1
|
Zhang S, Tan YQ, Zhang X, Basappa B, Zhu T, Pandey V, Lobie PE. TFF3 drives Hippo dependent EGFR-TKI resistance in lung adenocarcinoma. Oncogene 2025; 44:753-768. [PMID: 39658649 DOI: 10.1038/s41388-024-03244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024]
Abstract
Intrinsic and acquired resistance represent major obstacles to optimize outcomes in epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) targeted therapy in lung adenocarcinoma (LUAD). Hence, a deeper understanding of EGFR-TKI resistance mechanisms in LUAD will potentially assist in formulating strategies to delay or overcome such resistance. Herein, it was observed that trefoil factor 3 (TFF3) is a crucial mediator of the LUAD EGFR-TKI response. TFF3 conferred intrinsic resistance to EGFR inhibition in LUAD by promotion of EGFR activation. TFF3 expression was also increased in acquired EGFR-TKI resistant LUAD, accompanied by reduced EGFR activation. YAP, a key mediator of the Hippo signaling, was positively regulated by TFF3 by post-transcriptional mechanisms and was responsible for acquired EGFR-TKI resistance mediated by TFF3. Inhibition of TFF3 by a small molecule inhibitor not only enhanced EGFR-TKI sensitivity in LUAD cells but also restored the sensitivity of acquired EGFR-TKI resistant LUAD cells to EGFR-TKIs in vitro and in vivo. These findings demonstrate a pivotal function of TFF3 in mediating both intrinsic and acquired EGFR-TKI resistance in LUAD and may offer a potential therapeutic mechanism for delaying or overcoming resistance to EGFR-TKIs.
Collapse
Affiliation(s)
- Shuwei Zhang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Yan Qin Tan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
- Guangdong Provincial Key Laboratory IRADS and Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, 519087, Guangdong, PR China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, PR China
| | - Basappa Basappa
- Labortory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore, 570005, India
| | - Tao Zhu
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, PR China
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
| | - Peter E Lobie
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, PR China.
| |
Collapse
|
2
|
Luo L, Yang P, Mastoraki S, Rao X, Wang Y, Kettner NM, Raghavendra AS, Tripathy D, Damodaran S, Hunt KK, Wang J, Li Z, Keyomarsi K. Single-cell RNA sequencing identifies molecular biomarkers predicting late progression to CDK4/6 inhibition in patients with HR+/HER2- metastatic breast cancer. Mol Cancer 2025; 24:48. [PMID: 39955556 PMCID: PMC11829392 DOI: 10.1186/s12943-025-02226-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/02/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Cyclin-dependent kinase 4/6 inhibitors (CDK4/6is) in combination with endocrine therapy are the standard treatment for patients with hormone receptor-positive, HER2-negative metastatic breast cancer (mBC). Despite the efficacy of CDK4/6is, intrinsic resistance occurs in approximately one-third of patients, highlighting the need for reliable predictive biomarkers. METHODS Single-cell RNA sequencing analyzed metastatic tumors from HR+/HER2- mBC patients pre-CDK4/6i treatment at baseline (BL) and/or at disease progression. BL samples were from CDK4/6i responders (median progression-free survival [mPFS] = 25.5 months), while progressors were categorized as early-progressors (EP, mPFS = 3 months) and late-progressors (LP, mPFS = 11 months). Metastatic sites included liver, pleural effusions, ascites, and bone. InferCNV distinguished tumor cells, and functional analysis utilized the Molecular Signatures Database. RESULTS LP tumors displayed enhanced Myc, EMT, TNF-α, and inflammatory pathways compared to those EP tumors. Samples from BL and LP responders showed increased tumor-infiltrating CD8+ T cells and natural killer (NK) cells compared to EP non-responders. Notably, despite a high frequency of CD8+ T cells in responding tumors, a functional analysis revealed significant upregulation of genes associated with stress and apoptosis in proliferative CD4+ and CD8+ T cells in BL tumors compared to in EP and LP tumors. These genes, including HSP90 and HSPA8, are linked to resistance to PD1/PD-L1 immune checkpoint inhibitors. A ligand-receptor analysis showed enhanced interactions associated with inhibitory T-cell proliferation (SPP1-CD44) and suppression of immune activity (MDK-NCL) in LP tumors. Longitudinal biopsies consistently revealed dynamic NK cell expansion and enhanced cytotoxic T cell activity, alongside upregulation of immune activity inhibition, in LP tumors compared to in BL tumors. Notably, the predictive biomarker panel from BL tumor cells was validated in 2 independent cohorts, where it consistently predicted a significant improvement in mPFS duration in signature-high versus -low groups. CONCLUSION This study underscores the significance of molecular biomarkers in predicting clinical outcomes to CDK4/6i. Tumor-infiltration CD8+ T and NK cells may also serve as baseline predictors. These insights pave the way for optimizing therapeutic strategies based on microenvironment-specific changes, providing a personalized and effective approach for managing HR+/HER2- mBC and improving patient outcomes.
