1
|
Lao TD, Le TAH. Hypermethylation of genes on chromosome 3p as a biomarker for nasopharyngeal carcinoma diagnosis: A Vietnamese case-control study. Int J Biol Markers 2024; 39:201-208. [PMID: 39149888 DOI: 10.1177/03936155241268431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
BACKGROUND The crucial event driving nasopharyngeal tumorigenesis is the hypermethylation of chromosome 3p-located tumor suppressor genes. This case-control study aims to investigate the methylation characteristics of RASSF1A, Blu, ADAMTS9, and DLEC1 to potentially develop effective diagnostic biomarkers for nasopharyngeal carcinoma, either individually or in combination. METHODS The methylation of RASSF1A, Blu, ADAMTS9, and DLEC1 in the collection of 93 biopsy samples and 100 healthy swab specimens were evaluated by Nested methylation-specific polymerase chain reaction. The strength of the correlation between candidate genes and nasopharyngeal carcinoma was estimated by the evaluation of odds ratios (ORs). RESULTS Promoter hypermethylation of RASSF1A, Blu, ADAMTS9, and DLEC1 were found in 60.22%, 80.65%, 62.37%, and 74.19%, respectively, in nasopharyngeal carcinoma tumors. A significant association between the methylation status of candidate genes with nasopharyngeal carcinoma was reported. The methylation of candidate genes significantly increased the risk of nasopharyngeal carcinoma in cancerous samples compared with control samples (OR > 1). Based on the value of the methylation index, methylation of at least one gene was found in 95.70% of nasopharyngeal tumors. Additionally, the methylation index among 93 tumors significantly correlated with advanced stage nasopharyngeal tumors. CONCLUSION The study explored a higher frequency of hypermethylation at least one candidate gene. Methylation of a panel of potential genes can be utilized to discriminate between nasopharyngeal carcinoma and non-cancer cells, particularly in the advanced stages of nasopharyngeal carcinoma. Thus, it could serve as a valuable marker for the diagnosis and monitoring of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Thuan Duc Lao
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Viet Nam
| | - Thuy Ai Huyen Le
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
2
|
Choi B, Na Y, Whang MY, Ho JY, Han MR, Park SW, Song H, Hur SY, Choi YJ. MGMT Methylation Is Associated with Human Papillomavirus Infection in Cervical Dysplasia: A Longitudinal Study. J Clin Med 2023; 12:6188. [PMID: 37834832 PMCID: PMC10573962 DOI: 10.3390/jcm12196188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Cervical premalignancy/malignancy, as detected by cervical cytology or biopsy, can develop as a result of human papillomavirus (HPV) infection. Meanwhile, DNA methylation is known to be associated with carcinogenesis. In this study, we thus attempted to identify the association between MGMT methylation and persistent HPV infection using an Epi-TOP MPP assay. Integrative analysis of DNA methylation was carried out here using longitudinal cervical cytology samples of seven patients with atypical squamous cells of undetermined significance/low-grade squamous intraepithelial lesion (ASC-US/LSIL). Then, a gene expression analysis using the longitudinal cervical cytology samples and a public database (The Cancer Genome Atlas (TCGA)) was performed. Upon comparing the ASC-US or LSIL samples at the 1st collection and the paired samples at the 2nd collection more than 6 months later, we found that they became hypermethylated over time. Then, using the longitudinal data, we found that the MGMT methylation was associated with HPV infection. Moreover, TCGA dataset revealed an association between downregulated MGMT mRNA expression and poor overall survival. This decreased MGMT mRNA expression was observed to have an inverse relationship with MGMT methylation levels. In this study, we found that the MGMT methylation level could potentially serve as a valuable prognostic indicator for the transition from ASC-US/LSIL to cervical cancer.
Collapse
Affiliation(s)
- Boram Choi
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (B.C.); (Y.N.); (M.Y.W.); (J.Y.H.)
| | - Yoojin Na
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (B.C.); (Y.N.); (M.Y.W.); (J.Y.H.)
| | - Min Yeop Whang
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (B.C.); (Y.N.); (M.Y.W.); (J.Y.H.)
| | - Jung Yoon Ho
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (B.C.); (Y.N.); (M.Y.W.); (J.Y.H.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Mi-Ryung Han
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (M.-R.H.); (S.-W.P.)
| | - Seong-Woo Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (M.-R.H.); (S.-W.P.)
| | - Heekyoung Song
- Department of Obstetrics and Gynecology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Republic of Korea;
| | - Soo Young Hur
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (B.C.); (Y.N.); (M.Y.W.); (J.Y.H.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Youn Jin Choi
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (B.C.); (Y.N.); (M.Y.W.); (J.Y.H.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| |
Collapse
|
3
|
Patra S, Patil S, Das S, Bhutia SK. Epigenetic dysregulation in autophagy signaling as a driver of viral manifested oral carcinogenesis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166517. [DOI: 10.1016/j.bbadis.2022.166517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/15/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022]
|
4
|
Gougousis S, Petanidis S, Poutoglidis A, Tsetsos N, Vrochidis P, Skoumpas I, Argyriou N, Katopodi T, Domvri K. Epigenetic editing and tumor-dependent immunosuppressive signaling in head and neck malignancies. Oncol Lett 2022; 23:196. [PMID: 35572491 PMCID: PMC9100602 DOI: 10.3892/ol.2022.13317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/05/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck cancer (HNC) comprises a heterogeneous variety of malignant tumors, characterized by a relatively high tumor mutation burden. Previous data have revealed that immune system dysfunction appears to serve a key role in the development and progression of HNC and established immunosuppression is vital for evading the host immune response. Despite progress in chemotherapy and radiotherapy, the survival rate of patients with HNC is still low. Therefore, the present review discusses the development of novel immunotherapy approaches based on the various immune cell signaling routes that trigger drug resistance and immunosuppression. Additionally, the present review discusses the epigenetic alterations, including DNA methylation, histone modifications, chromatin remodeling and non-coding RNAs that drive and support HNC progression. Furthermore, the role of cancer-associated fibroblasts, tumor macrophages and myeloid cells in tumor-related immunosuppression are considered. Specifically, the molecular immune-related mechanisms in the tumor microenvironment, which lead to decreased drug sensitivity and tumor relapse, and strategies for reversing drug resistance and targeting immunosuppressive tumor networks are discussed. Deciphering these molecular mechanisms is essential for preclinical and clinical investigations in order to enhance therapeutic efficacy. Furthermore, an improved understanding of these immune cell signaling pathways that drive immune surveillance, immune-driven inflammation and tumor-related immunosuppression is necessary for future personalized HNC-based therapeutic approaches.
Collapse
Affiliation(s)
- Spyridon Gougousis
- Ear Nose Throat Department, General Hospital of Thessaloniki ‘G. Papanikolaou’, Thessaloniki GR-57010, Greece
| | - Savvas Petanidis
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University, Moscow 119992, Russian Federation
| | - Alexandros Poutoglidis
- Ear Nose Throat Department, General Hospital of Thessaloniki ‘G. Papanikolaou’, Thessaloniki GR-57010, Greece
| | - Nikolaos Tsetsos
- Ear Nose Throat Department, General Hospital of Thessaloniki ‘G. Papanikolaou’, Thessaloniki GR-57010, Greece
| | - Paraskevas Vrochidis
- Ear Nose Throat Department, General Hospital of Goumenissa, Kilkis GR-61100, Greece
| | - Ioannis Skoumpas
- Ear Nose Throat Department, General Hospital of Katerini, Katerini GR-60100, Greece
| | - Nektarios Argyriou
- Ear Nose Throat Department, General Hospital of Thessaloniki ‘G. Gennimatas’, Thessaloniki GR-54635, Greece
| | - Theodora Katopodi
- Department of Medicine, Laboratory of Medical Biology and Genetics, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Kalliopi Domvri
- Pulmonary Department, General Hospital of Thessaloniki ‘G. Papanikolaou’, Aristotle University of Thessaloniki, Thessaloniki GR-57010, Greece
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| |
Collapse
|
5
|
Lima DG, do Amaral GCLS, Planello AC, Borgato GB, Guimarães GN, de Souza AP. Combined therapy with cisplatin and 5-AZA-2CdR modifies methylation and expression of DNA repair genes in oral squamous cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2022; 15:131-144. [PMID: 35414841 PMCID: PMC8986466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
The methylation and expression of DNA repair system genes has been studied in several tumor types. These genes have been associated with resistance to chemotherapy treatments by epigenetic regulation. Studies have yet to show the effects of combined therapy using an epigenetic drug (5-aza-2CdR) and cisplatin (CDDP) on DNA repair genes in oral squamous cell carcinoma (OSCC). This study proposed to investigate the effects of CDDP in combination with 5-aza-2CdR on the methylation of MGMT and MLH1 genes in oral cancer cells. Oral squamous cell carcinoma cell lineages (SCC-9, SCC-15, and SCC-25) were submitted to 72 hours of treatment: 0.1 μM CDDP (or 4.44 μM SCC-9), 0.1 μM and 0.3 μM 5-aza-2CdR (or 1 μM and 3 μM SCC-9), and the drugs in combination. Cell viability was assessed by MTT, DNA methylation of MGMT and MLH1 genes by Methylation Sensitivity High-Resolution Melting (MS-HRM), and the relative expression of the genes by RT-qPCR. The results show that all treatments reduced cell viability; however, in SCC-15 and SCC-9 (IC50 value), 5-aza-2CdR promotes cell sensitization to cytotoxic effect of cisplatin. The MGMT promoter region was 100% demethylated in the SCC-15 and SCC-25 cells but partially (50%) methylated in SCC-9 before drug treatment. Treatment with IC50 CDDP value kept the methylation status and decreased MGMT expression in SCC-9; MGMT gene in SCC-15 and SCC-25 cells became downregulated after treatment with 5-aza-2CdR. MLH1 was demethylated, but the treatments with low-doses and combined drugs decreased the expression in SCC-9 and SCC-25; however high doses of 5-aza-2CdR and drug combination with IC50 value CDDP increased expression of MLH1 in SCC-9. The data presented suggest that epigenetic drugs associated with chemotherapy have clinical translational potential as a therapy strategy to avoid or reverse cancer resistance, requiring further investigation.
