealed that EPLIN and HSP60 were negative regulators of Her2 in colorectal cancer cells. The clinical cohort also demonstrated that expression of HSP60 and Her2 affected clinical outcomes, but most interestingly the combination of EPLIN, HSP60 and Her2 was able to identify patients with the most unfavourable clinical outcome by independently predicting patient overall survival and disease free survival. Furthermore, EPLIN and HSP60 exhibited potential to regulate cellular response to chemotherapeutic and EGFR/Her2 targeted therapeutic agents. In conclusion, EPLIN is an important prognostic factor for patients with colon cancer and reduced EPLIN in CRC contributes to aggressive traits of CRC cells and their responses to chemotherapeutic drugs. Collectively, EPLIN is a pivotal factor for the development and progression of colorectal cancer and has important clinical and therapeutic values in this cancer type.
Collapse
|
8
|
The Insulin-like Growth Factor System and Colorectal Cancer. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081274. [PMID: 36013453 PMCID: PMC9410426 DOI: 10.3390/life12081274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022]
Abstract
Insulin-like growth factors (IGFs) are peptides which exert mitogenic, endocrine and cytokine activities. Together with their receptors, binding proteins and associated molecules, they participate in numerous pathophysiological processes, including cancer development. Colorectal cancer (CRC) is a disease with high incidence and mortality rates worldwide, whose etiology usually represents a combination of the environmental and genetic factors. IGFs are most often increased in CRC, enabling excessive autocrine/paracrine stimulation of the cell growth. Overexpression or increased activation/accessibility of IGF receptors is a coinciding step which transmits IGF-related signals. A number of molecules and biochemical mechanisms exert modulatory effects shaping the final outcome of the IGF-stimulated processes, frequently leading to neoplastic transformation in the case of irreparable disbalance. The IGF system and related molecules and pathways which participate in the development of CRC are the focus of this review.
Collapse
|
9
|
Inigo JR, Chandra D. The mitochondrial unfolded protein response (UPR mt): shielding against toxicity to mitochondria in cancer. J Hematol Oncol 2022; 15:98. [PMID: 35864539 PMCID: PMC9306209 DOI: 10.1186/s13045-022-01317-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/11/2022] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are essential for tumor growth and progression. However, the heavy demand for mitochondrial activity in cancer leads to increased production of mitochondrial reactive oxygen species (mtROS), accumulation of mutations in mitochondrial DNA, and development of mitochondrial dysfunction. If left unchecked, excessive mtROS can damage and unfold proteins in the mitochondria to an extent that becomes lethal to the tumor. Cellular systems have evolved to combat mtROS and alleviate mitochondrial stress through a quality control mechanism called the mitochondrial unfolded protein response (UPRmt). The UPRmt system is composed of chaperones and proteases, which promote protein folding or eliminate mitochondrial proteins damaged by mtROS, respectively. UPRmt is conserved and activated in cancer in response to mitochondrial stress to maintain mitochondrial integrity and support tumor growth. In this review, we discuss how mitochondria become dysfunctional in cancer and highlight the tumor-promoting functions of key components of the UPRmt.
Collapse
Affiliation(s)
- Joseph R Inigo
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
10
|
Cyran AM, Zhitkovich A. Heat Shock Proteins and HSF1 in Cancer. Front Oncol 2022; 12:860320. [PMID: 35311075 PMCID: PMC8924369 DOI: 10.3389/fonc.2022.860320] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Fitness of cells is dependent on protein homeostasis which is maintained by cooperative activities of protein chaperones and proteolytic machinery. Upon encountering protein-damaging conditions, cells activate the heat-shock response (HSR) which involves HSF1-mediated transcriptional upregulation of a group of chaperones - the heat shock proteins (HSPs). Cancer cells experience high levels of proteotoxic stress due to the production of mutated proteins, aneuploidy-induced excess of components of multiprotein complexes, increased translation rates, and dysregulated metabolism. To cope with this chronic state of proteotoxic stress, cancers almost invariably upregulate major components of HSR, including HSF1 and individual HSPs. Some oncogenic programs show dependence or coupling with a particular HSR factor (such as frequent coamplification of HSF1 and MYC genes). Elevated levels of HSPs and HSF1 are typically associated with drug resistance and poor clinical outcomes in various malignancies. The non-oncogene dependence ("addiction") on protein quality controls represents a pancancer target in treating human malignancies, offering a potential to enhance efficacy of standard and targeted chemotherapy and immune checkpoint inhibitors. In cancers with specific dependencies, HSR components can serve as alternative targets to poorly druggable oncogenic drivers.