Collapse
Affiliation(s)
- Linjie Luo
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Peng Yang
- Department of Statistics, Rice University, Houston, TX, USA
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sofia Mastoraki
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiayu Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yan Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicole M Kettner
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Akshara Singareeka Raghavendra
- Department of Breast Medical Oncology, Division of Cancer Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Debasish Tripathy
- Department of Breast Medical Oncology, Division of Cancer Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Senthil Damodaran
- Department of Breast Medical Oncology, Division of Cancer Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Kelly K Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Fasina YO, Obanla TO, Ekunseitan DA, Dosu G, Richardson J, Apalowo OO. Role of trefoil factors in maintaining gut health in food animals. Front Vet Sci 2024; 11:1434509. [PMID: 39628866 PMCID: PMC11612906 DOI: 10.3389/fvets.2024.1434509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/21/2024] [Indexed: 12/06/2024] Open
Abstract
It is imperative to preserve the integrity of the gastrointestinal system in spite of the persistent existence of harmful chemicals and microbial flora in the gut. This is made possible by essential healing initiators called Trefoil factors which helps in mucosal reconstitution and tissue development on the gastrointestinal surface. The trefoil factors are a class of abundant secreted proteins that are essential for epithelial continuity (TFFs). Trefoil factor family (TFF) proteins are biologically active peptides that play significant role in safeguarding, restoring and continuity of the gastrointestinal tract (GIT) epithelium, through collaborative modulations with mucins in the mucosal layer. These peptides are readily produced in reaction to epithelial damage in the digestive tract, thereby contributing to the healing and restituting of the epithelial layers of the intestine. In addition, considerable evidence indicated that TFF peptides trigger proliferation, migration and angiogenesis, all which are crucial processes for wound healing. There is also increasing evidence that TFF peptides modulate the mucosal immune system. These protective properties, suggest that dietary manipulation strategies targeted at enhancing the expression and synthesis of TFF peptides at optimal levels in the GIT epithelium, may constitute a plausible alternative strategy to the use of in-feed antibiotic growth promoters to maintain epithelial integrity and promote resistance to enteric pathogens. This review describes TFF peptides, with importance to their biological functions and involvement in gastrointestinal mucosal protection and repair in food animals.
