1
|
Chele D, Sirbu CA, Mitrica M, Toma M, Vasiliu O, Sirbu AM, Authier FJ, Mischianu D, Munteanu AE. Metformin's Effects on Cognitive Function from a Biovariance Perspective: A Narrative Review. Int J Mol Sci 2025; 26:1783. [PMID: 40004246 PMCID: PMC11855408 DOI: 10.3390/ijms26041783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/01/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
This study examines the effects of metformin on brain functions focusing on the variability of the results reported in the literature. While some studies suggest that metformin may have neuroprotective effects in diabetic patients, others report an insignificant impact of metformin on cognitive function, or even a negative effect. We propose that this inconsistency may be due to intrinsic cellular-level variability among individuals, which we term "biovariance". Biovariance persists even in demographically homogeneous samples due to complex and stochastic biological processes. Additionally, the complex metabolic actions of metformin, including its influence on neuroenergetics and neuronal survival, may produce different effects depending on individual metabolic characteristics.
Collapse
Affiliation(s)
- Dimitrie Chele
- Department of Neurology, Elias Emergency University Hospital, 011461 Bucharest, Romania;
| | - Carmen-Adella Sirbu
- Clinical Neurosciences Department, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (M.M.); (O.V.)
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Marian Mitrica
- Clinical Neurosciences Department, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (M.M.); (O.V.)
| | - Mihai Toma
- Department of Medical-Surgical and Prophylactical Disciplines, Faculty of Medicine, ‘Titu Maiorescu’ University, 031593 Bucharest, Romania; (M.T.); (A.E.M.)
| | - Octavian Vasiliu
- Clinical Neurosciences Department, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (M.M.); (O.V.)
- Department of Psychiatry, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Anca-Maria Sirbu
- National Institute of Medical Expertise and Recovery of Work Capacity, Panduri 22, 050659 Bucharest, Romania
| | - Francois Jerome Authier
- Neuromuscular Reference Center, Henri Mondor University Hospital, Assistance Publique–Hôpitaux de Paris, 94000 Créteil, France
- INSERM U955-Team Relaix, Faculty of Health, Paris Est-Creteil University, 94010 Créteil, France
| | - Dan Mischianu
- Academy of Romanian Scientists, 050045 Bucharest, Romania
- Department No. 3, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Alice Elena Munteanu
- Department of Medical-Surgical and Prophylactical Disciplines, Faculty of Medicine, ‘Titu Maiorescu’ University, 031593 Bucharest, Romania; (M.T.); (A.E.M.)
| |
Collapse
|
2
|
Abdallah FM, Ghoneim AI, Abd-Alhaseeb MM, Abdel-Raheem IT, Helmy MW. Unveiling the antitumor synergy between pazopanib and metformin on lung cancer through suppressing p-Akt/ NF-κB/ STAT3/ PD-L1 signal pathway. Biomed Pharmacother 2024; 180:117468. [PMID: 39332188 DOI: 10.1016/j.biopha.2024.117468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/01/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Pazopanib, an inhibitor of the VEGF receptor tyrosine kinase, has demonstrated significant antitumor effects in lung cancer. However, its application as a standard treatment for this type of cancer is limited by its drug resistance and toxicity. Metformin has the potential to combat lung cancer by modifying the tumor's immune microenvironment. In this study, we investigated the potential antitumor effects and the associated underlying molecular mechanisms of the combination of pazopanib and metformin in lung cancer. In vitro studies were conducted using the A549 and H460 lung cancer cell lines, whereas urethane-induced lung cancer-bearing mice were used for in vivo assessments. The urethane-induced mice received oral administration of pazopanib (50 mg/kg) and/or metformin (250 mg/kg) for a duration of 21 days. The results indicated that the MTT assay demonstrated a combined cytotoxic effect of the pazopanib/metformin combination in H460 and A549 cells, as evidenced by CI and DRI analyses. The observed increase in annexin V levels and the corresponding increase in Caspase-3 activity strongly suggest that this combination induced apoptosis. Furthermore, the pazopanib/metformin combination significantly inhibited the p-Akt/NF-κB/IL-6/STAT3, HIF1α/VEGF, and TLR2/TGF-β/PD-L1 pathways while also increasing CD8 expression in vivo. Immunohistochemical analysis revealed that these antitumor mechanisms were manifested by the suppression of the proliferation marker Ki67. In conclusion, these findings revealed that metformin augments the antitumor efficacy of pazopanib in lung cancer by simultaneously targeting proliferative, angiogenic, and immunogenic signaling pathways, metformin enhances the antitumor effectiveness of pazopanib in lung cancer, making it a promising therapeutic option for lung cancer.
Collapse
Affiliation(s)
- Fatma M Abdallah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Damanhour University, 22511, Egypt; Faculty of Health Sciences Technology, Borg Al Arab Technological University, New Borg El Arab, Egypt.
| | - Asser I Ghoneim
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Damanhour University, 22511, Egypt.
| | - Mohammad M Abd-Alhaseeb
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Damanhour University, 22511, Egypt; Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA.
| | - Ihab T Abdel-Raheem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Damanhour University, 22511, Egypt.
| | - Maged W Helmy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Damanhour University, 22511, Egypt.
| |
Collapse
|
3
|
Manjunath GK, Ankam KV, Dakal TC, Srihari Sharma MV, Nashier D, Mitra T, Kumar A. Unraveling the genetic and singaling landscapes of pediatric cancer. Pathol Res Pract 2024; 263:155635. [PMID: 39393268 DOI: 10.1016/j.prp.2024.155635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Pediatric cancer (PAEC) arises from gene mutations and their disrupted pathways, often driven by genetic instability affecting cell signaling. These pathways can help identify cancer triggers. Genomic studies have examined PAEC gene etiologies and disorders, but further analysis is needed to understand tumor progression mechanisms. We systematically analyzed PAEC datasets from cBioPortal, encompassing thirteen studies with 6568 samples. We identified 827 PAEC genes with mutation frequencies over fifteen across four tiers (I-IV). Tier I (mutation frequency ≥1 %) includes 40 genes, while Tier II(0.90-0.70 %), Tier III(0.60-0.50 %), and Tier IV(0.40-0.10 %) comprise 126, 336, and 325 genes, respectively. Key Tier I genes include TP53(5 %), NRAS(2.2 %), KRAS(1.8 %), CTNNB1(1.4 %), ATM(1.3 %), CREBBP(1.2 %), JAK2 (1.1 %), PIK3CA(1 %), PTEN(1 %), BRAF(0.9 %), EGFR(0.9 %), PIK3R1(0.8 %), and PTPN11(0.8 %). These genes participate in various signaling pathways (PI3K/AKT/mTOR, RAS/RAF/MAPK, JAK/STAT, and WNT/β-catenin), which are interconnected. We compared several PAEC panels with Tier I genes, and we found that the most shared across PAEC panels were TP53 (8), PTEN (7), and ATM (4). We further examined roles of TP53 in normal cells versus PEAC tumors using digital cellular and pathological imaging data supported by Human Protein Atlas. TP53 is expressed in cytosol, nucleosol, and vesicles and during cell-cycle TP53 protein in key regulator and it is present during all major cell-cycle events. Balancing of TP53WT and TP53MUT is the hallmark of the TP53 pathophysiology with severe functional implications. Notably, genes linked to insulin metabolism disorders may be PAEC risk factors, suggesting metabolic pathways as key research targets. This study highlights the therapeutic, prognostic, and diagnostic significance of these genes and pathways, emphasizing the need for ongoing PAEC research.