Collapse
Affiliation(s)
- Dieila Giomo Lima
- Department of Bioscience, Piracicaba Dental School, University of Campinas Piracicaba, São Paulo, Brazil
| | | | - Aline Cristiane Planello
- Department of Bioscience, Piracicaba Dental School, University of Campinas Piracicaba, São Paulo, Brazil
| | - Gabriell Bonifacio Borgato
- Department of Bioscience, Piracicaba Dental School, University of Campinas Piracicaba, São Paulo, Brazil
| | - Gustavo Narvaes Guimarães
- Department of Bioscience, Piracicaba Dental School, University of Campinas Piracicaba, São Paulo, Brazil
| | - Ana Paula de Souza
- Department of Bioscience, Piracicaba Dental School, University of Campinas Piracicaba, São Paulo, Brazil
| |
Collapse
|
6
|
Donís SP, González AP, Alves MGO, do Carmo Carvalho BF, Ferreira CCP, Almeida JD, Iruegas EP, Petronacci CMC, Peñaranda JMS, Sayáns MP. MLH1, MSH2, MRE11, and XRCC1 in Oral Leukoplakia and Oral Squamous Cell Carcinoma. Appl Immunohistochem Mol Morphol 2021; 29:613-618. [PMID: 33734109 DOI: 10.1097/pai.0000000000000929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/10/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND DNA damage is accumulated in the cells over time as the result of both exogenous and endogenous factors. The objective of this study was to analyze the immunohistochemical expression of the repair proteins in oral leukoplakia (OL) and oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS Paraffin blocks were selected from the archives of the Laboratory of Hospital Clinico Universitario de Santiago de Compostela, Spain. The sample was composed of 16 cases of OL without dysplasia, 14 cases of OL with dysplasia, and 15 cases of OSCC. The patients' clinical data were collected and immunohistochemical analysis was performed for MLH1, MSH2, MRE11, and XRCC1. The data were submitted to the χ2 and the Kruskal-Wallis (P≤0.05) tests. RESULTS MSH2 was overexpressed in OSCC (P=0.020) and was positive in 100% of patients with OL with dysplasia or OSCC (P=0.019). Positivity for MLH1 was significantly associated with comorbidity (P=0.040), especially in patients who presented with 2 or more pathologies (P=0.028). XRCC1 positivity was also associated with comorbidity (P=0.039). No significant associations were found for the MRE11A expression. Although the simultaneous positivity for the 4 markers was observed in presence of comorbidities (P=0.006). CONCLUSIONS This study supports the effect of the overexpression of MSH2 protein in samples of OL with dysplasia and OSCC, most notably in patients who present with comorbidities and negativity for OL without dysplasia.
Collapse
Affiliation(s)
| | | | | | - Bruna F do Carmo Carvalho
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo, Brazil
| | - Camila C P Ferreira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo, Brazil
| | - Janete Dias Almeida
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo, Brazil
| | - Elena Padín Iruegas
- Translational Oncology Laboratory, Idichus Foundation, Santiago de Compostela, Galicia, Spain
| | | | - José M Suárez Peñaranda
- Department of Pathology, Clinical Hospital, Santiago de Compostela
- Department of Forensic Sciences and Pathology, University of Santiago de Compostela
| | | |
Collapse
|
7
|
Jawa Y, Yadav P, Gupta S, Mathan SV, Pandey J, Saxena AK, Kateriya S, Tiku AB, Mondal N, Bhattacharya J, Ahmad S, Chaturvedi R, Tyagi RK, Tandon V, Singh RP. Current Insights and Advancements in Head and Neck Cancer: Emerging Biomarkers and Therapeutics with Cues from Single Cell and 3D Model Omics Profiling. Front Oncol 2021; 11:676948. [PMID: 34490084 PMCID: PMC8418074 DOI: 10.3389/fonc.2021.676948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck cancer (HNC) is among the ten leading malignancies worldwide, with India solely contributing one-third of global oral cancer cases. The current focus of all cutting-edge strategies against this global malignancy are directed towards the heterogeneous tumor microenvironment that obstructs most treatment blueprints. Subsequent to the portrayal of established information, the review details the application of single cell technology, organoids and spheroid technology in relevance to head and neck cancer and the tumor microenvironment acknowledging the resistance pattern of the heterogeneous cell population in HNC. Bioinformatic tools are used for study of differentially expressed genes and further omics data analysis. However, these tools have several challenges and limitations when analyzing single-cell gene expression data that are discussed briefly. The review further examines the omics of HNC, through comprehensive analyses of genomics, transcriptomics, proteomics, metabolomics, and epigenomics profiles. Patterns of alterations vary between patients, thus heterogeneity and molecular alterations between patients have driven the clinical significance of molecular targeted therapies. The analyses of potential molecular targets in HNC are discussed with connotation to the alteration of key pathways in HNC followed by a comprehensive study of protein kinases as novel drug targets including its ATPase and additional binding pockets, non-catalytic domains and single residues. We herein review, the therapeutic agents targeting the potential biomarkers in light of new molecular targeted therapies. In the final analysis, this review suggests that the development of improved target-specific personalized therapies can combat HNC's global plight.
Collapse
Affiliation(s)
- Yashika Jawa
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Pooja Yadav
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shruti Gupta
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sivapar V. Mathan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Jyoti Pandey
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ajay K. Saxena
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Suneel Kateriya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ashu B. Tiku
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Neelima Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh K. Tyagi
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Vibha Tandon
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rana P. Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
8
|
Romanowska K, Sobecka A, Rawłuszko-Wieczorek AA, Suchorska WM, Golusiński W. Head and Neck Squamous Cell Carcinoma: Epigenetic Landscape. Diagnostics (Basel) 2020; 11:diagnostics11010034. [PMID: 33375464 PMCID: PMC7823717 DOI: 10.3390/diagnostics11010034] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous carcinoma (HNSCC) constitutes the sixth most prevalent cancer worldwide. The molecular pathogenesis of HNSCC includes disorders in cell cycle, intercellular signaling, proliferation, squamous cell differentiation and apoptosis. In addition to the genetic mutations, changes in HNSCC are also characterized by the accumulation of epigenetic alterations such as DNA methylation, histone modifications, non-coding RNA activity and RNA methylation. In fact, some of them may promote cancer formation and progression by controlling the gene expression machinery, hence, they could be used as biomarkers in the clinical surveillance of HNSCC or as targets for therapeutic strategies. In this review, we focus on the current knowledge regarding epigenetic modifications observed in HNSCC and its predictive value for cancer development.
Collapse
Affiliation(s)
- Kamila Romanowska
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland; (A.S.); (W.G.)
- Department of Medical Physics, Radiobiology Laboratory, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland;
- Correspondence:
| | - Agnieszka Sobecka
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland; (A.S.); (W.G.)
- Department of Medical Physics, Radiobiology Laboratory, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland;
| | | | - Wiktoria M. Suchorska
- Department of Medical Physics, Radiobiology Laboratory, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland;
| | - Wojciech Golusiński
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland; (A.S.); (W.G.)
| |
Collapse
|
9
|
Kashyap MP, Sinha R, Mukhtar MS, Athar M. Epigenetic regulation in the pathogenesis of non-melanoma skin cancer. Semin Cancer Biol 2020; 83:36-56. [PMID: 33242578 DOI: 10.1016/j.semcancer.2020.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Understanding of cancer with the help of ever-expanding cutting edge technological tools and bioinformatics is revolutionizing modern cancer research by broadening the space of discovery window of various genomic and epigenomic processes. Genomics data integrated with multi-omics layering have advanced cancer research. Uncovering such layers of genetic mutations/modifications, epigenetic regulation and their role in the complex pathophysiology of cancer progression could lead to novel therapeutic interventions. Although a plethora of literature is available in public domain defining the role of various tumor driver gene mutations, understanding of epigenetic regulation of cancer is still emerging. This review focuses on epigenetic regulation association with the pathogenesis of non-melanoma skin cancer (NMSC). NMSC has higher prevalence in Caucasian populations compared to other races. Due to lack of proper reporting to cancer registries, the incidence rates for NMSC worldwide cannot be accurately estimated. However, this is the most common neoplasm in humans, and millions of new cases per year are reported in the United States alone. In organ transplant recipients, the incidence of NMSC particularly of squamous cell carcinoma (SCC) is very high and these SCCs frequently become metastatic and lethal. Understanding of solar ultraviolet (UV) light-induced damage and impaired DNA repair process leading to DNA mutations and nuclear instability provide an insight into the pathogenesis of metastatic neoplasm. This review discusses the recent advances in the field of epigenetics of NMSCs. Particularly, the role of DNA methylation, histone hyperacetylation and non-coding RNA such as long-chain noncoding (lnc) RNAs, circular RNAs and miRNA in the disease progression are summarized.