Collapse
Affiliation(s)
- Anna M Cyran
- Legoretta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Anatoly Zhitkovich
- Legoretta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| |
Collapse
|
11
|
Vekic J, Zeljkovic A, Stefanovic A, Giglio RV, Ciaccio M, Rizzo M. Diabetes and Colorectal Cancer Risk: A New Look at Molecular Mechanisms and Potential Role of Novel Antidiabetic Agents. Int J Mol Sci 2021; 22:12409. [PMID: 34830295 PMCID: PMC8622770 DOI: 10.3390/ijms222212409] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Epidemiological data have demonstrated a significant association between the presence of type 2 diabetes mellitus (T2DM) and the development of colorectal cancer (CRC). Chronic hyperglycemia, insulin resistance, oxidative stress, and inflammation, the processes inherent to T2DM, also play active roles in the onset and progression of CRC. Recently, small dense low-density lipoprotein (LDL) particles, a typical characteristic of diabetic dyslipidemia, emerged as another possible underlying link between T2DM and CRC. Growing evidence suggests that antidiabetic medications may have beneficial effects in CRC prevention. According to findings from a limited number of preclinical and clinical studies, glucagon-like peptide-1 receptor agonists (GLP-1RAs) could be a promising strategy in reducing the incidence of CRC in patients with diabetes. However, available findings are inconclusive, and further studies are required. In this review, novel evidence on molecular mechanisms linking T2DM with CRC development, progression, and survival will be discussed. In addition, the potential role of GLP-1RAs therapies in CRC prevention will also be evaluated.
Collapse
Affiliation(s)
- Jelena Vekic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (J.V.); (A.Z.); (A.S.)
| | - Aleksandra Zeljkovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (J.V.); (A.Z.); (A.S.)
| | - Aleksandra Stefanovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (J.V.); (A.Z.); (A.S.)
| | - Rosaria Vincenza Giglio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90100 Palermo, Italy; (R.V.G.); (M.C.)
| | - Marcello Ciaccio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90100 Palermo, Italy; (R.V.G.); (M.C.)
- Department of Laboratory Medicine, University Hospital, 90100 Palermo, Italy
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
| |
Collapse
|
12
|
Tieng FYF, Abu N, Nasir SN, Lee LH, Ab Mutalib NS. Liquid Biopsy-Based Colorectal Cancer Screening via Surface Markers of Circulating Tumor Cells. Diagnostics (Basel) 2021; 11:2136. [PMID: 34829483 PMCID: PMC8618170 DOI: 10.3390/diagnostics11112136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is ranked second for cancer-related deaths worldwide with approximately half of the patients being diagnosed at the late stages. The untimely detection of CRC results in advancement to the metastatic stage and nearly 90% of cancer-related deaths. The early detection of CRC is crucial to decrease its overall incidence and mortality rates. The recent introduction of circulating tumor cells (CTCs) has enabled a less invasive sampling method from liquid biopsies, besides revealing key information toward CRC metastasis. The current gold standard for CTC identification is the CellSearch® system (Veridex). This first-generation instrumentation relies on a single cell surface marker (CSM) to capture and count CTCs. Detection of CTCs allows the identification of patients at risk for metastasis, whereas CTC enumeration could improve risk assessment, monitoring of systemic therapy, and detection of therapy resistance in advanced metastatic CRC. In this review, we compared the pros and cons between single CSM-based CTC enrichment techniques and multi-marker-based systems. We also highlighted the challenges faced in the routine implementation of CSM-dependent CTC detection methods in CRC screening, prediction, prognosis, disease monitoring, and therapy selection toward precision medicine, as well as the dwelling on post-CTC analysis and characterization methods.