Collapse
Affiliation(s)
- Gowrang Kasaba Manjunath
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India; Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, Karnataka 560066, India
| | - Krishna Veni Ankam
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India; Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, Karnataka 560066, India
| | - Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia, University, Udaipur, Rajasthan 313001, India
| | - M V Srihari Sharma
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India; Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, Karnataka 560066, India
| | - Disha Nashier
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India; Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, Karnataka 560066, India
| | - Tamoghna Mitra
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India; Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, Karnataka 560066, India
| | - Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India; Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, Karnataka 560066, India.
| |
Collapse
|
4
|
See LC, Wu CY, Tsai CY, Lee CC, Chen JJ, Jenq CC, Chen CY, Chen YC, Yen CL, Yang HY. PPAR-γ agonist pioglitazone and the risks of malignancy among type2 diabetes mellitus patients. Acta Diabetol 2024:10.1007/s00592-024-02378-y. [PMID: 39347851 DOI: 10.1007/s00592-024-02378-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024]
Abstract
AIMS PPAR-gamma shows promise in inhibiting malignancy cell progression. However, pioglitazone, the sole current PPAR-gamma agonist, was reported to have risks of bladder cancer in previous clinical researches. This study is aimed to assess the influence of pioglitazone on the development of tumors. METHODS By using Taiwan's National Health Insurance Research Database, this nested case-control study identified incident type2 diabetes initiating metformin treatment between 2000 and 2014, and then categorized into two groups based on whether they developed malignancies after enrollment or not. The index date was defined as the date of malignancy diagnosis in the cancer group or a matched date in the non-cancer group. We analyzed the exposure to pioglitazone preceding the index date. RESULTS 47,931 patients in the cancer group and 47,931 patients in the matched non-cancer group were included. The non-cancer group exhibited a significantly higher rate of pioglitazone prescription before the index date for overall malignancies (odds ratios for pioglitazone use were 0.91, 0.92, 0.94, and 0.93 in the first, second, third, and fourth years before the index date). For breast cancer and prostate cancer, pioglitazone was frequently prescribed in the non-cancer group, whereas for pancreatic cancer, pioglitazone use was more common in the cancer group. CONCLUSIONS PPAR-gamma agonists may be associated with reduced risks of overall malignancies, particularly for breast and prostate cancers. However, it may be linked to an elevated risk of pancreatic cancer.
Collapse
Affiliation(s)
- Lai-Chu See
- Department of Public Health, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Biostatistics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chung-Ying Tsai
- Nephrology Department, Linkou Medical Center, College of Medicine, Kidney Research Institute Chang Gung Memorial Hospital Chang Gung University, No.5, Fuxing Street, Guishan District, Taoyuan, 33305, Taiwan
| | - Cheng-Chia Lee
- Nephrology Department, Linkou Medical Center, College of Medicine, Kidney Research Institute Chang Gung Memorial Hospital Chang Gung University, No.5, Fuxing Street, Guishan District, Taoyuan, 33305, Taiwan
| | - Jia-Jin Chen
- Nephrology Department, Linkou Medical Center, College of Medicine, Kidney Research Institute Chang Gung Memorial Hospital Chang Gung University, No.5, Fuxing Street, Guishan District, Taoyuan, 33305, Taiwan
| | - Chang-Chyi Jenq
- Nephrology Department, Linkou Medical Center, College of Medicine, Kidney Research Institute Chang Gung Memorial Hospital Chang Gung University, No.5, Fuxing Street, Guishan District, Taoyuan, 33305, Taiwan
| | - Chao-Yu Chen
- Nephrology Department, Linkou Medical Center, College of Medicine, Kidney Research Institute Chang Gung Memorial Hospital Chang Gung University, No.5, Fuxing Street, Guishan District, Taoyuan, 33305, Taiwan
| | - Yung-Chang Chen
- Nephrology Department, Linkou Medical Center, College of Medicine, Kidney Research Institute Chang Gung Memorial Hospital Chang Gung University, No.5, Fuxing Street, Guishan District, Taoyuan, 33305, Taiwan
| | - Chieh-Li Yen
- Nephrology Department, Linkou Medical Center, College of Medicine, Kidney Research Institute Chang Gung Memorial Hospital Chang Gung University, No.5, Fuxing Street, Guishan District, Taoyuan, 33305, Taiwan.
| | - Huang-Yu Yang
- Nephrology Department, Linkou Medical Center, College of Medicine, Kidney Research Institute Chang Gung Memorial Hospital Chang Gung University, No.5, Fuxing Street, Guishan District, Taoyuan, 33305, Taiwan.
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, U.S.A..
| |
Collapse
|
5
|
Płonka-Czerw J, Żyrek L, Latocha M. Changes in the Sensitivity of MCF-7 and MCF-7/DX Breast Cancer Cells to Cytostatic in the Presence of Metformin. Molecules 2024; 29:3531. [PMID: 39124936 PMCID: PMC11313889 DOI: 10.3390/molecules29153531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Multidrug resistance is a serious problem in modern medicine and the reason for the failure of various therapies. A particularly important problem is the occurrence of multidrug resistance in cancer therapies which affects many cancer patients. Observations on the effect of metformin-a well-known hypoglycemic drug used in the treatment of type 2 diabetes-on cancer cells indicate the possibility of an interaction of this substance with drugs already used and, as a result, an increase in the sensitivity of cancer cells to cytostatics. The aim of this study was to evaluate the effect of metformin on the occurrence of multidrug resistance of breast cancer cells. The MCF-7-sensitive cell line and the MCF-7/DX cytostatic-resistant cell line were used for this study. WST-1 and LDH assays were used to evaluate the effects of metformin and doxorubicin on cell proliferation and viability. The effect of metformin on increasing the sensitivity of MCF-7 and MCF-7/DX cells to doxorubicin was evaluated in an MDR test. The participation of metformin in increasing the sensitivity of resistant cells to the effect of the cytostatic (doxorubicin) has been demonstrated.