Collapse
Affiliation(s)
- Mahendra Pratap Kashyap
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rajesh Sinha
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mohammad Athar
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
10
|
Reis RSD, Santos JAD, Abreu PMD, Dettogni RS, Santos EDVWD, Stur E, Agostini LP, Anders QS, Alves LNR, Valle IBD, Lima MA, Souza ED, Podestá JRV, Zeidler SVV, Cordeiro-Silva MDF, Louro ID. Hypermethylation status of DAPK, MGMT and RUNX3 in HPV negative oral and oropharyngeal squamous cell carcinoma. Genet Mol Biol 2020; 43:e20190334. [PMID: 32870234 PMCID: PMC7452731 DOI: 10.1590/1678-4685-gmb-2019-0334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/28/2020] [Indexed: 01/08/2023] Open
Abstract
Squamous cell carcinoma of the oral cavity and oropharynx is the sixth most common type of cancer in the world. During tumorigenesis, gene promoter hypermethylation is considered an important mechanism of transcription silencing of tumor suppressor genes, such as DAPK, MGMT and RUNX3. These genes participate in signaling pathways related to apoptosis, DNA repair and proliferation whose loss of expression is possibly associated with cancer development and progression. In order to investigate associations between hypermethylation and clinicopathological and prognostic parameters, promoter methylation was evaluated in 72 HPV negative oral and oropharyngeal tumors using methylation-specific PCR. Hypermethylation frequencies found for DAPK, MGMT and RUNX3 were 38.88%, 19.44% and 1.38% respectively. Patients with MGMT hypermethylation had a better 2-year overall survival compared to patients without methylation. Being MGMT a repair gene for alkylating agents, it could be a biomarker of treatment response for patients who are candidates for cisplatin chemotherapy, predicting drug resistance. In view of the considerable levels of hypermethylation in cancer cells and, for MGMT, its prognostic relevance, DAPK and MGMT show potential as epigenetic markers, in a way that additional studies may test its viability and efficacy in clinical management.
Collapse
Affiliation(s)
- Raquel Silva Dos Reis
- Universidade Federal do Espírito Santo, Departamento de Ciências Biológicas, Núcleo de Genética Humana e Molecular, Vitória, ES, Brazil
| | - Jéssica Aflávio Dos Santos
- Universidade Federal do Espírito Santo, Departamento de Ciências Biológicas, Núcleo de Genética Humana e Molecular, Vitória, ES, Brazil
| | - Priscila Marinho de Abreu
- Universidade Federal do Espírito Santo, Programa de Pós-Graduação em Biotecnologia, Vitória, ES, Brazil.,Universidade Federal do Espírito Santo, Departamento de Patologia, Laboratório de Patologia Molecular, Vitória, ES, Brazil
| | - Raquel Spinassé Dettogni
- Universidade Federal do Espírito Santo, Departamento de Ciências Biológicas, Núcleo de Genética Humana e Molecular, Vitória, ES, Brazil
| | | | - Elaine Stur
- Universidade Federal do Espírito Santo, Departamento de Ciências Biológicas, Núcleo de Genética Humana e Molecular, Vitória, ES, Brazil
| | - Lidiane Pignaton Agostini
- Universidade Federal do Espírito Santo, Departamento de Ciências Biológicas, Núcleo de Genética Humana e Molecular, Vitória, ES, Brazil
| | - Quézia Silva Anders
- Universidade Federal do Espírito Santo, Programa de Pós-Graduação em Ciências Fisiológicas, Vitória, ES, Brazil
| | - Lyvia Neves Rebello Alves
- Universidade Federal do Espírito Santo, Departamento de Ciências Biológicas, Núcleo de Genética Humana e Molecular, Vitória, ES, Brazil.,Universidade Federal do Espírito Santo, Programa de Pós-Graduação em Biotecnologia, Vitória, ES, Brazil
| | - Isabella Bittencourt do Valle
- Universidade Federal do Espírito Santo, Programa de Pós-Graduação em Biotecnologia, Vitória, ES, Brazil.,Universidade Federal do Espírito Santo, Departamento de Patologia, Laboratório de Patologia Molecular, Vitória, ES, Brazil
| | - Marília Arantes Lima
- Universidade Federal do Espírito Santo, Departamento de Patologia, Laboratório de Patologia Molecular, Vitória, ES, Brazil
| | - Evandro Duccini Souza
- Hospital Santa Rita de Cássia - SESA, Programa de Prevenção e Detecção Precoce do Câncer Bucal, Setor de Cirurgia de Cabeça e Pescoço, Vitória, ES, Brazil
| | - José Roberto Vasconcelos Podestá
- Hospital Santa Rita de Cássia - SESA, Programa de Prevenção e Detecção Precoce do Câncer Bucal, Setor de Cirurgia de Cabeça e Pescoço, Vitória, ES, Brazil
| | - Sandra Ventorin von Zeidler
- Universidade Federal do Espírito Santo, Programa de Pós-Graduação em Biotecnologia, Vitória, ES, Brazil.,Universidade Federal do Espírito Santo, Departamento de Patologia, Laboratório de Patologia Molecular, Vitória, ES, Brazil
| | - Melissa de Freitas Cordeiro-Silva
- Universidade Federal do Espírito Santo, Departamento de Ciências Biológicas, Núcleo de Genética Humana e Molecular, Vitória, ES, Brazil
| | - Iúri Drumond Louro
- Universidade Federal do Espírito Santo, Departamento de Ciências Biológicas, Núcleo de Genética Humana e Molecular, Vitória, ES, Brazil.,Universidade Federal do Espírito Santo, Programa de Pós-Graduação em Biotecnologia, Vitória, ES, Brazil
| |
Collapse
|
11
|
Expression of DNA repair genes in oral squamous cell carcinoma using reverse transcription-quantitative polymerase chain reaction. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 130:298-305. [PMID: 32682592 DOI: 10.1016/j.oooo.2020.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/14/2020] [Accepted: 06/01/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the expression of DNA repair genes in cases of oral squamous cell carcinoma (OSCC). STUDY DESIGN Expression of the MLH1, MSH2, MLH3, ATM, MRE11A, XRCC1, and PMS2 genes was evaluated by reverse transcription-quantitative polymerase chain reaction in the OSCC group (32 patients) and the control group (15 patients). The groups were compared by using the Mann-Whitney test, with Bonferroni correction. Associations between gene expression levels and clinical data were explored by using Pearson's and Spearman's correlation coefficients, with P value less than .05 indicating a significant difference. RESULTS The MLH1, MSH2, MLH3, ATM, MRE11A, XRCC1, and PMS2 genes were downregulated in the OSCC group compared with the control group, with significant values for MLH1 (P < .0001); MSH2 (P = .038); MLH3 (P < .0001); ATM (P < .0001); MRE11A (P < .0001); XRCC1 (P = .0004); and PMS2 (P = .008). Analysis of the correlation between gene expression and clinical data only revealed a significant negative correlation between age and expression of the PMS2 gene. CONCLUSIONS Expression of the DNA repair genes MLH1, MSH2, MLH3, ATM, MRE11 AMRE11A, XRCC1, and PMS2 was reduced in OSCC.
Collapse
|
12
|
Gaździcka J, Gołąbek K, Strzelczyk JK, Ostrowska Z. Epigenetic Modifications in Head and Neck Cancer. Biochem Genet 2019; 58:213-244. [PMID: 31712935 PMCID: PMC7113219 DOI: 10.1007/s10528-019-09941-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common human malignancy in the world, with high mortality and poor prognosis for patients. Among the risk factors are tobacco and alcohol intake, human papilloma virus, and also genetic and epigenetic modifications. Many studies show that epigenetic events play an important role in HNSCC development and progression, including DNA methylation, chromatin remodeling, histone posttranslational covalent modifications, and effects of non-coding RNA. Epigenetic modifications may influence silencing of tumor suppressor genes by promoter hypermethylation, regulate transcription by microRNAs and changes in chromatin structure, or induce genome instability through hypomethylation. Moreover, getting to better understand aberrant patterns of methylation may provide biomarkers for early detection and diagnosis, while knowledge about target genes of microRNAs may improve the therapy of HNSCC and extend overall survival. The aim of this review is to present recent studies which demonstrate the role of epigenetic regulation in the development of HNSCC.
Collapse
Affiliation(s)
- Jadwiga Gaździcka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808, Zabrze, Katowice, Poland.
| | - Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808, Zabrze, Katowice, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808, Zabrze, Katowice, Poland
| | - Zofia Ostrowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808, Zabrze, Katowice, Poland
| |
Collapse
|
13
|
Huang J, Luo JY, Tan HZ. Associations of MGMT promoter hypermethylation with squamous intraepithelial lesion and cervical carcinoma: A meta-analysis. PLoS One 2019; 14:e0222772. [PMID: 31574102 PMCID: PMC6772039 DOI: 10.1371/journal.pone.0222772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 09/06/2019] [Indexed: 01/06/2023] Open
Abstract
Background In this research, an meta-analysis was performed for assessment of the associations between O6-methyguanine-DNA methyltransferase (MGMT) promoter hypermethylation possessing low-grade intraepithelial lesion (LSIL), high-grade intraepithelial lesion (HSIL), cervical cancer (CC), and clinicopathological characters of CC. Methods Literature selection were conducted through searching PubMed, Web of science, EMBASE, China National Knowledge Infrastructure and Wanfang databases (up to November 2018). An assessment of associations between MGMT methylation and LSIL, HSIL, CC risk and clinicopathological characteristics was performed through pooled odds ratios (ORs) with relevant 95% confidence intervals (CIs). Subgroup analyses, meta-regressions and Galbraith plots were conducted to conduct an exploration on the possible sources of heterogeneity. The genome-wide DNA methylation array studies were extracted from Gene Expression Omnibus (GEO) databases for validation of these outcomes. Results In this meta-analysis of 25 published articles, MGMT hypermethylation gradually elevated the rates among control group (12.16%), LSIL (20.92%), HSIL (36.33%) and CC (41.50%) specimens. MGMT promoter methylation was significant associated with the increased risk of LSIL by 1.74-fold (P<0.001), HSIL by 3.71-fold (P<0.001) and CC by 7.08-fold (P<0.001) compared with control. A significant association between MGMT promoter methylation with FIGO stage was also found (OR = 2.81, 95% CI: 1.79–4.41, p<0.001). The results of GEO datasets showed that 5 CpG sites in MGMT with a great diagnostic value for the screening of cervical cancer. Conclusion The meta-analysis indicated the association between MGMT promoter hypermethylation and squamous intraepithelial lesion and cervical cancer. MGMT methylation detection might have a potential value to be an epigenetic marker for the clinical diagnosis of cervical cancer.