Collapse
Affiliation(s)
- Yewande O. Fasina
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | | | | | | | | | | |
Collapse
|
4
|
Kozina N, Jukić I, Mihaljević Z, Matić A, Dobrivojević Radmilović M, Barić A, Drenjančević I. The Effect of High-Salt Diet on Oxidative Stress Production and Vascular Function in Tff3-/-/C57BL/6N Knockout and Wild Type (C57BL/6N) Mice. J Vasc Res 2024; 61:214-224. [PMID: 39074455 DOI: 10.1159/000539614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/25/2024] [Indexed: 07/31/2024] Open
Abstract
INTRODUCTION It is well documented that high-salt (HS) diet increases systemic and vascular oxidative stress in various animal models and in humans, leading to impairment of vascular reactivity. The present study examined the interaction of genotype and HS diet intake and the potential effects of oxidative stress - antioxidative system balance on the flow-induced dilation (FID) in pressurized carotid arteries of normotensive Tff3-/-/C57BL/6N knockout mice and their wild-type (WT) controls. METHODS Male, ten-week-old transgenic Tff3-/-/C57BL/6N (Tff3-/-) knockout mice and WT/C57BL/6N (WT) (parental strain) healthy mice were divided in LS (0.4% NaCl in rodent chow) and HS (4% NaCl in rodent chow fed for 1 week) groups. Additionally, LS and HS groups were treated with 1 mmol/L 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL) dissolved in the drinking water. After anesthesia with ketamine chloride (100 mg/kg) and midazolam (5 mg/kg), blood pressure was measured, carotid arteries and aortas were isolated, and blood samples were collected. RESULTS FID was decreased in WT_HS mice and restored by superoxide scavenger TEMPOL in vivo. On the other hand, attenuated FID of Tff3-/- mice was not further affected by HS diet or TEMPOL in vivo treatment. Vascular superoxide/reactive oxygen species levels were increased with HS diet in both strains and restored by TEMPOL. HS upregulated glutathione peroxidase 1 (GPx1) gene expression in WT_HS and Tff3-/-_HS mice, while GPx activity was significantly decreased only in WT_HS group. Systemic (serum) markers of oxidative stress (oxLDL and AOPP) and arterial blood pressure were similar among groups. CONCLUSION HS diet increases vascular oxidative stress and impairs vasodilation in WT mice. Tff3 gene deficiency attenuates vasodilation per se, without further effects of HS intake. This can be attributed to vascular upregulation of antioxidative enzyme GPx1 in Tff3-/-/C57BL/6N mice conferring protection from oxidative stress.
Collapse
Affiliation(s)
- Nataša Kozina
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia,
- Scientific Centre of Excellence for Personalized Health Care University of Osijek, Osijek, Croatia,
| | - Ivana Jukić
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Scientific Centre of Excellence for Personalized Health Care University of Osijek, Osijek, Croatia
| | - Zrinka Mihaljević
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Scientific Centre of Excellence for Personalized Health Care University of Osijek, Osijek, Croatia
| | - Anita Matić
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Institute for Integrative Medicine, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | | | - Anja Barić
- Croatian Institute for Brain Research, University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Ines Drenjančević
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Scientific Centre of Excellence for Personalized Health Care University of Osijek, Osijek, Croatia
| |
Collapse
|
5
|
Masumoto Y, Matsuo S, Kinjou N, Narieda Y, Wada M, Fujimoto K. The expression of trefoil factor family member 2 in increased at an acidic pH. Oncol Lett 2024; 27:212. [PMID: 38572063 PMCID: PMC10988190 DOI: 10.3892/ol.2024.14345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/13/2024] [Indexed: 04/05/2024] Open
Abstract
Trefoil factor family member 2 (Tff2) is significantly involved in intestinal tumor growth in ApcMin/+ mice, which can be used as a human colon cancer model. TFF2, which encodes TFF2 (spasmolytic protein 1) is highly expressed in human cancer tissues, including the pancreas, colon and bile ducts, as well as in normal gastric and duodenum tissues. By contrast, TFF2 exhibits low expression levels in other normal tissues, including the small and large intestine. Furthermore, TFF2 expression has not been detected in DLD-1 cells, a cell line derived from human colon cancer. What induces TFF2 expression in normal and tumor cells is still unknown. Highly malignant tumor tissues are characterized by higher temperatures and lower pH (6.2-6.9) than in normal tissues, where normal pH ranges from 7.2 to 7.4. This microenvironment exacerbates malignancy by promoting the acquisition of cell death resistance, drug resistance and immune escape. Therefore, the present study examined