Collapse
Affiliation(s)
- Justyna Płonka-Czerw
- Department of Cell Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland; (L.Ż.); (M.L.)
| | | | | |
Collapse
|
6
|
Abiola JO, Oluyemi AA, Idowu OT, Oyinloye OM, Ubah CS, Owolabi OV, Somade OT, Onikanni SA, Ajiboye BO, Osunsanmi FO, Nash O, Omotuyi OI, Oyinloye BE. Potential Role of Phytochemicals as Glucagon-like Peptide 1 Receptor (GLP-1R) Agonists in the Treatment of Diabetes Mellitus. Pharmaceuticals (Basel) 2024; 17:736. [PMID: 38931402 PMCID: PMC11206448 DOI: 10.3390/ph17060736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Currently, there is no known cure for diabetes. Different pharmaceutical therapies have been approved for the management of type 2 diabetes mellitus (T2DM), some are in clinical trials and they have been classified according to their route or mechanism of action. Insulin types, sulfonylureas, biguanides, alpha-glucosidase inhibitors, thiazolidinediones, meglitinides, sodium-glucose cotransporter type 2 inhibitors, and incretin-dependent therapies (glucagon-like peptide-1 receptor agonists: GLP-1R, and dipeptidyl peptidase 4 inhibitors: DPP-4). Although some of the currently available drugs are effective in the management of T2DM, the side effects resulting from prolonged use of these drugs remain a serious challenge. GLP-1R agonists are currently the preferred medications to include when oral metformin alone is insufficient to manage T2DM. Medicinal plants now play prominent roles in the management of various diseases globally because they are readily available and affordable as well as having limited and transient side effects. Recently, studies have reported the ability of phytochemicals to activate glucagon-like peptide-1 receptor (GLP-1R), acting as an agonist just like the GLP-1R agonist with beneficial effects in the management of T2DM. Consequently, we propose that careful exploration of phytochemicals for the development of novel therapeutic candidates as GLP-1R agonists will be a welcome breakthrough in the management of T2DM and the co-morbidities associated with T2DM.
Collapse
Affiliation(s)
- Julianah Ore Abiola
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja 09004, Nigeria
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Ayoola Abidemi Oluyemi
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Olajumoke Tolulope Idowu
- Industrial Chemistry Unit, Department of Chemical Sciences, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Oluwatoyin Mary Oyinloye
- Department of Mathematics, Science and Technology Education, Faculty of Education, University of Zululand, Kwadlangezwa 3886, South Africa
| | - Chukwudi Sunday Ubah
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA 19121, USA
| | - Olutunmise Victoria Owolabi
- Medical Biochemistry Unit, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Oluwatobi T. Somade
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta 111101, Nigeria
| | - Sunday Amos Onikanni
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- College of Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Basiru Olaitan Ajiboye
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti 371104, Nigeria
| | - Foluso Oluwagbemiga Osunsanmi
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, Kwadlangezwa 3886, South Africa
| | - Oyekanmi Nash
- Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja 09004, Nigeria
| | - Olaposi Idowu Omotuyi
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
- Department of Pharmacology and Toxicology, College of Pharmacy, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Babatunji Emmanuel Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, Kwadlangezwa 3886, South Africa
| |
Collapse
|
7
|
Syed SU, Cortez JI, Wilson SJ. Depression, Inflammation, and the Moderating Role of Metformin: Results From the Midlife in the United States Study and Sacramento Area Latino Study on Aging. Psychosom Med 2024; 86:473-483. [PMID: 37910133 PMCID: PMC11039570 DOI: 10.1097/psy.0000000000001257] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
OBJECTIVE Depression can promote inflammation and accelerate aging. Metformin, a widely prescribed antidiabetic, has shown promising preclinical evidence of aging-related health benefits, including decreased inflammation. The current study examined whether metformin usage buffers the association between depressive symptoms and inflammatory markers in two large samples of middle-aged and older, primarily White adults, and older Latino adults. METHODS Data from the Midlife in the United States Study ( N = 1255) and the Sacramento Area Latino Study on Aging ( N = 1786) included information on medication use, depressive symptoms, and inflammatory markers, namely, interleukin 6 (IL-6), tumor necrosis factor α, and C-reactive protein (CRP). These data were merged into a harmonized sample, and the sample group variable was included in a three-way interaction for analysis. RESULTS Specifically, in the Midlife in the United States Study sample, metformin buffered the association between depressive symptoms and CRP ( b = -0.029, standard error [SE] = 0.013, p = .007) and IL-6 ( b = 0.21, SE = 0.010, p = .046), whereas no significant association was found with tumor necrosis factor α. Metformin nonusers displayed higher depressive symptoms associated with elevated CRP ( b = 0.01, SE = 0.003, p < .001) and IL-6 ( b = 0.011, SE = 0.003, p < .001), whereas this association was not present among metformin users ( p values > .068). Conversely, in the Sacramento Area Latino Study on Aging sample, metformin use did not show a significant protective link. CONCLUSIONS Results from mostly White, highly educated adults supported a mitigating role of metformin in ties between depression, a well-known behavioral risk factor, and inflammation, a key source of biological aging. However, the benefits did not extend to a large sample of older Mexican Americans. The findings reveal a hidden potential benefit of this therapeutic agent and raise important questions around its health equity. TRIAL REGISTRATION The study was preregistered on OSF ( https://osf.io/c92vw/ ).
Collapse
Affiliation(s)
- Sumaiyah U. Syed
- Department of Psychology, Southern Methodist University, Dallas, TX, USA
| | - Jared I. Cortez
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | | |
Collapse
|
8
|
Zhou Y, Yang Z, Zeng H. An Aging-Related lncRNA Signature Establishing for Breast Cancer Prognosis and Immunotherapy Responsiveness Prediction. Pharmgenomics Pers Med 2024; 17:251-270. [PMID: 38803444 PMCID: PMC11129764 DOI: 10.2147/pgpm.s450960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/18/2024] [Indexed: 05/29/2024] Open
Abstract
Purpose Emerging evidence demonstrates the vital role of aging and long non-coding RNAs (lncRNAs) in breast cancer (BC) progression. Our study intended to develop a prognostic risk model based on aging-related lncRNAs (AG-lncs) to foresee BC patients' outcomes. Patients and Methods 307 aging-related genes (AGs) were sequenced from the TCGA project. Then, 697 AG-lncs were identified by the co-expression analysis with AGs. Using multivariate and univariate Cox regression analysis, and LASSO, 6 AG-lncs, including al136531.1, mapt-as1, al451085.2, otud6b-as1, tnfrsf14-as1, and linc01871, were validated to compute the risk score and establish a risk signature. Expression levels of al136531.1, mapt-as1, al451085.2, tnfrsf14-as1, and linc01871 were higher in low-risk BC patients, whereas otud6b-as1 expression was higher in high-risk BC patients. In the training and testing set, high-risk patients performed shorter PFI, OS, and DFS than low-risk patients. Results Our risk signature had the highest concordance index among other established prognostic signatures and displayed ideal predictive ability for 1-, 3- and 5-year patient OS in the nomogram. Additionally, BC patients with different risk score levels showed different immune statuses and responses to immunotherapy via GSEA, ssGSEA, ESTIMATE algorithm, and TIDE algorithm analysis. Of note, the qRT-PCR analysis validated that these 6 AG-lncs expressed quite differentially in BC tissues at various clinical stages. Conclusion The risk signature of 6 AG-lncs might offer a novel prognostic biomarker and promisingly enhance BC immunotherapy's effectiveness.