Collapse
Affiliation(s)
- Jin Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan, China
| | - Jia-You Luo
- Department of Women and Children Health, School of Public Health, Central South University, Changsha, Hunan, China
| | - Hong-Zhuan Tan
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
14
|
Li Q, Hong J, Shen Z, Deng H, Shen Y, Wu Z, Zhou C. A systematic review and meta-analysis approach on diagnostic value of MLH1 promoter methylation for head and neck squamous cell carcinoma. Medicine (Baltimore) 2019; 98:e17651. [PMID: 31651887 PMCID: PMC6824735 DOI: 10.1097/md.0000000000017651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the leading histological type among head and neck cancers. Several studies have explored an association between aberrant methylation of MutL homolog-1 (MLH1) promoter and HNSCC risk. We aimed to explore the associations between MLH1 promoter methylation and HNSCC by using a meta-analysis. METHODS Systematic literature search was conducted among PubMed, Google Scholar, Web of Science, and China National Knowledge Infrastructure, and Wanfang databases to retrieve relevant articles published up to June 30, 2018. A total of 12 studies were included in this meta-analysis (including 717 HNSCC and 609 controls). RESULTS The results demonstrated that MLH1 promoter methylation was notably higher in patients with HNSCC than in controls (odds ratios [ORs] = 2.52, 95% confidence intervals [CIs] = 1.33-4.79). Besides, MLH1 promoter methylation was not associated with tumor stage, lymph node status, smoking behavior, age, clinical stage, gender, and differentiation grade (all P > .05). The pooled sensitivity and specificity rates of MLH1 methylation for HNSCC were 0.23 (95% CI = 0.12-0.38) and 0.95 (95% CI, 0.82-0.99), respectively. The area under the receiver operating characteristic (ROC) curve was presented as 0.64 (95% CI = 0.60-0.68). CONCLUSION The results of this meta-analysis suggested that hypermethylation of MLH1 promoter was associated with HNSCC. Methylated MLH1 could be a potential diagnostic biomarker for diagnose of HNSCC.
Collapse
Affiliation(s)
- Qun Li
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital of Ningbo University)
| | - Jinjiong Hong
- Department of Hand Surgery, Ningbo 6th Hospital, Ningbo University
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital of Ningbo University)
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital of Ningbo University)
| | - Yi Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital of Ningbo University)
| | - Zhenhua Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center, Lihuili Eastern Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital of Ningbo University)
| |
Collapse
|
15
|
Khatami F, Teimoori-Toolabi L, Heshmat R, Nasiri S, Saffar H, Mohammadamoli M, Aghdam MH, Larijani B, Tavangar SM. Circulating ctDNA methylation quantification of two DNA methyl transferases in papillary thyroid carcinoma. J Cell Biochem 2019; 120:17422-17437. [PMID: 31127647 DOI: 10.1002/jcb.29007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/06/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
Papillary thyroid cancer (PTC) is the most common type of cancer among thyroid malignancies. Tumor-related methylation of circulating tumor DNA (ctDNA) in plasma could represent tumor specific alterations can be considered as good biomarkers in circulating tumor cells. In this study, we studied the methylation status of seven promoter regions of two DNA methyl Transferases (MGMT and DNMT1) genes as the methylated ctDNA in plasma and tissue samples of patients with PTC and goiter patients as noncancerous controls. METHODS Both ctDNA and tissue genomic DNA of 57 PTC and 45 Goiter samples were isolated. After bisulfite modification, the methylation status was studied by Methylation-Sensitive High Resolution Melting (MS-HRM) assay technique. Four promoter regions of O6-methylguanine-DNA methyltransferase (MGMT) and three promoter regions of DNA methyltransferase 1 (DNMT1) were assessed. RESULTS From seven candidate promoter regions of two methyltrasferase coding genes, the methylation status of ctDNA within MGMT (a), MGMT (c), MGMT (d), and DNMT1 (b) were meaningfully different between PTC cases and controls. However, the most significant differences were seen in circulating ctDNA MGMT (c) which was hypermethylated in 25 (43.9 %) of patients with PTC vs 2 (4. 4 %) of goiter samples. Between two selected DNA methyl transferase, the methylation of MGMT as the maintenance methyltransferase was significantly higher in PTC cases than goiter controls (P-value < .001). The resulting areas under the receiver operating characteristic (ROC) curve were 0.78 for MGMT (d) for PTC versus goiter samples that can represent the overall ability of MGMT (d) methylation status to discriminate between PTC and goiter patients. CONCLUSION Among seven candidate regions of ctDNA the MGMT (c) and MGMT (d) showed higher sensitivity and specificity for PTC as a suitable candidates as biomarkers of PTC.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirzad Nasiri
- Departments of Surgery, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Hiva Saffar
- Departments of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Mohammadamoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Departments of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
do Amaral GCLS, Planello AC, Borgato G, de Lima DG, Guimarães GN, Marques MR, de Souza AP. 5-Aza-CdR promotes partial MGMT demethylation and modifies expression of different genes in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 127:425-432. [PMID: 30827853 DOI: 10.1016/j.oooo.2019.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/03/2019] [Accepted: 01/06/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Treatment strategies for oral squamous cell carcinoma (OSCC) vary, depending on the stage of diagnosis. Surgery and radiotherapy are options for localized lesions for stage I patients, whereas chemotherapy is the main treatment for metastatic OSCC. However, aggressive tumors can relapse, frequently causing death. In an attempt to address this, novel treatment protocols using drugs that alter the epigenetic profile have emerged as an alternative to control tumor growth and metastasis. Therefore, the objective in this study was to investigate the effect of the demethylating drug 5-aza-CdR in SCC9 OSCC cells. STUDY DESIGN SCC9 cells were treated with 5-Aza-CdR at concentrations of 0.3μM and 2μM for 24hours and 48hours. DNA methylation of the MGMT, BRCA1, APC, c-MYC, and hTERT genes were investigated by using the methylation-specific high-resolution melting technique. Real time-polymerase chain reaction and quantitative polymerase chain reaction were performed to analyze gene expression. RESULTS 5-Aza-CdR promoted demethylation of MGMT and modified the transcription of all analyzed genes. Curiously, 5-aza-CdR at the concentration of 0.3μM was more efficient than 2μM in SCC9 cells. CONCLUSIONS We observed that 5-aza-CdR led to MGMT demethylation, upregulated the transcription of 3 important tumor suppressor genes, and promoted the downregulation of c-Myc.
Collapse
Affiliation(s)
- Guilherme C L S do Amaral
- Laboratory of Molecular Biology, Department of Morphology, Piracicaba Dental School, FOP, State University of Campinas, UNICAMP, Piracicaba-SP, Brazil
| | - Aline C Planello
- Laboratory of Molecular Biology, Department of Morphology, Piracicaba Dental School, FOP, State University of Campinas, UNICAMP, Piracicaba-SP, Brazil
| | - Gabriell Borgato
- Laboratory of Molecular Biology, Department of Morphology, Piracicaba Dental School, FOP, State University of Campinas, UNICAMP, Piracicaba-SP, Brazil
| | - Dieila Giomo de Lima
- Laboratory of Molecular Biology, Department of Morphology, Piracicaba Dental School, FOP, State University of Campinas, UNICAMP, Piracicaba-SP, Brazil
| | - Gustavo N Guimarães
- Laboratory of Molecular Biology, Department of Morphology, Piracicaba Dental School, FOP, State University of Campinas, UNICAMP, Piracicaba-SP, Brazil
| | - Marcelo Rocha Marques
- Laboratory of Molecular Biology, Department of Morphology, Piracicaba Dental School, FOP, State University of Campinas, UNICAMP, Piracicaba-SP, Brazil
| | - Ana Paula de Souza
- Laboratory of Molecular Biology, Department of Morphology, Piracicaba Dental School, FOP, State University of Campinas, UNICAMP, Piracicaba-SP, Brazil.
| |
Collapse
|
17
|
Strzelczyk JK, Krakowczyk Ł, Owczarek AJ. Methylation status of SFRP1, SFRP2, RASSF1A, RARβ and DAPK1 genes in patients with oral squamous cell carcinoma. Arch Oral Biol 2018; 98:265-272. [PMID: 30576962 DOI: 10.1016/j.archoralbio.2018.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/20/2018] [Accepted: 12/02/2018] [Indexed: 12/24/2022]
Abstract
Our study assessed the methylation status of the SFRP1, SFRP2, RASSF1A, RARβ and DAPK1 genes, which are associated with epigenetic silencing in cancers. In a group of 75 patients with oral squamous cell carcinoma, aberrant methylation was detected using methylation-specific PCR in tumours and matched margins. Our results showed significantly higher methylation frequency in tumours than in surgical margin of SFRP2 (26.6% vs 11.9%, p < 0.05) and DAPK1 (65.3% vs 41.3%, p < 0.01) genes. Moreover, methylation of the SFRP1 and DAPK1 genes was associated with older age. Advanced tumour stages were associated with lower rates of SFRP1 gene methylation. Decreased methylation levels of the SFRP2 and RASSF1A genes were associated with positive N stage. On the contrary, lymph node metastasis were associated with higher methylation rates of RARβ and DAPK1 genes. Patients with a familial history of cancer were associated with more frequently methylated SFRP1, SFRP2 and DAPK1 genes. Hypermethylation of DAPK1 was associated with decreased risk of death in patients. Our results are suggestive, although not conclusive, that some epigenetic changes, especially frequent hypermethylation of SFRP2 and DAPK1 genes, can be useful as potential diagnostic biomarkers of oral cavity cancer. Moreover, estimating the methylation status in surgical margins could become an additional strategy for more accurate treatment methods. Further efforts are needed to identify and validate this finding on a larger patient group and using new advanced methylation testing methods.