how TFF2 expression is affected in cultured cells that imitate the tumor tissue microenvironment. The incubation temperature was increased from 37 to 40°C, but no expression of TFF2 was induced. Subsequently, a culture solution with an acidic pH was prepared to simulate the Warburg effect in tumors. TFF2 expression was increased by 42.8- and 5.8-fold in cells cultured in acidic medium at pH 6.5 and 6.8 compared with at pH 7.4, respectively, as determined using the relative quantification method following quantitative polymerase chain reaction. The present study also analyzed fluctuations in the expression levels of genes other than TFF2, under acidic conditions. Acidic conditions upregulated the expression of genes related to cell membranes and glycoproteins, based on the Database for Annotation, Visualization, and Integrated Discovery. In conclusion, TFF2 was highly expressed under acidic conditions, implying that it may have an important function in protecting the plasma membrane from acidic environments in both normal and cancer cells. These findings warrant further investigation of TFF2 as a target of cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Yui Masumoto
- Division of Biochemistry, Department of Pharmacy, Nagasaki International University, Sasebo, Nagasaki 859 3298, Japan
| | - Suzuka Matsuo
- Division of Biochemistry, Department of Pharmacy, Nagasaki International University, Sasebo, Nagasaki 859 3298, Japan
| | - Natsuno Kinjou
- Division of Biochemistry, Department of Pharmacy, Nagasaki International University, Sasebo, Nagasaki 859 3298, Japan
| | - Yuka Narieda
- Division of Biochemistry, Department of Pharmacy, Nagasaki International University, Sasebo, Nagasaki 859 3298, Japan
| | - Morimasa Wada
- Division of Molecular Biology, Department of Pharmacy, Nagasaki International University, Sasebo, Nagasaki 859 3298, Japan
| | - Kyoko Fujimoto
- Division of Biochemistry, Department of Pharmacy, Nagasaki International University, Sasebo, Nagasaki 859 3298, Japan
| |
Collapse
|
6
|
Rogulska K, Wojciechowska-Koszko I, Krasnodębska-Szponder B, Kwiatkowski P, Roszkowska P, Dołęgowska B, Łuczkowska K, Machaliński B, Kosik-Bogacka D. TFF3 as a Diagnostic Biomarker in Kidney Transplant Patients. Int J Mol Sci 2023; 24:11925. [PMID: 37569301 PMCID: PMC10418491 DOI: 10.3390/ijms241511925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Intestinal trefoil factor 3 (TFF3) is a protein secreted by many cell types, and its serum and urine levels vary in patients with kidney disease. Therefore, the present study aimed to determine the diagnostic value of TFF3 in allogeneic kidney transplant patients included in the one-year follow-up. To analyze the influence of the diagnostic method used, we studied the type of biological material and the time elapsed since renal transplantation on the parameter's value. The study also aimed to investigate the relationship between TFF3 levels and creatinine and estimated glomerular filtration rate (eGFR) values in the serum and urine of the patients studied. The study used blood and urine samples from adult patients (n = 19) 24-48 h, 6 months, and 12 months after kidney transplantation. We collected one-time blood and urine from healthy subjects (n = 5) without renal disease. We applied immunoenzymatic ELISA and xMap Luminex flow fluorimetry to determine TFF3 in serum and urine. There was a significant difference in TFF3 levels in the serum of patients collected on the first one or two days after kidney transplantation compared to the control group (determined by ELISA and Luminex) and six months and one year after kidney transplantation (ELISA). We observed a correlation between creatinine concentration and urinary TFF3 concentration (ELISA and Luminex) and a negative association between eGFR and urinary (ELISA) and serum (Luminex) TFF3 concentration in patients on the first and second days after kidney transplantation. We noted significant correlations between eGFR and TFF3 levels in the serum and urine of patients determined by the two methods six months and one year after transplantation. In women, we observed that urinary TFF3 concentration increased significantly with increasing creatinine and that with increasing eGFR, urinary TFF3 concentration determined by two methods decreased significantly. In the present study, the choice of diagnostic method for the determination of TFF3 in serum and urine significantly affected the concentration of this biomarker. The values of this parameter determined by ELISA were higher than those assessed using the Luminex assay. Based on the presented results, we can conclude that TFF3 has great potential to monitor renal transplant patients. Determination of this protein in parallel with creatinine and eGFR levels in serum and urine may provide helpful diagnostic information.