Collapse
Affiliation(s)
- Yanshijing Zhou
- Department of Plastic and Cosmetic Surgery, Maternal and Child Health Hospital of Hubei Province, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Zihui Yang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Hong Zeng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
9
|
Cosmin Stan M, Paul D. Diabetes and Cancer: A Twisted Bond. Oncol Rev 2024; 18:1354549. [PMID: 38835644 PMCID: PMC11148650 DOI: 10.3389/or.2024.1354549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 04/08/2024] [Indexed: 06/06/2024] Open
Abstract
This paper presents an overview of the interconnection between various factors related to both cancer and type 2 diabetes mellitus (T2DM). Hyperglycemia, hyperinsulinemia, chronic inflammation, and obesity are involved in the development and progression of both diseases but, strong evidence for a direct causal relationship between diabetes and cancer, is lacking. Several studies described a relationship between hyperglycemia and cancer at the cellular, tissular and organismic levels but at the same time recent Mendelian randomization studies proved a significant causal relationship only between hyperglycemia and breast cancer. On the other hand, the association between both hyperinsulinemia and obesity and several cancer types appears to be robust as demonstrated by Mendelian randomized studies. Metabolic alterations, including the Warburg effect and excessive glucose consumption by tumors, are discussed, highlighting the potential impact of dietary restrictions, such as fasting and low-carb diets, on tumor growth and inflammation. Recent data indicates that circulating branched-chain amino acids levels, may represent novel biomarkers that may contribute to both better diabetes control and early pancreatic cancer detection. Understanding the underlying mechanisms and shared risk factors between cancer and T2DM can provide valuable insights for cancer prevention, early detection, and management strategies.
Collapse
Affiliation(s)
- Mihai Cosmin Stan
- Emergency County Hospital Rm. Vâlcea, Râmnicu Vâlcea, Romania
- Medical Oncology Department, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Doru Paul
- Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
10
|
Banerjee J, Tiwari AK, Banerjee S. Drug repurposing for cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:123-150. [PMID: 38942535 DOI: 10.1016/bs.pmbts.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
In the dynamic landscape of cancer therapeutics, the innovative strategy of drug repurposing emerges as a transformative paradigm, heralding a new era in the fight against malignancies. This book chapter aims to embark on the comprehension of the strategic deployment of approved drugs for repurposing and the meticulous journey of drug repurposing from earlier times to the current era. Moreover, the chapter underscores the multifaceted and complex nature of cancer biology, and the evolving field of cancer drug therapeutics while emphasizing the mandate of drug repurposing to advance cancer therapeutics. Importantly, the narrative explores the latest tools, technologies, and cutting-edge methodologies including high-throughput screening, omics technologies, and artificial intelligence-driven approaches, for shaping and accelerating the pace of drug repurposing to uncover novel cancer therapeutic avenues. The chapter critically assesses the breakthroughs, expanding the repertoire of repurposing drug candidates in cancer, and their major categories. Another focal point of this book chapter is that it addresses the emergence of combination therapies involving repurposed drugs, reflecting a shift towards personalized and synergistic treatment approaches. The expert analysis delves into the intricacies of combinatorial regimens, elucidating their potential to target heterogeneous cancer populations and overcome resistance mechanisms, thereby enhancing treatment efficacy. Therefore, this chapter provides in-depth insights into the potential of repurposing towards bringing the much-needed big leap in the field of cancer therapeutics.
Collapse
Affiliation(s)
- Juni Banerjee
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Shuvomoy Banerjee
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India.
| |
Collapse
|
11
|
Hsu JL, Leu WJ, Hsu LC, Hsieh CH, Guh JH. Doxazosin inhibits vasculogenic mimicry in human non‑small cell lung cancer through inhibition of the VEGF‑A/VE‑cadherin/mTOR/MMP pathway. Oncol Lett 2024; 27:170. [PMID: 38455663 PMCID: PMC10918514 DOI: 10.3892/ol.2024.14303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide, and ~85% of lung cancers are non-small cell lung cancer (NSCLC), which has a low 5-year overall survival rate and high mortality. Several therapeutic strategies have been developed, such as targeted therapy, immuno-oncotherapy and combination therapy. However, the low survival rate indicates the urgent need for new NSCLC treatments. Vasculogenic mimicry (VM) is an endothelial cell-free tumor blood supply system of aggressive and metastatic tumor cells present during tumor neovascularization. VM is clinically responsible for tumor metastasis and resistance, and is correlated with poor prognosis in NSCLC, making it a potential therapeutic target. In the present study, A549 cells formed glycoprotein-rich lined tubular structures, and transcript levels of VM-related genes were markedly upregulated in VM-forming cells. Based on a drug repurposing strategy, it was demonstrated that doxazosin (an antihypertensive drug) displayed inhibitory activity on VM formation at non-cytotoxic concentrations. Doxazosin significantly reduced the levels of vascular endothelial growth factor A (VEGF-A) and matrix metalloproteinase-2 (MMP-2) in the cell media during VM formation. Further experiments revealed that the protein expression levels of VEGF-A and vascular endothelial-cadherin (VE-cadherin), which contribute to tumor aggressiveness and VM formation, were downregulated following doxazosin treatment. Moreover, the downstream signaling Ephrin type-A receptor 2 (EphA2)/AKT/mTOR/MMP/Laminin-5γ2 network was inhibited in response to doxazosin treatment. In conclusion, the present study demonstrated that doxazosin displayed anti-VM activity in an NSCLC cell model through the downregulation of VEGF-A and VE-cadherin levels, and the suppression of signaling pathways related to the receptor tyrosine kinase, EphA2, protein kinases, AKT and mTOR, and proteases, MMP-2 and MMP-9. These results support the add-on anti-VM effect of doxazosin as a potential agent against NSCLC.
Collapse
Affiliation(s)
- Jui-Ling Hsu
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan, R.O.C
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan, R.O.C
- Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital, New Taipei City 236, Taiwan, R.O.C
| | - Wohn-Jenn Leu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan, R.O.C
| | - Lih-Ching Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan, R.O.C
| | - Chia-Hsun Hsieh
- Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital, New Taipei City 236, Taiwan, R.O.C
- Division of Medical Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, R.O.C
| | - Jih-Hwa Guh
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan, R.O.C
| |
Collapse
|
12
|
Sun T, Mei N, Su Y, Shan S, Qian W, Li M, Zhang Z. Mendelian randomization combined with multi-omics explores the relationship between heart failure and cancer. J Cancer 2024; 15:2928-2939. [PMID: 38706896 PMCID: PMC11064263 DOI: 10.7150/jca.94142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/27/2024] [Indexed: 05/07/2024] Open
Abstract
Background: Whether there is an association between HF (HF) and cancer has not been conclusively established, and it is not clear whether patients with cancer can share similar hospitalization strategies and outcomes with patients with HF. Methods: Genome-wide association summary statistics were performed using a two-sample Mendelian randomization (MR) method for HF patients and cancer patients from the GWAS directory, with co-localization and Summary Data-Based Mendelian Randomization (SMR) analyses to identify HF-associated genes, and transcriptomic analyses to analyze the roles of these genes in the clinical diagnosis and targeted therapies of multiple cancer types. Results: Two-sample MR analysis showed that increased risk of HF was associated with decreased risk of cervical, brain, breast, colorectal, lung, and skin cancers, and co-localization combined with SMR analysis identified ABO and SURF1 as HF-associated genes, and transcriptomic analyses showed that ABO is a risk factor for HF and a protective factor against cancer, whereas SURF1 is a protective factor against HF and a protective factor against cancer. Conclusion: There was no causal relationship between heart failure and cancers (Cervical, brain, breast, colorectal, lung and skin cancers) risk factors, however there was a trend toward a negative causal relationship between heart failure and cancers (Cervical, brain, breast, colorectal, lung and skin cancers) occurrence.