Collapse
Affiliation(s)
- Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, School of Medicine with the Division of Dentistry in Zabrze, Jordana 19 Str., 41-808 Zabrze, Medical University of Silesia in Katowice, Poland.
| | - Łukasz Krakowczyk
- Clinic of Oncological and Reconstructive Surgery, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15 Str., 44-101 Gliwice, Poland.
| | - Aleksander Jerzy Owczarek
- Department of Statistics, Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Ostrogórska 30 Str., 41-200 Sosnowiec, Medical University of Silesia in Katowice, Poland.
| |
Collapse
|
18
|
Sobecka A, Blaszczak W, Barczak W, Golusinski P, Rubis B, Masternak MM, Suchorska WM, Golusinski W. hTERT promoter methylation status in peripheral blood leukocytes as a molecular marker of head and neck cancer progression. J Appl Genet 2018; 59:453-461. [PMID: 30088231 DOI: 10.1007/s13353-018-0458-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 01/02/2023]
Abstract
Cancer cells, including head and neck cancer cell carcinoma (HNSCC), are characterized by an increased telomerase activity. This enzymatic complex is active in approximately 80-90% of all malignancies, and is regulated by various factors, including methylation status of hTERT gene promoter. hTERT methylation pattern has been thoroughly studied so far. It was proved that hTERT is aberrantly methylated in tumor tissue versus healthy counterparts. However, such effect has not yet been investigated in PBLs (peripheral blood leukocytes) of cancer patients. The aim of this study was to analyze the hTERT gene promoter methylation status in blood leukocytes. DNA was extracted from PBL of 92 patients with histologically diagnosed HNSCC and 53 healthy controls. Methylation status of whole hTERT promoter fragment with independent analysis of each 19 CpG sites was performed using bisulfide conversion technique followed by sequencing of PCR products. Not significant (p = 0.0532) differences in the general frequency of hTERT CpG sites methylation were detected between patients and healthy controls. However, it was discovered that some of analyzed positions (CpG islands: 1 [p = 0.0235], 5 [p = 0.0462], 8 [p = 0.0343]) are significantly more often methylated in HNSCC patients than in controls. The opposite finding was observed in case of CpG position 2 (p = 0.0210). Furthermore, closer analysis of single CpG positions revealed differences in methylation status dependent on anatomical site and TNM classification. To conclude, hTERT promoter methylation status (general or single CpG sites) would be considered as a molecular markers of HNSCC diagnostics.
Collapse
Affiliation(s)
- Agnieszka Sobecka
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, Poznan University of Medical Sciences, Garbary 15 Str, 61-866, Poznan, Poland
- Radiobiology Laboratory, The Greater Poland Cancer Centre, Garbary 15 Str, 61-866, Poznan, Poland
| | - Wiktoria Blaszczak
- Radiobiology Laboratory, The Greater Poland Cancer Centre, Garbary 15 Str, 61-866, Poznan, Poland
| | - Wojciech Barczak
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, Poznan University of Medical Sciences, Garbary 15 Str, 61-866, Poznan, Poland.
- Radiobiology Laboratory, The Greater Poland Cancer Centre, Garbary 15 Str, 61-866, Poznan, Poland.
| | - Pawel Golusinski
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, Poznan University of Medical Sciences, Garbary 15 Str, 61-866, Poznan, Poland
- Head and Neck Cancer Biology Laboratory, Department of Biology and Environmental Studies, Poznan University of Medical Sciences, Poznan, Poland
| | - Blazej Rubis
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49 Str, 60-355, Poznan, Poland
| | - Michal M Masternak
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, Poznan University of Medical Sciences, Garbary 15 Str, 61-866, Poznan, Poland
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Wiktoria M Suchorska
- Radiobiology Laboratory, The Greater Poland Cancer Centre, Garbary 15 Str, 61-866, Poznan, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15 Str, 61-866, Poznan, Poland
| | - Wojciech Golusinski
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, Poznan University of Medical Sciences, Garbary 15 Str, 61-866, Poznan, Poland
| |
Collapse
|
19
|
Walter V, Du Y, Danilova L, Hayward MC, Hayes DN. MVisAGe Identifies Concordant and Discordant Genomic Alterations of Driver Genes in Squamous Tumors. Cancer Res 2018; 78:3375-3385. [PMID: 29700001 DOI: 10.1158/0008-5472.can-17-3464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/10/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023]
Abstract
Integrated analyses of multiple genomic datatypes are now common in cancer profiling studies. Such data present opportunities for numerous computational experiments, yet analytic pipelines are limited. Tools such as the cBioPortal and Regulome Explorer, although useful, are not easy to access programmatically or to implement locally. Here, we introduce the MVisAGe R package, which allows users to quantify gene-level associations between two genomic datatypes to investigate the effect of genomic alterations (e.g., DNA copy number changes on gene expression). Visualizing Pearson/Spearman correlation coefficients according to the genomic positions of the underlying genes provides a powerful yet novel tool for conducting exploratory analyses. We demonstrate its utility by analyzing three publicly available cancer datasets. Our approach highlights canonical oncogenes in chr11q13 that displayed the strongest associations between expression and copy number, including CCND1 and CTTN, genes not identified by copy number analysis in the primary reports. We demonstrate highly concordant usage of shared oncogenes on chr3q, yet strikingly diverse oncogene usage on chr11q as a function of HPV infection status. Regions of chr19 that display remarkable associations between methylation and gene expression were identified, as were previously unreported miRNA-gene expression associations that may contribute to the epithelial-to-mesenchymal transition.Significance: This study presents an important bioinformatics tool that will enable integrated analyses of multiple genomic datatypes. Cancer Res; 78(12); 3375-85. ©2018 AACR.
Collapse
Affiliation(s)
- Vonn Walter
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania. .,Department of Biochemistry, Penn State College of Medicine, Hershey, Pennsylvania.,UNC Lineberger Comprehensive Cancer Center, School of Medicine, Chapel Hill, North Carolina
| | - Ying Du
- Center for Infectious Disease Research, Seattle, Washington
| | - Ludmila Danilova
- Johns Hopkins University School of Medicine and Bloomberg∼Kimmel Institute, Baltimore, Maryland.,Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Michele C Hayward
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, Chapel Hill, North Carolina
| | - D Neil Hayes
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, Chapel Hill, North Carolina.,Department of Internal Medicine, Division of Medical Oncology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
20
|
Kemmer JD, Johnson DE, Grandis JR. Leveraging Genomics for Head and Neck Cancer Treatment. J Dent Res 2018; 97:603-613. [PMID: 29420101 DOI: 10.1177/0022034518756352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The genomic landscape of head and neck squamous cell carcinoma (HNSCC) has been recently elucidated. Key epigenetic and genetic characteristics of this cancer have been reported and substantiated in multiple data sets, including those distinctive to the growing subset of human papilloma virus (HPV)-associated tumors. This increased understanding of the molecular underpinnings of HNSCC has not resulted in new approaches to treatment. Three Food and Drug Administration-approved molecular targeting agents are currently available to treat recurrent/metastatic disease, but these have exhibited efficacy only in subsets of HNSCC patients, and thus surgery, chemotherapy, and/or radiation remain as standard approaches. The lack of predictive biomarkers to any therapy represents an obstacle to achieving the promise of precision medicine. This review aims to familiarize the reader with current insights into the HNSCC genomic landscape, discuss the currently approved and promising molecular targeting agents under exploration in laboratories and clinics, and consider precision medicine approaches to HNSCC.
Collapse
Affiliation(s)
- J D Kemmer
- 1 Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - D E Johnson
- 1 Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - J R Grandis
- 1 Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
21
|
Gaponova AV, Deneka AY, Beck TN, Liu H, Andrianov G, Nikonova AS, Nicolas E, Einarson MB, Golemis EA, Serebriiskii IG. Identification of evolutionarily conserved DNA damage response genes that alter sensitivity to cisplatin. Oncotarget 2017; 8:19156-19171. [PMID: 27863405 PMCID: PMC5386675 DOI: 10.18632/oncotarget.13353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/27/2016] [Indexed: 01/08/2023] Open
Abstract
Ovarian, head and neck, and other cancers are commonly treated with cisplatin and other DNA damaging cytotoxic agents. Altered DNA damage response (DDR) contributes to resistance of these tumors to chemotherapies, some targeted therapies, and radiation. DDR involves multiple protein complexes and signaling pathways, some of which are evolutionarily ancient and involve protein orthologs conserved from yeast to humans. To identify new regulators of cisplatin-resistance in human tumors, we integrated high throughput and curated datasets describing yeast genes that regulate sensitivity to cisplatin and/or ionizing radiation. Next, we clustered highly validated genes based on chemogenomic profiling, and then mapped orthologs of these genes in expanded genomic networks for multiple metazoans, including humans. This approach identified an enriched candidate set of genes involved in the regulation of resistance to radiation and/or cisplatin in humans. Direct functional assessment of selected candidate genes using RNA interference confirmed their activity in influencing cisplatin resistance, degree of γH2AX focus formation and ATR phosphorylation, in ovarian and head and neck cancer cell lines, suggesting impaired DDR signaling as the driving mechanism. This work enlarges the set of genes that may contribute to chemotherapy resistance and provides a new contextual resource for interpreting next generation sequencing (NGS) genomic profiling of tumors.
Collapse
Affiliation(s)
- Anna V Gaponova
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.,Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan 420008, Russian Federation
| | - Alexander Y Deneka
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.,Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan 420008, Russian Federation
| | - Tim N Beck
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.,Department of Biochemistry & Molecular Biology, Program in Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Hanqing Liu
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.,Department of Pharmaceutics, Jiangsu University, School of Pharmacy, Jingkou District Zhenjiang, Jiangsu 212013, China
| | - Gregory Andrianov
- Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan 420008, Russian Federation
| | - Anna S Nikonova
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Emmanuelle Nicolas
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Margret B Einarson
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Erica A Golemis
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Ilya G Serebriiskii
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.,Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan 420008, Russian Federation
| |
Collapse
|
22
|
Davidson MA, Shanks EJ. 3q26-29 Amplification in head and neck squamous cell carcinoma: a review of established and prospective oncogenes. FEBS J 2017; 284:2705-2731. [PMID: 28317270 DOI: 10.1111/febs.14061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/23/2017] [Accepted: 03/15/2017] [Indexed: 12/22/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is significantly underrepresented in worldwide cancer research, yet survival rates for the disease have remained static for over 50 years. Distant metastasis is often present at the time of diagnosis, and is the primary cause of death in cancer patients. In the absence of routine effective targeted therapies, the standard of care treatment remains chemoradiation in combination with (often disfiguring) surgery. A defining characteristic of HNSCC is the amplification of a region of chromosome 3 (3q26-29), which is consistently associated with poorer patient outcome. This review provides an overview of the role the 3q26-29 region plays in HNSCC, in terms of both known and as yet undiscovered processes, which may have potential clinical relevance.