Collapse
Affiliation(s)
- Karolina Rogulska
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.R.)
| | - Iwona Wojciechowska-Koszko
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.R.)
| | - Barbara Krasnodębska-Szponder
- Immunology Laboratory, Independent Public Clinical Hospital No. 2, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.R.)
| | - Paulina Roszkowska
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.R.)
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Danuta Kosik-Bogacka
- Independent Laboratory of Pharmaceutical Botany, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
7
|
Minegishi K, Dobashi Y, Koyama T, Ishibashi Y, Furuya M, Tsubochi H, Ohmoto Y, Yasuda T, Nomura S. Diagnostic utility of trefoil factor families for the early detection of lung cancer and their correlation with tissue expression. Oncol Lett 2023; 25:139. [PMID: 36909373 PMCID: PMC9996639 DOI: 10.3892/ol.2023.13725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/22/2022] [Indexed: 02/23/2023] Open
Abstract
Trefoil factors (TFFs) are upregulated in numerous types of cancer, including those of the breast, the colon, the lung and the pancreas, suggesting their potential utility as biomarkers for screening. In the present study, the clinical relevance of serum or urinary TFFs as biomarkers were comprehensively evaluated and the correlation with TFF expression levels in lung cancer tissue was examined. Serum and urine were collected from 199 patients with lung cancer and 198 healthy individuals. Concentrations of serum and urinary TFF1, TFF2 and TFF3 were measured using ELISA and the potential of TFF levels to discriminate between cancer and non-cancer samples was evaluated. In 100 of the cancer cases, expression of TFF1-3 was analyzed using immunohistochemical staining of paraffin sections. Furthermore, the relationship between TFF levels and clinicopathological factors among these cancer cases was analyzed using immunohistochemistry of tissue specimens, quantified and statistically analyzed. While serum levels of all TFFs measured using ELISA were significantly higher in patients with lung cancer compared with those in healthy individuals, urinary TFFs were lower. Areas under the curve (AUC) of the receiver operating characteristic curves for serum/urinary TFF1, TFF2 and TFF3 were 0.709/0.594, 0.722/0.501 and 0.663/0.665, respectively. Furthermore, the combination of serum TFF1, TFF2, TFF3 and urinary TFF1 and TFF3 demonstrated the highest AUC (0.826). In the clinicopathological analysis, serum TFF1 was higher in the early pathological T-stage (pTis/1/2) compared with the later stage (pT3/4) and TFF2 was higher in the pN0/1 than the pN2 group. With regards to the histological types, urinary TFF1 was higher in squamous cell carcinoma than adenocarcinoma (AC), but TFF2 tended to be higher in AC. Using immunohistochemical analysis, although TFF1 and TFF3 expression showed positive correlation with serum concentrations, TFF2 was inversely correlated. In conclusion, serum and urinary TFF levels are promising predictive biomarkers, and their measurements provide a useful in vivo and non-invasive diagnostic screening tool. In particular, TFF1 and TFF3 could be surrogate markers of clinicopathological profiles of human lung cancer.