Collapse
Affiliation(s)
- Tian Sun
- Hubei provincial key laboratory of diabetic cardiovascular diseases, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, People's Republic of China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning 437100, Hubei, People's Republic of China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, People's Republic of China
| | - Na Mei
- Hubei provincial key laboratory of diabetic cardiovascular diseases, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, People's Republic of China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning 437100, Hubei, People's Republic of China
| | - Yanting Su
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning 437100, Hubei, People's Republic of China
| | - Shigang Shan
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning 437100, Hubei, People's Republic of China
| | - Wenbin Qian
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning 437100, Hubei, People's Republic of China
| | - Mengxi Li
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, Hubei, People's Republic of China
| | - Zhenwang Zhang
- Hubei provincial key laboratory of diabetic cardiovascular diseases, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, People's Republic of China
| |
Collapse
|
13
|
Mei W, Mei B, Chang J, Liu Y, Zhou Y, Zhu N, Hu M. Role and regulation of FOXO3a: new insights into breast cancer therapy. Front Pharmacol 2024; 15:1346745. [PMID: 38505423 PMCID: PMC10949727 DOI: 10.3389/fphar.2024.1346745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/16/2024] [Indexed: 03/21/2024] Open
Abstract
Breast cancer is the most common malignancy in the world, particularly affecting female cancer patients. Enhancing the therapeutic strategies for breast cancer necessitates identifying molecular drug targets that effectively eliminate tumor cells. One of these prominent targets is the forkhead and O3a class (FOXO3a), a member of the forkhead transcription factor subfamily. FOXO3a plays a pivotal role in various cellular processes, including apoptosis, proliferation, cell cycle regulation, and drug resistance. It acts as a tumor suppressor in multiple cancer types, although its specific role in cancer remains unclear. Moreover, FOXO3a shows promise as a potential marker for tumor diagnosis and prognosis in breast cancer patients. In addition, it is actively influenced by common anti-breast cancer drugs like paclitaxel, simvastatin, and gefitinib. In breast cancer, the regulation of FOXO3a involves intricate networks, encompassing post-translational modification post-translational regulation by non-coding RNA (ncRNA) and protein-protein interaction. The specific mechanism of FOXO3a in breast cancer urgently requires further investigation. This review aims to systematically elucidate the role of FOXO3a in breast cancer. Additionally, it reviews the interaction of FOXO3a and its upstream and downstream signaling pathway-related molecules to uncover potential therapeutic drugs and related regulatory factors for breast cancer treatment by regulating FOXO3a.
Collapse
Affiliation(s)
- Wenqiu Mei
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Department of Neurology, Ezhou Central Hospital, Ezhou, China
| | - Bingyin Mei
- Department of Neurology, Ezhou Central Hospital, Ezhou, China
| | - Jing Chang
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yifei Liu
- School of Biomedical Engineering, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanhong Zhou
- Department of Medical School of Facial Features, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Ni Zhu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
14
|
Naja K, Anwardeen N, Malki AM, Elrayess MA. Metformin increases 3-hydroxy medium chain fatty acids in patients with type 2 diabetes: a cross-sectional pharmacometabolomic study. Front Endocrinol (Lausanne) 2024; 15:1313597. [PMID: 38370354 PMCID: PMC10869496 DOI: 10.3389/fendo.2024.1313597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Background Metformin is a drug with a long history of providing benefits in diabetes management and beyond. The mechanisms of action of metformin are complex, and continue to be actively debated and investigated. The aim of this study is to identify metabolic signatures associated with metformin treatment, which may explain the pleiotropic mechanisms by which metformin works, and could lead to an improved treatment and expanded use. Methods This is a cross-sectional study, in which clinical and metabolomic data for 146 patients with type 2 diabetes were retrieved from Qatar Biobank. Patients were categorized into: Metformin-treated, treatment naïve, and non-metformin treated. Orthogonal partial least square discriminate analysis and linear models were used to analyze differences in the level of metabolites between the metformin treated group with each of the other two groups. Results Patients on metformin therapy showed, among other metabolites, a significant increase in 3-hydroxyoctanoate and 3-hydroxydecanoate, which may have substantial effects on metabolism. Conclusions This is the first study to report an association between 3-hydroxy medium chain fatty acids with metformin therapy in patients with type 2 diabetes. This opens up new directions towards repurposing metformin by comprehensively understanding the role of these metabolites.
Collapse
Affiliation(s)
- Khaled Naja
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Ahmed M. Malki
- Biomedical Science Department, College of Health Sciences, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha, Qatar
- Biomedical Science Department, College of Health Sciences, Qatar University (QU) Health, Qatar University, Doha, Qatar
| |
Collapse
|
15
|
Grosser B, Heyer CM, Austgen J, Sipos E, Reitsam NG, Hauser A, VanSchoiack A, Kroeppler D, Vlasenko D, Probst A, Novotny A, Weichert W, Keller G, Schlesner M, Märkl B. Stroma AReactive Invasion Front Areas (SARIFA) proves prognostic relevance in gastric carcinoma and is based on a tumor-adipocyte interaction indicating an altered immune response. Gastric Cancer 2024; 27:72-85. [PMID: 37874427 PMCID: PMC10761465 DOI: 10.1007/s10120-023-01436-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/28/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Recently, we presented Stroma AReactive Invasion Front Areas (SARIFA) as a new histomorphologic negative prognostic biomarker in gastric cancer. It is defined as direct contact between tumor cells and fat cells. The aim of this study was to further elucidate the underlying genomic, transcriptional, and immunological mechanisms of the SARIFA phenomenon. METHODS To address these questions, SARIFA was classified on H&E-stained tissue sections of three cohorts: an external cohort (n = 489, prognostic validation), the TCGA-STAD cohort (n = 194, genomic and transcriptomic analysis), and a local cohort (n = 60, digital spatial profiling (whole transcriptome) and double RNA in situ hybridization/immunostaining of cytokines). RESULTS SARIFA status proved to be an independent negative prognostic factor for overall survival in an external cohort of gastric carcinomas. In TCGA-STAD cohort, SARIFA is not driven by distinct genomic alterations, whereas the gene expression analyses showed an upregulation of FABP4 in SARIFA-positive tumors. In addition, the transcriptional regulations of white adipocyte differentiation, triglyceride metabolism, and catabolism were upregulated in pathway analyses. In the DSP analysis of SARIFA-positive tumors, FABP4 and the transcriptional regulation of white adipocyte differentiation were upregulated in macrophages. Additionally, a significantly lower expression of the cytokines IL6 and TNFα was observed at the invasion front. CONCLUSIONS SARIFA proves to be a strong negative prognostic biomarker in advanced gastric cancer, implicating an interaction of tumor cells with tumor-promoting adipocytes with crucial changes in tumor cell metabolism. SARIFA is not driven by tumor genetics but is very likely driven by an altered immune response as a causative mechanism.