Collapse
|
23
|
Jayaprakash C, Radhakrishnan R, Ray S, Satyamoorthy K. Promoter methylation of MGMT in oral carcinoma: A population-based study and meta-analysis. Arch Oral Biol 2017; 80:197-208. [DOI: 10.1016/j.archoralbio.2017.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 03/02/2017] [Accepted: 04/07/2017] [Indexed: 12/17/2022]
|
24
|
Lim Y, Wan Y, Vagenas D, Ovchinnikov DA, Perry CFL, Davis MJ, Punyadeera C. Salivary DNA methylation panel to diagnose HPV-positive and HPV-negative head and neck cancers. BMC Cancer 2016; 16:749. [PMID: 27663357 PMCID: PMC5034533 DOI: 10.1186/s12885-016-2785-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/15/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of tumours with a typical 5 year survival rate of <40 %. DNA methylation in tumour-suppressor genes often occurs at an early stage of tumorigenesis, hence DNA methylation can be used as an early tumour biomarker. Saliva is an ideal diagnostic medium to detect early HNSCC tumour activities due to its proximity to tumour site, non-invasiveness and ease of sampling. We test the hypothesis that the surveillance of DNA methylation in five tumour-suppressor genes (RASSF1α, p16 INK4a , TIMP3, PCQAP/MED15) will allow us to diagnose HNSCC patients from a normal healthy control group as well as to discriminate between Human Papillomavirus (HPV)-positive and HPV-negative patients. METHODS Methylation-specific PCR (MSP) was used to determine the methylation levels of RASSF1α, p16 INK4a , TIMP3 and PCQAP/MED15 in DNA isolated from saliva. Statistical analysis was carried out using non-parametric Mann-Whitney's U-test for individually methylated genes. A logistic regression analysis was carried out to determine the assay sensitivity when combing the five genes. Further, a five-fold cross-validation with a bootstrap procedure was carried out to determine how well the panel will perform in a real clinical scenario. RESULTS Salivary DNA methylation levels were not affected by age. Salivary DNA methylation levels for RASSF1α, p16 INK4a , TIMP3 and PCQAP/MED15 were higher in HPV-negative HNSCC patients (n = 88) compared with a normal healthy control group (n = 122) (sensitivity of 71 % and specificity of 80 %). Conversely, DNA methylation levels for these genes were lower in HPV-positive HNSCC patients (n = 45) compared with a normal healthy control group (sensitivity of 80 % and specificity of 74 %), consistent with the proposed aetiology of HPV-positive HNSCCs. CONCLUSIONS Salivary DNA tumour-suppressor methylation gene panel has the potential to detect early-stage tumours in HPV-negative HNSCC patients. HPV infection was found to deregulate the methylation levels in HPV-positive HNSCC patients. Large-scale double-blinded clinical trials are crucial before this panel can potentially be integrated into a clinical setting.
Collapse
Affiliation(s)
- Yenkai Lim
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Yunxia Wan
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Dimitrios Vagenas
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Dmitry A Ovchinnikov
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Chris F L Perry
- Department of Otolaryngology, Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, Brisbane, QLD, 4102, Australia.,School of Medicine, University of Queensland, 288 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Melissa J Davis
- Department of Biomedical Engineering, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Chamindie Punyadeera
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia.
| |
Collapse
|
25
|
Cai F, Xiao X, Niu X, Shi H, Zhong Y. Aberrant Methylation of MGMT Promoter in HNSCC: A Meta-Analysis. PLoS One 2016; 11:e0163534. [PMID: 27657735 PMCID: PMC5033341 DOI: 10.1371/journal.pone.0163534] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/09/2016] [Indexed: 01/20/2023] Open
Abstract
Background O6-methylguanine-DNA methyl-transferase (MGMT) gene, a DNA repair gene, plays a critical role in the repair of alkylated DNA adducts that form following exposure to genotoxic agents. MGMT is generally expressed in various tumors, and its function is frequently lost because of hypermethylation in the promoter. The promoter methylation of MGMT has been extensively investigated in head and neck squamous cell carcinoma (HNSCC). However, the association between the promoter methylation of MGMT and HNSCC risk remains inconclusive and inconsistent. Therefore, we performed a meta-analysis to better clarify the association between the promoter methylation of MGMT and HNSCC risk. Methods A systematical search was conducted in PubMed, Web of Science, EMBASE, and Ovid for studies on the association between MGMT promoter methylation and HNSCC. Odds ratio (ORs) and 95% confidence intervals (CI) were calculated to estimate association between MGMT promoter methylation and risk of HNSCC. The meta-regression and subgroup analysis were undertaken to explore the potential sources of heterogeneity. Results Twenty studies with 1,030 cases and 775 controls were finally included in this study. The frequency of MGMT promoter methylation was 46.70% in HNSCC group and 23.23% in the control group. The frequency of MGMT promoter methylation in HNSCC group was significantly higher than the control group (OR = 2.83, 95%CI = 2.25–3.56). Conclusion This meta-analysis indicates that aberrant methylation of MGMT promoter was significantly associated with the risk of HNSCC, and it may be a potential molecular marker for monitoring the disease and may provide new insights to the treatment of HNSCC.
Collapse
Affiliation(s)
- Fucheng Cai
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiyue Xiao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xun Niu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Shi
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zhong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
26
|
Fontana L, Tabano S, Bonaparte E, Marfia G, Pesenti C, Falcone R, Augello C, Carlessi N, Silipigni R, Guerneri S, Campanella R, Caroli M, Sirchia S, Bosari S, Miozzo M. MGMT-Methylated Alleles Are Distributed Heterogeneously Within Glioma Samples Irrespective of IDH Status and Chromosome 10q Deletion. J Neuropathol Exp Neurol 2016; 75:791-800. [PMID: 27346749 PMCID: PMC5409217 DOI: 10.1093/jnen/nlw052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Indexed: 01/01/2023] Open
Abstract
Several molecular markers drive diagnostic classification, prognostic stratification, and/or prediction of response to therapy in patients with gliomas. Among them, IDH gene mutations are valuable markers for defining subtypes and are strongly associated with epigenetic silencing of the methylguanine DNA methyltransferase (MGMT) gene. However, little is known about the percentage of MGMT-methylated alleles in IDH-mutated cells or the potential association between MGMT methylation and deletion of chromosome 10q, which encompasses the MGMT locus. Here, we quantitatively assessed MGMT methylation and IDH1 mutation in 208 primary glioma samples to explore possible differences associated with the IDH genotype. We also explored a potential association between MGMT methylation and loss of chromosome 10q. We observed that MGMT methylation was heterogeneously distributed within glioma samples irrespective of IDH status suggesting an incomplete overlap between IDH1-mutated and MGMT-methylated alleles and indicating a partial association between these 2 events. Moreover, loss of one MGMT allele did not affect the methylation level of the remaining allele. MGMT was methylated in about half of gliomas harboring a 10q deletion; in those cases, loss of heterozygosity might be considered a second hit leading to complete inactivation of MGMT and further contributing to tumor progression.