Collapse
Affiliation(s)
- Francis Yew Fu Tieng
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.); (S.N.N.)
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.); (S.N.N.)
| | - Siti Nurmi Nasir
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.); (S.N.N.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University of Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.); (S.N.N.)
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University of Malaysia, Subang Jaya 47500, Selangor, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
13
|
Abi Zamer B, El-Huneidi W, Eladl MA, Muhammad JS. Ins and Outs of Heat Shock Proteins in Colorectal Carcinoma: Its Role in Carcinogenesis and Therapeutic Perspectives. Cells 2021; 10:2862. [PMID: 34831085 PMCID: PMC8616065 DOI: 10.3390/cells10112862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer cells can reprogram their metabolic activities and undergo uncontrolled proliferation by utilizing the power of heat shock proteins (HSPs). HSPs are highly conserved chaperones that facilitate the folding of intracellular proteins under stress. Constitutively, HSPs are expressed at low levels, but their expression upregulates in response to a wide variety of insults, including anticancer drugs, allowing cancer cells to develop chemoresistance. In recent years, several researchers have reported that HSPs could be an important therapeutic target in difficult-to-treat cancers such as colorectal carcinoma (CRC). Worldwide, CRC is the second most common type of cancer and the second leading cause of cancer-related deaths. The molecular complexity of CRC and the coexisting inflammatory conditions present a significant obstacle to developing effective treatment. Recently, considerable progress has been made in enhancing our understanding of the role of HSPs in CRC pathogenesis. Moreover, novel therapeutic strategies targeting HSPs, either alone or in combination with other anticancer agents, have been reported. Herein, we present an overview of the functional mechanisms and the diagnostic and prognostic potential of HSPs in CRC. We also discuss emerging anti-CRC strategies based on targeting HSPs.
Collapse
Affiliation(s)
- Batoul Abi Zamer
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (B.A.Z.); (W.E.-H.); (M.A.E.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (B.A.Z.); (W.E.-H.); (M.A.E.)
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (B.A.Z.); (W.E.-H.); (M.A.E.)
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (B.A.Z.); (W.E.-H.); (M.A.E.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
14
|
WEE1 inhibition reverses trastuzumab resistance in HER2-positive cancers. Gastric Cancer 2021; 24:1003-1020. [PMID: 33723720 DOI: 10.1007/s10120-021-01176-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND To date, many efforts have been made to understand the resistance mechanism of trastuzumab in human epidermal growth factor receptor 2 (HER2)-positive breast and gastric cancer. However, there is still a huge unmet medical need for patients with trastuzumab resistance. METHODS In our study, we generated four trastuzumab-resistant (HR) cancer cell lines from ERBB2-amplified gastric and biliary tract cancer cell lines (SNU-216, NCI-N87, SNU-2670, and SNU-2773). RESULTS Here, we found higher PD-L1 expression in trastuzumab-resistant (HR) HER2-positive cancer cells than in parental cells, and blocking PD-L1 reversed the resistance to trastuzumab in HR cells. Trastuzumab upregulated PD-L1 expression via NF-κB activation in both parental and HR cells, however, led to DNA damage only in parental cells. The WEE1 inhibitor adavosertib, which downregulates PD-L1 expression, enhanced trastuzumab efficacy by blocking BRCA1-CMTM6-PD-L1 signals and the HER2-CDCP-1-SRC axis. Additionally, the levels of galectin-9, CD163, FoxP3, and CTLA-4 were diminished by blocking WEE1 in the presence of human PBMCs in vitro. CONCLUSION Taken together, the strategy of co-targeting HER2 and WEE1 could overcome resistance to trastuzumab in HER2-positive cancers, supporting further clinical development in HER2-positive cancer patients.