Collapse
Affiliation(s)
- Bianca Grosser
- Pathology, Medical Faculty Augsburg, Institute of Pathology and Molecular Diagnostics, University of Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany.
| | - Christian M Heyer
- Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer Science and Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Johannes Austgen
- Pathology, Medical Faculty Augsburg, Institute of Pathology and Molecular Diagnostics, University of Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| | - Eva Sipos
- Pathology, Medical Faculty Augsburg, Institute of Pathology and Molecular Diagnostics, University of Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| | - Nic G Reitsam
- Pathology, Medical Faculty Augsburg, Institute of Pathology and Molecular Diagnostics, University of Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| | - Andreas Hauser
- Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer Science and Medical Faculty, University of Augsburg, Augsburg, Germany
| | | | | | - Dmytro Vlasenko
- General and Visceral Surgery, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Andreas Probst
- Gastroenterology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Alexander Novotny
- Department of Surgery, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Gisela Keller
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Matthias Schlesner
- Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer Science and Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Bruno Märkl
- Pathology, Medical Faculty Augsburg, Institute of Pathology and Molecular Diagnostics, University of Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| |
Collapse
|
16
|
Petrasca A, Hambly R, Kearney N, Smith CM, Pender EK, Mac Mahon J, O'Rourke AM, Ismaiel M, Boland PA, Almeida JP, Kennedy C, Zaborowski A, Murphy S, Winter D, Kirby B, Fletcher JM. Metformin has anti-inflammatory effects and induces immunometabolic reprogramming via multiple mechanisms in hidradenitis suppurativa. Br J Dermatol 2023; 189:730-740. [PMID: 37648653 DOI: 10.1093/bjd/ljad305] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Targeting immunometabolism has shown promise in treating autoimmune and inflammatory conditions. Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease involving painful lesions in apocrine gland-bearing skin. Therapeutic options for HS are limited and often ineffective; thus, there is a pressing need for improved treatments. To date, metabolic dysregulation has not been investigated in HS. As HS is highly inflammatory, we hypothesized that energy metabolism is dysregulated in these patients. Metformin, an antidiabetic drug, which is known to impact on cellular metabolic and signalling pathways, has been shown to have anti-inflammatory effects in cancer and arthritis. While metformin is not licensed for use in HS, patients with HS taking metformin show improved clinical symptoms. OBJECTIVE To assess the effect and mechanism of action of metformin in HS. METHODS To assess the effect of metformin in vivo, we compared the immune and metabolic profiles of peripheral blood mononuclear cells (PBMCs) of patients with HS taking metformin vs. those not taking metformin. To examine the effect of metformin treatment ex vivo, we employed a skin explant model on skin biopsies from patients with HS not taking metformin, which we cultured with metformin overnight. We used enzyme-linked immunosorbent assays, multiplex cytokine assays and quantitative real-time polymerase chain reaction (RT-PCR) to measure inflammatory markers, and Seahorse flux technology and quantitative RT-PCR to assess glucose metabolism. RESULTS We showed that metabolic pathways are dysregulated in the PBMCs of patients with HS vs. healthy individuals. In metformin-treated patients, these metabolic pathways were restored and their PBMCs had reduced inflammatory markers following long-term metformin treatment. In the skin explant model, we found that overnight culture with metformin reduced inflammatory cytokines and chemokines and glycolytic genes in lesions and tracts of patients with HS. Using in vitro assays, we found that metformin may induce these changes via the NLR family pyrin domain containing 3 (NLRP3) inflammasome and the AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) pathway, which is linked to glycolysis and protein synthesis. CONCLUSIONS Our study provides insight into the mechanisms of action of metformin in HS. The anti-inflammatory effects of metformin support its use as a therapeutic agent in HS, while its effects on immunometabolism suggest that targeting metabolism is a promising therapeutic option in inflammatory diseases, including HS.
Collapse
Affiliation(s)
- Andreea Petrasca
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Roisin Hambly
- Department of Dermatology, St. Vincent's University Hospital, Dublin, Ireland
- Charles Institute of Dermatology, Dublin, Ireland
| | - Niamh Kearney
- Department of Dermatology, St. Vincent's University Hospital, Dublin, Ireland
- Charles Institute of Dermatology, Dublin, Ireland
| | - Conor M Smith
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Emily K Pender
- Department of Dermatology, St. Vincent's University Hospital, Dublin, Ireland
- Charles Institute of Dermatology, Dublin, Ireland
| | - Julie Mac Mahon
- Department of Dermatology, St. Vincent's University Hospital, Dublin, Ireland
- Charles Institute of Dermatology, Dublin, Ireland
| | - Aoife M O'Rourke
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mohamed Ismaiel
- Department of Surgery, St. Michael's Hospital, Dublin, Ireland
| | | | - Jose P Almeida
- Department of Surgery, St. Michael's Hospital, Dublin, Ireland
| | - Czara Kennedy
- Department of Surgery, St. Michael's Hospital, Dublin, Ireland
| | | | - Siun Murphy
- Department of Plastic Reconstructive and Aesthetic Surgery, Blackrock Clinic, Dublin, Ireland
| | - Desmond Winter
- Department of Surgery, St. Michael's Hospital, Dublin, Ireland
| | - Brian Kirby
- Department of Dermatology, St. Vincent's University Hospital, Dublin, Ireland
- Charles Institute of Dermatology, Dublin, Ireland
| | - Jean M Fletcher
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Ailuno G, Baldassari S, Balboni A, Drava G, Spalletti C, Tantillo E, Mazzanti M, Barbieri F, Thellung S, Florio T, Caviglioli G. Development and validation of a GC-MS method for determination of metformin in normal brain and in glioblastoma tissues. J Pharm Biomed Anal 2023; 234:115503. [PMID: 37295189 DOI: 10.1016/j.jpba.2023.115503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Metformin hydrochloride (MH) has recently been repurposed as an anticancer agent, showing antiproliferative activity in vitro and in vivo. In particular, experimental evidence has suggested its potential clinical efficacy in glioblastoma (GBM), a very aggressive tumor frequently characterized by gloomy prognosis. Unfortunately, the published literature concerning experimental applications of MH in glioblastoma animal models report no data on metformin levels reached in the brain, which, considering the high hydrophilicity of the drug, are likely very low. Therefore, new sensitive analytical methods to be applied on biological tissues are necessary to improve our knowledge of MH in vivo biodistribution and biological effects on tumors. In this research work, a GC-MS method for MH quantification in brain tissues is proposed. MH has been derivatized using N-methyl-bis(trifluoroacetamide), as already described in the literature, but the derivatization conditions have been optimized; moreover, deuterated MH has been selected as the best internal standard, after a comparative evaluation including other internal standards employed in published methods. After ascertaining method linearity, its accuracy, precision, specificity, repeatability, LOD and LOQ (0.373 µM and 1.242 µM, respectively, corresponding to 0.887 and 2.958 pmol/mg of wet tissue) have been evaluated on mouse brain tissue samples, obtained through a straightforward preparation procedure involving methanolic extraction from lyophilized brain homogenates and solid phase purification. The method has been validated on brain samples obtained from mice, either healthy or xenografted with GBM cells, receiving metformin dissolved in the drinking water. This analytical method can be usefully applied in preclinical studies aiming at clarifying MH mechanism of action in brain tumors.