Collapse
Affiliation(s)
- Laura Fontana
- From the Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milan, Italy (LF, ST, EB, GM, CP, RF, CA, RC, SB, MM); Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (EB, CP, RF, NC, SB, MM); Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy (GM, RC); Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (RS, SG); Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurosurgery Unit, Milan, Italy (MC); and Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy (SMS)
| | - Silvia Tabano
- From the Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milan, Italy (LF, ST, EB, GM, CP, RF, CA, RC, SB, MM); Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (EB, CP, RF, NC, SB, MM); Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy (GM, RC); Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (RS, SG); Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurosurgery Unit, Milan, Italy (MC); and Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy (SMS)
| | - Eleonora Bonaparte
- From the Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milan, Italy (LF, ST, EB, GM, CP, RF, CA, RC, SB, MM); Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (EB, CP, RF, NC, SB, MM); Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy (GM, RC); Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (RS, SG); Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurosurgery Unit, Milan, Italy (MC); and Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy (SMS)
| | - Giovanni Marfia
- From the Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milan, Italy (LF, ST, EB, GM, CP, RF, CA, RC, SB, MM); Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (EB, CP, RF, NC, SB, MM); Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy (GM, RC); Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (RS, SG); Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurosurgery Unit, Milan, Italy (MC); and Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy (SMS)
| | - Chiara Pesenti
- From the Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milan, Italy (LF, ST, EB, GM, CP, RF, CA, RC, SB, MM); Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (EB, CP, RF, NC, SB, MM); Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy (GM, RC); Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (RS, SG); Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurosurgery Unit, Milan, Italy (MC); and Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy (SMS)
| | - Rossella Falcone
- From the Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milan, Italy (LF, ST, EB, GM, CP, RF, CA, RC, SB, MM); Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (EB, CP, RF, NC, SB, MM); Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy (GM, RC); Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (RS, SG); Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurosurgery Unit, Milan, Italy (MC); and Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy (SMS)
| | - Claudia Augello
- From the Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milan, Italy (LF, ST, EB, GM, CP, RF, CA, RC, SB, MM); Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (EB, CP, RF, NC, SB, MM); Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy (GM, RC); Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (RS, SG); Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurosurgery Unit, Milan, Italy (MC); and Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy (SMS)
| | - Nicole Carlessi
- From the Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milan, Italy (LF, ST, EB, GM, CP, RF, CA, RC, SB, MM); Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (EB, CP, RF, NC, SB, MM); Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy (GM, RC); Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (RS, SG); Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurosurgery Unit, Milan, Italy (MC); and Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy (SMS)
| | - Rosamaria Silipigni
- From the Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milan, Italy (LF, ST, EB, GM, CP, RF, CA, RC, SB, MM); Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (EB, CP, RF, NC, SB, MM); Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy (GM, RC); Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (RS, SG); Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurosurgery Unit, Milan, Italy (MC); and Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy (SMS)
| | - Silvana Guerneri
- From the Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milan, Italy (LF, ST, EB, GM, CP, RF, CA, RC, SB, MM); Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (EB, CP, RF, NC, SB, MM); Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy (GM, RC); Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (RS, SG); Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurosurgery Unit, Milan, Italy (MC); and Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy (SMS)
| | - Rolando Campanella
- From the Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milan, Italy (LF, ST, EB, GM, CP, RF, CA, RC, SB, MM); Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (EB, CP, RF, NC, SB, MM); Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy (GM, RC); Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (RS, SG); Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurosurgery Unit, Milan, Italy (MC); and Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy (SMS)
| | - Manuela Caroli
- From the Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milan, Italy (LF, ST, EB, GM, CP, RF, CA, RC, SB, MM); Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (EB, CP, RF, NC, SB, MM); Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy (GM, RC); Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (RS, SG); Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurosurgery Unit, Milan, Italy (MC); and Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy (SMS)
| | - Silvia Sirchia
- From the Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milan, Italy (LF, ST, EB, GM, CP, RF, CA, RC, SB, MM); Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (EB, CP, RF, NC, SB, MM); Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy (GM, RC); Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (RS, SG); Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurosurgery Unit, Milan, Italy (MC); and Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy (SMS)
| | - Silvano Bosari
- From the Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milan, Italy (LF, ST, EB, GM, CP, RF, CA, RC, SB, MM); Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (EB, CP, RF, NC, SB, MM); Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy (GM, RC); Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (RS, SG); Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurosurgery Unit, Milan, Italy (MC); and Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy (SMS)
| | - Monica Miozzo
- From the Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milan, Italy (LF, ST, EB, GM, CP, RF, CA, RC, SB, MM); Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (EB, CP, RF, NC, SB, MM); Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy (GM, RC); Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (RS, SG); Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurosurgery Unit, Milan, Italy (MC); and Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy (SMS).
| |
Collapse
|
27
|
Sirchia SM, Faversani A, Rovina D, Russo MV, Paganini L, Savi F, Augello C, Rosso L, Del Gobbo A, Tabano S, Bosari S, Miozzo M. Epigenetic effects of chromatin remodeling agents on organotypic cultures. Epigenomics 2016; 8:341-58. [PMID: 26949823 DOI: 10.2217/epi.15.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Tumor epigenetic defects are of increasing relevance to clinical practice, because they are 'druggable' targets for cancer therapy using chromatin-remodeling agents (CRAs). New evidences highlight the importance of the microenvironment on the epigenome regulation and the need to use culture models able to preserve tissue morphology, to better understand the action of CRAs. Methods & methods: We studied the epigenetic response induced by culturing and CRAs in a preclinical model, preserving ex vivo the original tissue microenvironment and morphology, assessing different epigenetic signatures. Our overall findings suggest that culturing and CRAs cause heterogeneous effects on the genes methylation; CRAs affect the global DNA methylation and can trigger an active DNA demethylation; the culture induces alterations in the histone deacetylase expression. CONCLUSION Despite the limited number of cases, these findings can be considered a proof of concept of the possibility to test CRAs epigenetic effects on ex vivo tissues maintained in their native tissue architecture.
Collapse
Affiliation(s)
- Silvia M Sirchia
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy
| | - Alice Faversani
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Davide Rovina
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy
| | - Maria V Russo
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Leda Paganini
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy.,Department of Pathophysiology & Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | - Federica Savi
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Claudia Augello
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy.,Department of Pathophysiology & Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | - Lorenzo Rosso
- Division of Thoracic Surgery & Lung Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Alessandro Del Gobbo
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Silvia Tabano
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy.,Department of Pathophysiology & Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | - Silvano Bosari
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy.,Department of Pathophysiology & Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | - Monica Miozzo
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy.,Department of Pathophysiology & Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| |
Collapse
|
28
|
Lim Y, Sun CX, Tran P, Punyadeera C. Salivary epigenetic biomarkers in head and neck squamous cell carcinomas. Biomark Med 2016; 10:301-13. [DOI: 10.2217/bmm.16.2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The early detection of head and neck squamous cell carcinoma (HNSCC) continues to be a challenge to the clinician. Saliva as a diagnostic medium carries significant advantages including its close proximity to the region of interest, ease of collection and noninvasive nature. While the identification of biomarkers continues to carry significant diagnostic and prognostic utility in HNSCC, epigenetic alterations present a novel opportunity to serve this purpose. With the developments of novel and innovative technologies, epigenetic alterations are now emerging as attractive candidates in HNSCC. As such, this review will focus on two commonly aberrant epigenetic alterations: DNA methylation and microRNA expression in HNSCC and their potential clinical utility. Identification and validation of these salivary epigenetic biomarkers would not only enable early diagnosis but will also facilitate in the clinical management.
Collapse
Affiliation(s)
- Yenkai Lim
- The School of Biomedical Sciences, Institute of Health & Biomedical Innovations, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4001, Australia
| | - Charles Xiaohang Sun
- The School of Biomedical Sciences, Institute of Health & Biomedical Innovations, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4001, Australia
- School of Dentistry, The University of Queensland, 288 Herston Rd, Herston, Brisbane, QLD 4006, Australia
| | - Peter Tran
- The School of Biomedical Sciences, Institute of Health & Biomedical Innovations, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4001, Australia
- School of Dentistry, The University of Queensland, 288 Herston Rd, Herston, Brisbane, QLD 4006, Australia
| | - Chamindie Punyadeera
- The School of Biomedical Sciences, Institute of Health & Biomedical Innovations, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4001, Australia
| |
Collapse
|
29
|
Aberrant Methylation of RASSF1A Closely Associated with HNSCC, a Meta-Analysis. Sci Rep 2016; 6:20756. [PMID: 26857374 PMCID: PMC4746596 DOI: 10.1038/srep20756] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022] Open
Abstract
The RAS association domain family protein 1a (RASSF1A), a tumor suppressor gene at 3p21.3, plays a very important role in various cancers, including the head and neck squamous cell carcinoma (HNSCC). Hypermethylation of CpG islands in the RASSF1A promoter region contribute to epigenetic inactivation. However, the association between RASSF1A promoter methylation and HNSCC remains unclear and controversial. Therefore, a meta-analysis was performed in the study to identify the association. We identified the eligible studies through searching PubMed, EMBASE, Web of Science, and China National Knowledge Infrastructure (CNKI) databases with a systematic searching strategy. The information on characteristics of each study and prevalence of RASSF1A methylation were collected. Pooled odds ratios (ORs) with corresponding confidence intervals (CIs) were calculated. Meta-regression was performed to analyze heterogeneity and funnel plots were applied to evaluate publication bias. A total of 550 HNSCC patients and 404 controls from twelve eligible studies were included in the meta-analysis. Overall, a significant association was observed between RASSF1A methylation status and HNSCC risk under a random-effects model (OR = 2.93, 95% CI: 1.58–5.46). There was no significant publication bias observed. The meta-analysis suggested that there was a significant association between aberrant RASSF1A methylation and HNSCC.
Collapse
|
30
|
Postel-Vinay S, Boursin Y, Massard C, Hollebecque A, Ileana E, Chiron M, Jung J, Lee J, Balogh Z, Adam J, Vielh P, Angevin E, Lacroix L, Soria JC. Seeking the driver in tumours with apparent normal molecular profile on comparative genomic hybridization and targeted gene panel sequencing: what is the added value of whole exome sequencing? Ann Oncol 2016; 27:344-52. [DOI: 10.1093/annonc/mdv570] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 11/15/2015] [Indexed: 02/06/2023] Open
|
31
|
Raudenska M, Gumulec J, Fribley AM, Masarik M. HNSCC Biomarkers Derived from Key Processes of Cancerogenesis. TARGETING ORAL CANCER 2016:115-160. [DOI: 10.1007/978-3-319-27647-2_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
32
|
Du J, Zhang L. Integrated analysis of DNA methylation and microRNA regulation of the lung adenocarcinoma transcriptome. Oncol Rep 2015; 34:585-94. [PMID: 26035298 PMCID: PMC4487669 DOI: 10.3892/or.2015.4023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/20/2015] [Indexed: 11/06/2022] Open
Abstract
Lung adenocarcinoma, as a common type of non-small cell lung cancer (40%), poses a significant threat to public health worldwide. The present study aimed to determine the transcriptional regulatory mechanisms in lung adenocarcinoma. Illumina sequence data GSE 37764 including expression profiling, methylation profiling and non-coding RNA profiling of 6 never-smoker Korean female patients with non-small cell lung adenocarcinoma were obtained from the Gene Expression Omnibus (GEO) database. Differentially methylated genes, differentially expressed genes (DEGs) and differentially expressed microRNAs (miRNAs) between normal and tumor tissues of the same patients were screened with tools in R. Functional enrichment analysis of a variety of differential genes was performed. DEG-specific methylation and transcription factors (TFs) were analyzed with ENCODE ChIP-seq. The integrated regulatory network of DEGs, TFs and miRNAs was constructed. Several overlapping DEGs, such as v-ets avian erythroblastosis virus E26 oncogene homolog (ERG) were screened. DEGs were centrally modified by histones of tri-methylation of lysine 27 on histone H3 (H3K27me3) and di-acetylation of lysine 12 or 20 on histone H2 (H2BK12/20AC). Upstream TFs of DEGs were enriched in different ChIP-seq clusters, such as glucocorticoid receptors (GRs). Two miRNAs (miR-126-3p and miR-30c-2-3p) and three TFs including homeobox A5 (HOXA5), Meis homeobox 1 (MEIS1) and T-box 5 (TBX5), played important roles in the integrated regulatory network conjointly. These DEGs, and DEG-related histone modifications, TFs and miRNAs may be important in the pathogenesis of lung adenocarcinoma. The present results may indicate directions for the next step in the study of the further elucidation and targeted prevention of lung adenocarcinoma.