Collapse
|
15
|
Guo J, Zhu S, Deng H, Xu R. HSP60-knockdown suppresses proliferation in colorectal cancer cells via activating the adenine/AMPK/mTOR signaling pathway. Oncol Lett 2021; 22:630. [PMID: 34267822 PMCID: PMC8258614 DOI: 10.3892/ol.2021.12891] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the fourth most lethal cancer in the world. Heat shock protein 60 (HSP60), a mitochondrial chaperone that maintains mitochondrial proteostasis, is highly expressed in tumors compared with in paracancerous tissues, suggesting that high HSP60 expression benefits tumor growth. To determine the effects of HSP60 expression on tumor progression, stable HSP60-knockdown HCT116 cells were constructed in the present study, revealing that knockdown of HSP60 inhibited cell proliferation. Proteomic analysis demonstrated that mitochondrial proteins were downregulated, indicating that knockdown of HSP60 disrupted mitochondrial homeostasis. Metabolomic analysis demonstrated that cellular adenine levels were >30-fold higher in HSP60-knockdown cells than in control cells. It was further confirmed that elevated adenine activated the AMPK signaling pathway, which inhibited mTOR-regulated protein synthesis to slow down cell proliferation. Overall, the current results provide a valuable resource for understanding mitochondrial function in CRC, suggesting that HSP60 may be a potential target for CRC intervention.
Collapse
Affiliation(s)
- Jianying Guo
- School of Nursing, Binzhou Medical University, Yantai, Shandong 264003, P.R. China.,Key Laboratory of Bioinformatics, Ministry of Education, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Songbiao Zhu
- Key Laboratory of Bioinformatics, Ministry of Education, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Haiteng Deng
- Key Laboratory of Bioinformatics, Ministry of Education, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Renhua Xu
- School of Nursing, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
16
|
Álvarez-Artime A, García-Soler B, Sainz RM, Mayo JC. Emerging Roles for Browning of White Adipose Tissue in Prostate Cancer Malignant Behaviour. Int J Mol Sci 2021; 22:5560. [PMID: 34074045 PMCID: PMC8197327 DOI: 10.3390/ijms22115560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
In addition to its well-known role as an energy repository, adipose tissue is one of the largest endocrine organs in the organism due to its ability to synthesize and release different bioactive molecules. Two main types of adipose tissue have been described, namely white adipose tissue (WAT) with a classical energy storage function, and brown adipose tissue (BAT) with thermogenic activity. The prostate, an exocrine gland present in the reproductive system of most mammals, is surrounded by periprostatic adipose tissue (PPAT) that contributes to maintaining glandular homeostasis in conjunction with other cell types of the microenvironment. In pathological conditions such as the development and progression of prostate cancer, adipose tissue plays a key role through paracrine and endocrine signaling. In this context, the role of WAT has been thoroughly studied. However, the influence of BAT on prostate tumor development and progression is unclear and has received much less attention. This review tries to bring an update on the role of different factors released by WAT which may participate in the initiation, progression and metastasis, as well as to compile the available information on BAT to discuss and open a new field of knowledge about the possible protective role of BAT in prostate cancer.
Collapse
Affiliation(s)
- Alejandro Álvarez-Artime
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| | - Belén García-Soler
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
| | - Rosa María Sainz
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| | - Juan Carlos Mayo
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| |
Collapse
|
17
|
Kalita B, Coumar MS. Deciphering molecular mechanisms of metastasis: novel insights into targets and therapeutics. Cell Oncol (Dordr) 2021; 44:751-775. [PMID: 33914273 DOI: 10.1007/s13402-021-00611-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The transition of a primary tumour to metastatic progression is driven by dynamic molecular changes, including genetic and epigenetic alterations. The metastatic cascade involves bidirectional interactions among extracellular and intracellular components leading to disintegration of cellular junctions, cytoskeleton reorganization and epithelial to mesenchymal transition. These events promote metastasis by reprogramming the primary cancer cell's molecular framework, enabling them to cause local invasion, anchorage-independent survival, cell death and immune resistance, extravasation and colonization of distant organs. Metastasis follows a site-specific pattern that is still poorly understood at the molecular level. Although various drugs have been tested clinically across different metastatic cancer types, it has remained difficult to develop efficacious therapeutics due to complex molecular layers involved in metastasis as well as experimental limitations. CONCLUSIONS In this review, a systemic evaluation of the molecular mechanisms of metastasis is outlined and the potential molecular components and their status as therapeutic targets and the associated pre-clinical and clinical agents available or under investigations are discussed. Integrative methods like pan-cancer data analysis, which can provide clinical insights into both targets and treatment decisions and help in the identification of crucial components driving metastasis such as mutational profiles, gene signatures, associated pathways, site specificities and disease-gene phenotypes, are discussed. A multi-level data integration of the metastasis signatures across multiple primary and metastatic cancer types may facilitate the development of precision medicine and open up new opportunities for future therapies.