Collapse
Affiliation(s)
- Giorgia Ailuno
- Department of Pharmacy, Università degli Studi di Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Sara Baldassari
- Department of Pharmacy, Università degli Studi di Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Alice Balboni
- Department of Pharmacy, Università degli Studi di Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Giuliana Drava
- Department of Pharmacy, Università degli Studi di Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Cristina Spalletti
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Elena Tantillo
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Michele Mazzanti
- Department of Biosciences, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Federica Barbieri
- Department of Internal Medicine, Università degli Studi di Genova, Viale Benedetto XV 2, 16132 Genova, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Stefano Thellung
- Department of Internal Medicine, Università degli Studi di Genova, Viale Benedetto XV 2, 16132 Genova, Italy
| | - Tullio Florio
- Department of Internal Medicine, Università degli Studi di Genova, Viale Benedetto XV 2, 16132 Genova, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Gabriele Caviglioli
- Department of Pharmacy, Università degli Studi di Genova, Viale Cembrano 4, 16148 Genova, Italy.
| |
Collapse
|
18
|
Panaampon J, Zhou Y, Saengboonmee C. Metformin as a booster of cancer immunotherapy. Int Immunopharmacol 2023; 121:110528. [PMID: 37364322 DOI: 10.1016/j.intimp.2023.110528] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Metformin, a biguanide antidiabetic, has been studied for its repurposing effects in oncology. Although a modest effect was observed in a single-agent regimen, metformin can synergize the anti-tumor effects of other modalities. The promising combination for cancer treatment is with immunotherapy. Despite high efficacy for some cancers, immunotherapy could be limited by modulation of the tumor immune microenvironment and the immune exhaustion of cytotoxic immune cells. Combining immunotherapy with metformin, thus, exerted a rescuing effect of immunotherapy and potentiated the anti-tumor effects of each other. Although not fully understood, metformin shows promoting effects of immunotherapy by several mechanisms. Those proposed mechanisms have been partially proven and are suggested for possible therapeutic strategies for cancer treatment. In this review, a state-of-the-art of metformin's boosting effects on immunotherapy is reviewed and discussed. The future directions for metformin research in preclinical and clinical immunotherapy are also suggested.
Collapse
Affiliation(s)
- Jutatip Panaampon
- Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
| | - Yubin Zhou
- Department of Thoracic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan 610072, China
| | - Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Center for Translational Medicine, Faculty of Medicine, Khon Kaen University 40002, Thailand.
| |
Collapse
|
19
|
Mahalingam D, Hanni S, Serritella AV, Fountzilas C, Michalek J, Hernandez B, Sarantopoulos J, Datta P, Romero O, Pillai SMA, Kuhn J, Pollak M, Thompson IM. Utilizing metformin to prevent metabolic syndrome due to androgen deprivation therapy (ADT): a randomized phase II study of metformin in non-diabetic men initiating ADT for advanced prostate cancer. Oncotarget 2023; 14:622-636. [PMID: 37335291 PMCID: PMC10278660 DOI: 10.18632/oncotarget.28458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Androgen deprivation therapy (ADT) can lead to metabolic syndrome (MS) and is implicated in ADT-resistance. Metformin showed antineoplastic activity through mTOR inhibition secondary AMPK-activation. MATERIALS AND METHODS To investigate whether metformin mitigated ADT-related MS, we conducted a randomized double-blind phase II trial of metformin 500 mg TID or placebo in non-diabetic patients with biochemically-relapsed or advanced PC due for ADT. Fasting serum glucose, insulin, PSA, metformin, weight and waist circumference (WC) were measured at baseline, week 12 and 28. The primary endpoint was a group of MS metrics. Secondary endpoints include PSA response, safety, serum metformin concentrations and analysis of downstream an mTOR target, phospho-S6-kinase. RESULTS 36 men were randomized to either metformin or placebo. Mean age was 68.4. Mean weight, WC and insulin levels increased in both arms. At week 12 and 28, no statistical differences in weight, WC or insulin were observed in either arm. No significant difference in percentage of patients with PSA <0.2 at week 28 between metformin (45.5%) vs. placebo (46.7%). Analysis in the metformin-arm showed variable down-regulation of phospho-S6 kinase. CONCLUSIONS In our small study, metformin added to ADT did not show a reduced risk of ADT-related MS or differences in PSA response.
Collapse
Affiliation(s)
- Devalingam Mahalingam
- Division of Hematology and Oncology, University of Texas Health Science Center, San Antonio, TX 77030, USA
- Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA
| | - Salih Hanni
- Division of Hematology and Oncology, University of Texas Health Science Center, San Antonio, TX 77030, USA
| | - Anthony V. Serritella
- Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA
| | - Christos Fountzilas
- Division of Hematology and Oncology, University of Texas Health Science Center, San Antonio, TX 77030, USA
- Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Joel Michalek
- Division of Hematology and Oncology, University of Texas Health Science Center, San Antonio, TX 77030, USA
| | - Brian Hernandez
- Division of Hematology and Oncology, University of Texas Health Science Center, San Antonio, TX 77030, USA
| | - John Sarantopoulos
- Institute for Drug Development, Mays Cancer Center at University of Texas Health, San Antonio, TX 78229, USA
| | | | - Ofelia Romero
- Division of Hematology and Oncology, University of Texas Health Science Center, San Antonio, TX 77030, USA
| | | | - John Kuhn
- Division of Hematology and Oncology, University of Texas Health Science Center, San Antonio, TX 77030, USA
| | - Michael Pollak
- Division of Experimental Medicine, Lady Davis Institute of Medical Research, Jewish General Hospital, McGill University, Montreal, Canada
| | - Ian M. Thompson
- Division of Hematology and Oncology, University of Texas Health Science Center, San Antonio, TX 77030, USA
- Christus Health, San Antonio, TX 78229, USA
| |
Collapse
|
20
|
Delgado-Waldo I, Contreras-Romero C, Salazar-Aguilar S, Pessoa J, Mitre-Aguilar I, García-Castillo V, Pérez-Plasencia C, Jacobo-Herrera NJ. A triple-drug combination induces apoptosis in cervical cancer-derived cell lines. Front Oncol 2023; 13:1106667. [PMID: 37223676 PMCID: PMC10200932 DOI: 10.3389/fonc.2023.1106667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/28/2023] [Indexed: 05/25/2023] Open
Abstract
Introduction Cervical cancer is a worldwide health problem due to the number of deaths caused by this neoplasm. In particular, in 2020, 30,000 deaths of this type of tumor were reported in Latin America. Treatments used to manage patients diagnosed in the early stages have excellent results as measured by different clinical outcomes. Existing first-line treatments are not enough to avoid cancer recurrence, progression, or metastasis in locally advanced and advanced stages. Therefore, there is a need to continue with the proposal of new therapies. Drug repositioning is a strategy to explore known medicines as treatments for other diseases. In this scenario, drugs used in other pathologies that have antitumor activity, such as metformin and sodium oxamate, are analyzed. Methods In this research, we combined the drugs metformin and sodium oxamate with doxorubicin (named triple therapy or TT) based on their mechanism of action and previous investigation of our group against three CC cell lines. Results Through flow cytometry, Western blot, and protein microarray experiments, we found TT-induced apoptosis on HeLa, CaSki, and SiHa through the caspase 3 intrinsic pathway, including the critical proapoptotic proteins BAD, BAX, cytochrome-C, and p21. In addition, mTOR and S6K phosphorylated proteins were inhibited in the three cell lines. Also, we show an anti-migratory activity of the TT, suggesting other targets of the drug combination in the late CC stages. Discussion These results, together with our former studies, conclude that TT inhibits the mTOR pathway leading to cell death by apoptosis. Our work provides new evidence of TT against cervical cancer as a promising antineoplastic therapy.