Collapse
Affiliation(s)
- Kentaro Minegishi
- Department of Thoracic Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Saitama 330-8500, Japan
| | - Yoh Dobashi
- Department of Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Saitama 330-8500, Japan.,Department of Pathology, School of Medicine, International University of Health and Welfare Hospital, Nasushiobara, Tochigi 329-2763, Japan
| | - Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Yuko Ishibashi
- Department of Surgery, Breast Surgery, Tokyo Women's Medical University, Adachi Medical Center, Adachi, Tokyo 123-8558, Japan
| | - Miki Furuya
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hiroyoshi Tsubochi
- Department of Thoracic Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Saitama 330-8500, Japan
| | - Yasukazu Ohmoto
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Tokushima 770-8505, Japan
| | - Tomohiko Yasuda
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.,Department of Gastrointestinal Surgery, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba 270-1694, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
8
|
Samson MH, Abildgaard AM, Espelund U, Rasmussen TR, Folkersen B, Frystyk J, Nexo E. Circulating trefoil factors in relation to lung cancer, age and lung function: a cross-sectional study in patients referred for suspected lung cancer. Scandinavian Journal of Clinical and Laboratory Investigation 2021; 81:446-450. [PMID: 34242119 DOI: 10.1080/00365513.2021.1943757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The trefoil factor family proteins: TFF1, TFF2 and TFF3 are secreted by epithelial cells in the respiratory tract. Here, we explore circulating concentrations of the trefoil factors in relation to lung cancer, age and lung function. We included 751 patients suspected of lung cancer. Lung cancer diagnosis was based on data reported to a national database. Serum TFF1, TFF2 and TFF3 concentrations were measured by ELISA, and spirometry was performed within ±3 days of blood sampling. Forced expiratory volume in the first second (FEV1) in relation to forced vital capacity (FVC), FEV1/FVC (a parameter used to quantify reduced lung function) was recorded. Lung cancer was diagnosed in 163 (22%) patients. Circulating concentrations of TFF3 (p = .021), but not TFF1 and TFF2, were significantly elevated in cancer patients. All three trefoil factors showed an increase in concentration with increasing age (p < .001) and declining lung function (p < .004). In the present cohort, concentrations of all three peptides were elevated compared with previous results published for healthy individuals. In conclusion, we report higher concentrations of TFF3 in patients with lung cancer, while increasing age and reduced lung function are associated with increasing concentrations of all trefoil factors in this specific patient population. The results emphasize that age and lung function should be taken into consideration when evaluating concentrations of trefoil factors in patients. However, the increases in trefoil factor concentrations were relatively small, and consequently, it is unlikely that circulating trefoil factor concentrations may have a role in the diagnosis of lung cancer and lung function impairment.
Collapse
Affiliation(s)
- Mie H Samson
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Anders M Abildgaard
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Ulrick Espelund
- Department of Clinical Medicine, Medical Research Laboratory, Aarhus University, Aarhus, Denmark
| | - Torben R Rasmussen
- Department of Pulmonary Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Birgitte Folkersen
- Department of Pulmonary Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jan Frystyk
- Department of Clinical Medicine, Medical Research Laboratory, Aarhus University, Aarhus, Denmark
| | - Ebba Nexo
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
9
|
Jahan R, Shah A, Kisling SG, Macha MA, Thayer S, Batra SK, Kaur S. Odyssey of trefoil factors in cancer: Diagnostic and therapeutic implications. Biochim Biophys Acta Rev Cancer 2020; 1873:188362. [PMID: 32298747 DOI: 10.1016/j.bbcan.2020.188362] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
Trefoil factors 1, 2, and 3 (TFFs) are a family of small secretory molecules involved in the protection and repair of the gastrointestinal tract (GI). TFFs maintain and restore epithelial structural integrity via transducing key signaling pathways for epithelial cell migration, proliferation, and invasion. In recent years, TFFs have emerged as key players in the pathogenesis of multiple diseases, especially cancer. Initially recognized as tumor suppressors, emerging evidence demonstrates their key role in tumor progression and metastasis, extending their actions beyond protection. However, to date, a comprehensive understanding of TFFs' mechanism of action in tumor initiation, progression and metastasis remains obscure. The present review discusses the structural, functional and mechanistic implications of all three TFF family members in tumor progression and metastasis. Also, we have garnered information from studies on their structure and expression status in different organs, along with lessons from their specific knockout in mouse models. In addition, we highlight the emerging potential of using TFFs as a biomarker to stratify tumors for better therapeutic intervention.
Collapse
Affiliation(s)
- Rahat Jahan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA
| | - Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA
| | - Sophia G Kisling
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA; Department of Otolaryngology-Head & Neck Surgery, University of Nebraska Medical Center, NE, 68198, USA; Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, India -191201
| | - Sarah Thayer
- Division of Surgical Oncology, Department of Surgery, University of Nebraska Medical Center, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, NE, 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE 68198, USA.