Collapse
Affiliation(s)
- Jiang Du
- Department of Thoracic Surgery, Chinese Medical University Affiliated No. 1 Hospital, Shenyang, Liaoning 110001, P.R. China
| | - Lin Zhang
- Department of Thoracic Surgery, Chinese Medical University Affiliated No. 1 Hospital, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
33
|
Abstract
Oral medicine specialists rely upon accurate assessment of pathology to rationalise lesion management, especially for high-risk oral epithelial dysplasia, carcinoma in situ (CIS) and oral squamous cell carcinoma. Cross-discipline cancer research has highlighted the role of genetic instability in neoplasia. Improved diagnostic stringency from translation of immunostaining for DNA repair defects into current pathology practice has potential to benefit pathologists, clinicians and patients. The focus of this study was the obligatory and non-obligatory components of the MutLα and MutSα mismatch repair heterodimers, namely hMLH1, hMSH2, hPMS2 and hMSH6, which were studied in 274 formalin-fixed paraffin-embedded sections. A readily apparent inverse correlation between oral disease severity and both obligatory and non-obligatory components of MutLα and MutSα was observed (hMLH1, ρ=-0.715; hPMS2, ρ=-0.692; hMSH2, ρ=-0.728; and hMSH6, ρ=-0.702), with particularly conspicuous loss of hMSH6 expression from the stratum basale of CIS.
Collapse
Affiliation(s)
- Maryam Jessri
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew J Dalley
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Camile S Farah
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia The Australian Centre for Oral Oncology Research & Education, Brisbane, Queensland, Australia
| |
Collapse
|
34
|
Bilgrami SM, Qureshi SA, Pervez S, Abbas F. Promoter hypermethylation of tumor suppressor genes correlates with tumor grade and invasiveness in patients with urothelial bladder cancer. SPRINGERPLUS 2014; 3:178. [PMID: 24790823 PMCID: PMC4000596 DOI: 10.1186/2193-1801-3-178] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 02/24/2014] [Indexed: 01/15/2023]
Abstract
Purpose To investigate the promoter methylation status at selected loci which encode for key proteins involved in apoptosis, DNA repair, cell cycle control and progression in urothelial cell carcinoma of bladder and compare the findings from tissue samples with that of plasma. Methods Total genomic DNA was isolated from 43 non-muscle invasive (low grade) and 33 muscle invasive (high grade) urothelial bladder cancer samples along with 10 control cases of normal bladder mucosa. Promoter methylation status was investigated for RASSF1A, APC, MGMT, CDKN2A and CDKN2B genes using real-time methylation-specific PCR with SYBR® green. Plasma samples from 16 patients with muscle invasive high grade bladder cancer were also subjected to similar analyses. Results Promoter hypermethylation was frequently observed in RASSF1A, APC and MGMT gene promoters (p-value < 0.001). The methylation was more prominent in the muscle invasive high grade bladder cancer when compared to non-muscle invasive low grade group (p-value < 0.001) and normal bladder mucosa (p-value < 0.05). The RNA expression of RASSF1A, APC and MGMT was also found to be decreased in the muscle-invasive high grade bladder cancer when compared to the non muscle invasive low grade group (p-value < 0.05). RASSF1A, MGMT and CDKN2A showed comparable results when data from 16 plasma samples was compared to the corresponding tissue samples. Conclusion Our results suggest that epigenetic silencing of RASSF1A, APC and MGMT genes is strongly associated with invasive high grade urothelial bladder cancer. Thus, status of promoter methylation has the potential to serve as valuable tool for assessing aggressiveness of urothelial cell carcinoma of bladder. Electronic supplementary material The online version of this article (doi:10.1186/2193-1801-3-178) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shumaila M Bilgrami
- Office of Research and Graduate Studies, Aga Khan University, Stadium Road, Karachi, 74800 Pakistan
| | - Sohail A Qureshi
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Sector-U, D.H.A., Lahore, 54792 Pakistan
| | - Shahid Pervez
- Department of Microbiology and Pathology, Aga Khan University, Stadium Road, Karachi, 74800 Pakistan
| | - Farhat Abbas
- Department of Surgery, Aga Khan University, Stadium Road, Karachi, 74800 Pakistan
| |
Collapse
|
35
|
Polanska H, Raudenska M, Gumulec J, Sztalmachova M, Adam V, Kizek R, Masarik M. Clinical significance of head and neck squamous cell cancer biomarkers. Oral Oncol 2014; 50:168-77. [PMID: 24382422 DOI: 10.1016/j.oraloncology.2013.12.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
|
36
|
Sun W, Sun Y, Zhu M, Wang Z, Zhang H, Xin Y, Jiang G, Guo X, Zhang Z, Liu Y. The role of plasma cell-free DNA detection in predicting preoperative chemoradiotherapy response in rectal cancer patients. Oncol Rep 2013; 31:1466-72. [PMID: 24378613 DOI: 10.3892/or.2013.2949] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/27/2013] [Indexed: 11/05/2022] Open
Abstract
In the present study, we studied the relationship between plasma cell-free DNA and the effect of preoperative chemoradiotherapy in patients with rectal cancer. The concentration, KRAS mutation and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status of cell-free DNA were measured by using polymerase chain reaction (PCR) analyses. The response to chemoradiotherapy was assessed using tumor regression grading (TRG) scores. The cell-free DNA concentrations in patients with rectal cancer (n=34) were significantly higher compared to healthy controls (n=10). The 400-base pair (bp) DNA concentration, 400-/100-bp DNA ratio decreased significantly after chemoradiotherapy in the good response group. The incidence of KRAS mutation decreased significantly after chemoradiotherapy in both good and poor response groups. Higher MGMT promoter methylation status at baseline DNA was associated with a better tumor response. Therefore, cell-free DNA detection may be useful in evaluating the effect of preoperative chemoradiotherapy in patients with rectal cancer.
Collapse
Affiliation(s)
- W Sun
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Y Sun
- Cancer Research Institute of Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - M Zhu
- Cancer Research Institute of Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Z Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - H Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Y Xin
- Cancer Research Institute of Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - G Jiang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - X Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Z Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Y Liu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| |
Collapse
|
37
|
Nguyen TK, Iyer NG. Genetic alterations in head and neck squamous cell carcinoma: The next-gen sequencing era. World J Med Genet 2013; 3:22-33. [DOI: 10.5496/wjmg.v3.i4.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/08/2013] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma is the sixth most common cancer in the world with approximately 650000 new cases diagnosed annually. Next-generation molecular techniques and results from phase 2 of the Cancer Genome Atlas becoming available have drastically improved our current knowledge on the genetics basis of head and neck squamous cell carcinoma. New insights and new perspectives on the mutational landscape implicated in head and neck squamous cell carcinoma provide improved tools for prognostication. More importantly, depend on the patient’s tumor subtypes and prognosis, deescalated or more aggressive therapy maybe chosen to achieve greater potency while minimizing the toxicity of therapy. This paper aims to review our current knowledge on the genetic mutations and altered molecular pathways in head and neck squamous cell carcinoma. Some of the most common mutations in head and neck squamous cell carcinoma reported by the cancer genome atlas including TP53, NOTCH1, Rb, CDKN2A, Ras, PIK3CA and EGFR are described here. Additionally, the emerging role of epigenetics and the role of human papilloma virus in head and neck squamous cell carcinoma are also discussed in this review. The molecular pathways, clinical applications, actionable molecular targets and potential therapeutic strategies are highlighted and discussed in details.
Collapse
|
38
|
Chang X, Li Z, Ma J, Deng P, Zhang S, Zhi Y, Chen J, Dai D. DNA methylation of NDRG2 in gastric cancer and its clinical significance. Dig Dis Sci 2013; 58:715-23. [PMID: 23010743 DOI: 10.1007/s10620-012-2393-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 08/28/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gastric cancer is one of the most common digestive malignancies worldwide. N-myc downstream-regulated gene 2 (NDRG2) is a differentiation-related gene that is considered to be a metastasis suppressor gene. In this study, we examined the expression and DNA methylation of NDRG2 in gastric cancer cell lines and tissues, as well as its clinical significance. METHODS Six gastric cancer cell lines and 42 paired normal and gastric cancer tissue samples were used to assess NDRG2 mRNA expression using RT-PCR. NDRG2 DNA methylation status was evaluated by methylation-specific PCR (MSP) in gastric cancer cell lines and tissues. The suppression of NDRG2 in BGC823 cells by siRNA transfection was utilized to detect the role of NDRG2 in gastric cancer progression. RESULTS NDRG2 mRNA was down-regulated in gastric cancer cell lines and tissues, and its expression was just related to lymph node metastasis (p = 0.032). MSP showed methylation of NDRG2 in 54.0 % (47/87) of primary gastric cancer specimens and in 20.0 % (16/80) of corresponding nonmalignant gastric tissues. NDRG2 methylation was related to depth of tumor invasion, Borrmann classification and TNM stage (p < 0.05). Upon treatment with 5-aza-2'-deoxycytidine and trichostatin A, NDRG2 expression was upregulated in HGC27 cells, and demethylation of the highly metastatic cell line, MKN45, inhibited cell invasion. Furthermore, the suppression of NDRG2 by siRNA transfection enhanced BGC823 cells invasion. CONCLUSIONS Our results suggest that the aberrant methylation of NDRG2 may be mainly responsible for its downregulation in gastric cancer, and may play an important role in the metastasis of gastric cancer.
Collapse
Affiliation(s)
- Xiaojing Chang
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | |
Collapse
|