Collapse
Affiliation(s)
- Izamary Delgado-Waldo
- Unidad de Bioquímica Guillermo Soberón Acevedo, Instituto de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México. Copilco Universidad, Coyoacán, Mexico
| | - Carlos Contreras-Romero
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México. Copilco Universidad, Coyoacán, Mexico
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, Mexico
| | - Sandra Salazar-Aguilar
- Laboratorio de Hematopoiesis y Leucemia, Unidad de Investigación, Diferenciación Celular y Cáncer, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Iztapalapa, Mexico
| | - João Pessoa
- CNC - Center for Neuroscience and Cell Biology, CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Irma Mitre-Aguilar
- Unidad de Bioquímica Guillermo Soberón Acevedo, Instituto de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico
| | - Verónica García-Castillo
- Laboratorio de Genómica Funcional, Unidad de Biomedicina, FES-IZTACALA, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, Mexico
- Laboratorio de Genómica Funcional, Unidad de Biomedicina, FES-IZTACALA, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Nadia Judith Jacobo-Herrera
- Unidad de Bioquímica Guillermo Soberón Acevedo, Instituto de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico
| |
Collapse
|
21
|
Correia AS, Marques L, Vale N. The Involvement of Hypoxia in the Response of Neuroblastoma Cells to the Exposure of Atorvastatin. Curr Issues Mol Biol 2023; 45:3333-3346. [PMID: 37185742 PMCID: PMC10137104 DOI: 10.3390/cimb45040218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Cancer is a set of complex diseases, being one of the leading causes of death worldwide. Despite a lot of research on the molecular pathways and effective treatments, there are still huge gaps. Indeed, the development of new anti-cancer drugs is a complex process. To face this problem, drug repurposing is being increasingly applied. This approach aims to identify new indications for already approved drugs. In this regard, statins (clinically used for reducing cholesterol levels) are reported to induce anti-cancer effects, particularly by inducing apoptosis and altering the tumor microenvironment. Atorvastatin is a type of statin with several potentialities as an anti-cancer agent, supported by several studies. Our study aimed to explore the effect of this drug in SH-SY5Y human neuroblastoma cells. Additionally, we also aimed to understand how this drug acts under hypoxia and the inhibition of hypoxia-inducible factor-1 (HIF-1). For that purpose, we assessed cellular viability/morphology after exposure to different concentrations of atorvastatin, with or without chemically induced hypoxia with chloride cobalt (CoCl2) and with or without echinomycin (HIF-1α inhibitor). Our results supported the cytotoxic effects of atorvastatin. Additionally, we also revealed that besides these effects, under hypoxia, this drug induced proliferation of the neuroblastoma cells, supporting the importance of different stimuli and environment on the effect of drugs on cancer cells.
Collapse
Affiliation(s)
- Ana Salomé Correia
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Lara Marques
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
22
|
Raskov H, Gaggar S, Tajik A, Orhan A, Gögenur I. The Matrix Reloaded-The Role of the Extracellular Matrix in Cancer. Cancers (Basel) 2023; 15:2057. [PMID: 37046716 PMCID: PMC10093330 DOI: 10.3390/cancers15072057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
As the core component of all organs, the extracellular matrix (ECM) is an interlocking macromolecular meshwork of proteins, glycoproteins, and proteoglycans that provides mechanical support to cells and tissues. In cancer, the ECM can be remodelled in response to environmental cues, and it controls a plethora of cellular functions, including metabolism, cell polarity, migration, and proliferation, to sustain and support oncogenesis. The biophysical and biochemical properties of the ECM, such as its structural arrangement and being a reservoir for bioactive molecules, control several intra- and intercellular signalling pathways and induce cytoskeletal changes that alter cell shapes, behaviour, and viability. Desmoplasia is a major component of solid tumours. The abnormal deposition and composition of the tumour matrix lead to biochemical and biomechanical alterations that determine disease development and resistance to treatment. This review summarises the complex roles of ECM in cancer and highlights the possible therapeutic targets and how to potentially remodel the dysregulated ECM in the future. Furthering our understanding of the ECM in cancer is important as the modification of the ECM will probably become an important tool in the characterisation of individual tumours and personalised treatment options.
Collapse
Affiliation(s)
- Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
| | - Shruti Gaggar
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
| | - Asma Tajik
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
| | - Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Oncology, Zealand University Hospital, 4000 Roskilde, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
23
|
Suman S, Fornace AJ. Countermeasure development against space radiation-induced gastrointestinal carcinogenesis: Current and future perspectives. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:53-59. [PMID: 36336370 DOI: 10.1016/j.lssr.2022.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
A significantly higher probability of space radiation-induced gastrointestinal (GI) cancer incidence and mortality after a Mars mission has been projected using biophysical and statistical modeling approaches, and may exceed the current NASA mandated limit of less than 3% REID (risk of exposure-induced death). Since spacecraft shielding is not fully effective against heavy-ion space radiation, there is an unmet need to develop an effective medical countermeasure (MCM) strategy against heavy-ion space radiation-induced GI carcinogenesis to safeguard astronauts. In the past, we have successfully applied a GI cancer mouse model approach to understand space radiation-induced GI cancer risk and associated molecular signaling events. We have also tested several potential MCMs to safeguard astronauts during and after a prolonged space mission. In this review, we provide an updated summary of MCM testing using the GI cancer mouse model approach, lessons learned, and a perspective on the senescence signaling targeting approach for desirable protection against space radiation-induced GI carcinogenesis. Furthermore, we also discuss some of the advanced senotherapeutic candidates/combinations as a potential MCM for space radiation-induced GI carcinogenesis.
Collapse
Affiliation(s)
- Shubhankar Suman
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Research Building, Room E504, 3970 Reservoir Rd., NW, Washington D. C. 20057, USA.
| | - Albert J Fornace
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Research Building, Room E504, 3970 Reservoir Rd., NW, Washington D. C. 20057, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington D. C. 20057, USA
| |
Collapse
|