Collapse
Affiliation(s)
- Bikashita Kalita
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014, India
| | - Mohane Selvaraj Coumar
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014, India.
| |
Collapse
|
18
|
Ray AM, Salim N, Stevens M, Chitre S, Abdeen S, Washburn A, Sivinski J, O'Hagan HM, Chapman E, Johnson SM. Exploiting the HSP60/10 chaperonin system as a chemotherapeutic target for colorectal cancer. Bioorg Med Chem 2021; 40:116129. [PMID: 33971488 DOI: 10.1016/j.bmc.2021.116129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022]
Abstract
Over the past few decades, an increasing variety of molecular chaperones have been investigated for their role in tumorigenesis and as potential chemotherapeutic targets; however, the 60 kDa Heat Shock Protein (HSP60), along with its HSP10 co-chaperone, have received little attention in this regard. In the present study, we investigated two series of our previously developed inhibitors of the bacterial homolog of HSP60/10, called GroEL/ES, for their selective cytotoxicity to cancerous over non-cancerous colorectal cells. We further developed a third "hybrid" series of analogs to identify new candidates with superior properties than the two parent scaffolds. Using a series of well-established HSP60/10 biochemical screens and cell-viability assays, we identified 24 inhibitors (14%) that exhibited > 3-fold selectivity for targeting colorectal cancer over non-cancerous cells. Notably, cell viability EC50 results correlated with the relative expression of HSP60 in the mitochondria, suggesting a potential for this HSP60-targeting chemotherapeutic strategy as emerging evidence indicates that HSP60 is up-regulated in colorectal cancer tumors. Further examination of five lead candidates indicated their ability to inhibit the clonogenicity and migration of colorectal cancer cells. These promising results are the most thorough analysis and first reported instance of HSP60/10 inhibitors being able to selectively target colorectal cancer cells and highlight the potential of the HSP60/10 chaperonin system as a viable chemotherapeutic target.
Collapse
Affiliation(s)
- Anne-Marie Ray
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Nilshad Salim
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Mckayla Stevens
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Siddhi Chitre
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Sanofar Abdeen
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Alex Washburn
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Jared Sivinski
- The University of Arizona, College of Pharmacy, Department of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ 85721, United States
| | - Heather M O'Hagan
- Indiana University School of Medicine, Medical Sciences Program and Department of Medical and Molecular Genetics, 1001 East 3rd St., Bloomington, IN 47405, United States
| | - Eli Chapman
- The University of Arizona, College of Pharmacy, Department of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ 85721, United States
| | - Steven M Johnson
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States.