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA.
| |
Collapse
|
10
|
Zhang M, Wang B, Chong QY, Pandey V, Guo Z, Chen RM, Wang L, Wang Y, Ma L, Kumar AP, Zhu T, Wu ZS, Yin Z, Basappa, Goh BC, Lobie PE. A novel small-molecule inhibitor of trefoil factor 3 (TFF3) potentiates MEK1/2 inhibition in lung adenocarcinoma. Oncogenesis 2019; 8:65. [PMID: 31685806 PMCID: PMC6828705 DOI: 10.1038/s41389-019-0173-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023] Open
Abstract
TFF3 has been identified as a novel biomarker to distinguish between lung adenocarcinoma (ADC) and lung squamous-cell carcinoma (SCC). Herein, we determined the oncogenic functions of TFF3 and demonstrated the potential of pharmacological inhibition of TFF3 in lung ADC using a novel small-molecule inhibitor of TFF3 dimerization (AMPC). Forced expression of TFF3 in lung ADC cells enhanced cell proliferation and survival, increased anchorage-independent growth, cancer stem cell behavior, growth in 3D Matrigel, and cell migration and invasion. In contrast, depleted expression of TFF3 suppressed these cellular functions. Mechanistically, TFF3 exerted its oncogenic function through upregulation of ARAF and hence enhanced downstream activation of MEK1/2 and ERK1/2. Pharmacological inhibition of TFF3 by AMPC, resulted in markedly decreased cell survival, proliferation, 3D growth and foci formation, and impaired tumor growth in a xenograft mouse model. Moreover, the combination of various MEK1/2 inhibitors with AMPC exhibited synergistic inhibitory effects on lung ADC cell growth. In conclusion, this study provides the first evidence that TFF3 is a potent promoter of lung ADC progression. Targeting TFF3 with a novel small-molecule inhibitor alone or in combination with conventional MEK1/2 inhibitors are potential strategies to improve the outcome of lung ADC.
Collapse
Affiliation(s)
- Mengyi Zhang
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Baocheng Wang
- Biomedical Translational Research Institute, Jinan University, Guangzhou, China.,Tsinghua Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China
| | - Qing-Yun Chong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, Guangzhou, China
| | - Zhirong Guo
- Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ru-Mei Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yanxin Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Lan Ma
- Tsinghua Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China
| | - Alan P Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Cancer Program, Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tao Zhu
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Zheng-Sheng Wu
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India
| | - Boon-Cher Goh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Haematology-Oncology, National University Health System, Singapore, Singapore
| | - Peter E Lobie
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore. .,Tsinghua Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China. .,Shenzhen Bay Laboratory, Shenzhen, Guangzhou, China.
| |
Collapse
|
11
|
Inhibition of TFF3 Enhances Sensitivity-and Overcomes Acquired Resistance-to Doxorubicin in Estrogen Receptor-Positive Mammary Carcinoma. Cancers (Basel) 2019; 11:cancers11101528. [PMID: 31658702 PMCID: PMC6826976 DOI: 10.3390/cancers11101528] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/01/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023] Open
Abstract
Dose-dependent toxicity and acquired resistance are two major challenges limiting the efficacious treatment of mammary carcinoma (MC) with doxorubicin. Herein, we investigated the function of Trefoil Factor 3 (TFF3) in the sensitivity and acquired resistance of estrogen receptor positive (ER+) MC cells to doxorubicin. Doxorubicin treatment of ER+MC cells increased TFF3 expression. The depletion of TFF3 by siRNA or inhibition with a small molecule TFF3 inhibitor (AMPC) synergistically enhanced the efficacy of doxorubicin in ER+MC through the suppression of doxorubicin-induced AKT activation and enhancement of doxorubicin-induced apoptosis. Elevated expression of TFF3 and increased activation of AKT were also observed using a model of acquired doxorubicin resistance in ER+MC cells. AMPC partially re-sensitized the doxorubicin resistant cells to doxorubicin-induced apoptosis. Indeed, doxorubicin resistant ER + MC cells exhibited increased sensitivity to AMPC as a single agent compared to doxorubicin sensitive cells. In vivo, AMPC attenuated growth of doxorubicin sensitive ER+MC xenografts whereas it produced regression of xenografts generated by doxorubicin resistant ER+MC cells. Hence, TFF3 inhibition may improve the efficacy and reduce required doses of doxorubicin in ER+MC. Moreover, inhibition of TFF3 may also be an effective therapeutic strategy to eradicate doxorubicin resistant ER+MC.