| |
Collapse
|
19
|
Bi F, Wang J, Zheng X, Xiao J, Zhi C, Gu J, Zhang Y, Li J, Miao Z, Wang Y, Li Y. HSP60 participates in the anti-glioma effects of curcumin. Exp Ther Med 2021; 21:204. [PMID: 33574907 PMCID: PMC7818524 DOI: 10.3892/etm.2021.9637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022] Open
Abstract
The chaperone protein heat shock protein 60 (HSP60) is considered a tumor promoter in several types of primary human tumors, where it orchestrates a broad range of survival programs. Curcumin (CCM) is well-established to exhibit several anticancer properties with an excellent safety profile. Our previous study showed that CCM suppresses extracellular HSP60 expression, which is typically released by activated microglia, and acts as an inflammatory factor by binding to Toll-like receptor 4 (TLR-4) on the cell membrane. The present study assessed whether CCM exerted its anti-neuroglioma effects on U87 cells via inhibition of HSP60/TLR-4 signaling, similar to that in microglia. The results demonstrated that CCM significantly inhibited the viability and invasive capacity of neuroglioma U87 cells as evidenced by a Cell Counting Kit-8 assay. Western blotting and ELISA results showed that CCM decreased the expression of HSP60 and its transcriptional factor, heat shock factor 1, and reduced HSP60 release. Accordingly, TLR-4, as the target of HSP60, and its downstream signaling proteins myeloid differentiation primary response 88 (MYD88), NF-κB, inducible nitric oxide synthase and cytokines IL-1β and IL-6 were downregulated by CCM. The expression levels of apoptotic factors associated with NF-κB activation, including TNF-α and caspase-3 were increased in U87 cells by CCM treatment, while p53 expression, a tumor suppressor, was shown to be decreased. Based on the results of the present study, CCM may exert its anti-tumor effects in U87 cells by inhibiting the HSP60/TLR-4/MYD88/NF-κB pathway and inducing tumor cell apoptosis. Thus, CCM may be used as a potential therapy for the clinical treatment of neuroglioma.
Collapse
Affiliation(s)
- Fengchen Bi
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
| | - Junyan Wang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
| | - Xiaomin Zheng
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
| | - Jingjing Xiao
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China.,Basic Medical School of Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
| | - Chai Zhi
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China.,Basic Medical School of Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
| | - Jinhai Gu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
| | - Yumei Zhang
- Basic Medical School of Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
| | - Juan Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
| | - Zhenhua Miao
- Basic Medical School of Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
| | - Yin Wang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China.,Basic Medical School of Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
| | - Yunhong Li
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
| |
Collapse
|
20
|
Zittan E, Gralnek IM, Berns MS. The New Proactive Approach and Precision Medicine in Crohn's Disease. Biomedicines 2020; 8:biomedicines8070193. [PMID: 32635316 PMCID: PMC7400127 DOI: 10.3390/biomedicines8070193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/23/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022] Open
Abstract
The proactive approach to Crohn's disease (CD) management advocates moving toward algorithmic tight-control scenarios that are designed for each CD phenotype to guide remission induction, maintenance therapy, active monitoring, and multidisciplinary care to manage the complexities of each inflammatory bowel disease (IBD) patient. This requires accurate initial clinical, laboratory, radiological, endoscopic, and/or tissue diagnosis for proper phenotypic stratification of each CD patient. A substantial proportion of patients in symptomatic remission have been reported to demonstrate evidence of active disease, with elevated fecal calprotectin(FC) and C-reactive protein (CRP) levels as a hallmark for mucosal inflammation. Active mucosal inflammation, and elevated CRP and fecal calprotectin (FC) have been shown to be good predictors of clinical relapse, disease progression, and complications in IBD patients. The next frontier of treatment is personalized medicine or precision medicine to help solve the problem of IBD heterogeneity and variable responses to treatment. Personalized medicine has the potential to increase the efficacy and/or reduce potential adverse effects of treatment for each CD phenotype. However, there is currently an unmet need for better elucidation of the inflammatory biopathways and genetic signatures of each IBD phenotype, so personalized medicine can specifically target the underlying cause of the disease and provide maximal efficacy to each patient.
Collapse
Affiliation(s)
- Eran Zittan
- Ellen and Pinchas Mamber Institute of Gastroenterology and Liver Diseases, IBD unit, Emek Medical Center, Afula 1834111, Israel;
- Correspondence:
| | - Ian M. Gralnek
- Ellen and Pinchas Mamber Institute of Gastroenterology and Liver Diseases, IBD unit, Emek Medical Center, Afula 1834111, Israel;
- Rappaport Faculty of Medicine Technion-Israel Institute of Technology, Haifa 31096, Israel;
| | - Marc S. Berns
- Rappaport Faculty of Medicine Technion-Israel Institute of Technology, Haifa 31096, Israel;
| |
Collapse
|
21
|
Tieng FYF, Abu N, Sukor S, Mohd Azman ZA, Mahamad Nadzir N, Lee LH, Ab Mutalib NS. L1CAM, CA9, KLK6, HPN, and ALDH1A1 as Potential Serum Markers in Primary and Metastatic Colorectal Cancer Screening. Diagnostics (Basel) 2020; 10:E444. [PMID: 32630086 PMCID: PMC7400057 DOI: 10.3390/diagnostics10070444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) screening at the earlier stages could effectively decrease CRC-related mortality and incidence; however, accurate screening strategies are still lacking. Considerable interest has been generated in the detection of less invasive tests requiring a small sample volume with the potential to detect several cancer biomarkers simultaneously. Due to this, the ELISA-based method was undertaken in this study. METHODS Concentrations of neural cell adhesion molecule L1 (L1CAM), carbonic anhydrase IX (CA9), mesothelin (MSLN), midkine (MDK), hepsin (HPN), kallikrein 6 (KLK6), transglutaminase 2 (TGM2) aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), epithelial cell adhesion molecule (EpCAM), and cluster of differentiation 44 (CD44) from blood serum of 36 primary CRC and 24 metastatic CRC (mCRC) were calculated via MAGPIX® System (Luminex Corporation, USA). RESULTS Significantly increased concentration (p < 0.05) of three serum biomarkers (L1CAM, CA9, and HPN) were shown in mCRC when compared with primary CRC. HPN and KLK6 showed significant differences (p < 0.05) in concentration among different stages of CRC. In contrast, levels of HPN and ALDH1A1 were significantly elevated (p < 0.05) in chemotherapy-treated CRC patients as compared with nontreated ones. Conclusion: Serum biomarkers could act as a potential early CRC diagnostics test, but further additional testings are needed.
Collapse
Affiliation(s)
- Francis Yew Fu Tieng
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.); (N.M.N.)
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.); (N.M.N.)
| | - Surani Sukor
- Prima Nexus Sdn. Bhd., Kuala Lumpur 50470, Malaysia;
| | - Zairul Azwan Mohd Azman
- Colorectal Unit, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia;
| | - Norshahidah Mahamad Nadzir
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.); (N.M.N.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Nurul Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.); (N.M.N.)
| |
Collapse
|
22
|
Jelski W, Mroczko B. Biochemical Markers of Colorectal Cancer - Present and Future. Cancer Manag Res 2020; 12:4789-4797. [PMID: 32606968 PMCID: PMC7319530 DOI: 10.2147/cmar.s253369] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
According to a report by the National Cancer Institute, colorectal cancer (CRC) is one of the most common types of cancer worldwide. CRC is often recognized too late for successful therapy. Tumor markers have been sought for a number of years to detect the transformation of malignant cells at the earliest possible stage. They are usually proteins associated with a malignancy and might be clinically useful in patients with cancer. Several classical markers have been used to recognize colorectal cancer, including carcinoembryonic antigen (CEA), carbohydrate antigen (CA 19.9), tissue polypeptide specific antigen (TPS) and tumor-associated glycoprotein-72 (TAG-72). None of these tests, however, have excellent diagnostic accuracy. Recent studies have been conducted on the use of hematopoietic growth factors (HGFs) and various enzymes in the diagnosis and prognosis of colorectal cancer. These include macrophage-colony stimulating factor (M-CSF) and granulocyte-macrophage-colony stimulating factor (GM-CSF), interleukin-3, interleukin-6 and enzymes (alcohol dehydrogenase and lysosomal exoglycosidases). Significantly, most cancer deaths are not caused by the primary tumor itself but by its spread. Analysis of circulating cancer cells (CTCs), ie, factors responsible for metastasis, may be a source of information useful in the treatment of patients with colorectal cancer. Currently available markers have significant limitations.
Collapse
Affiliation(s)
- Wojciech Jelski
- Department of Biochemical Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, Bialystok, Poland.,Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|