Collapse
|
12
|
Yusufu A, Shayimu P, Tuerdi R, Fang C, Wang F, Wang H. TFF3 and TFF1 expression levels are elevated in colorectal cancer and promote the malignant behavior of colon cancer by activating the EMT process. Int J Oncol 2019; 55:789-804. [PMID: 31432157 PMCID: PMC6741840 DOI: 10.3892/ijo.2019.4854] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022] Open
Abstract
Reports on the roles of the secreted trefoil factor (TFF)1 and 3 in colorectal cancer (CRC) and their underlying mechanisms of action in tumorigenesis are not common and are controversial. In the present study, the mRNA expression and promoter methylation of TFF1 and TFF3 in cancer and adjacent normal tissues were investigated, and their association with other clinical factors and patient prognosis were evaluated. Moreover, the association between TFF3 and epithelial mesenchymal transition (EMT) was explored by overexpressing or inhibiting TFF3 expression. The results revealed that the mRNA level of TFF1 and TFF3 in the cancer tissues was significantly higher than that in the matched adjacent normal tissues (P=0.034 and P=0.007, respectively), and a higher expression of TFF3, but not TFF1, was predominantly associated with clinicopathological factors and a poorer prognosis. No correlation was observed between promoter methylation and the expression of TFF1 or TFF3. The overexpression of TFF3 promoted the proliferation, migration and invasiveness of HT29 cells, and induced an increase in the expression of Twist1, Snail and Vimentin, while causing a decrease in E-cadherin expression. On the contrary, the knockdown of TFF3 resulted in opposite effects in the LoVo cells. On the whole, the findings of this study indicate that TFF3 may be a promising new factor for the estimation of the survival of patients with CRC, and may promote the malignant progression of CRC by activating the EMT process. Therefore, TFF3 may be a future potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Aikeremu Yusufu
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xin Jiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Paerhati Shayimu
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xin Jiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Rousidan Tuerdi
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xin Jiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Cheng Fang
- Department of Gastrointestinal Surgery, Xi Jing Digestive Disease Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fei Wang
- Department of Gastrointestinal Surgery, Xi Jing Digestive Disease Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Haijiang Wang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xin Jiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| |
Collapse
|
13
|
Vastrad C, Vastrad B. Investigation into the underlying molecular mechanisms of non-small cell lung cancer using bioinformatics analysis. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Taniguchi Y, Kurokawa Y, Takahashi T, Mikami J, Miyazaki Y, Tanaka K, Makino T, Yamasaki M, Nakajima K, Mori M, Doki Y. Prognostic Value of Trefoil Factor 3 Expression in Patients with Gastric Cancer. World J Surg 2019; 42:3997-4004. [PMID: 30039286 DOI: 10.1007/s00268-018-4737-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Trefoil factor 3 (TFF3) is a small molecule secreted by the mammalian gastrointestinal tract and is overexpressed in some human malignant tumors. We investigated the prognostic values of immunohistochemical (IHC) TFF3 expression and serum TFF3 levels in patients with gastric cancer, and whether TFF3 influenced tumor proliferation and invasion in vitro. METHODS We examined 111 patients who underwent R0 gastrectomy for gastric cancer between April 2012 and April 2015. IHC TFF3 expression and serum TFF3 levels were evaluated regarding their associations with clinicopathological factors and recurrence-free survival (RFS). In vitro cell proliferation and migration assays were used to explore the biological role of TFF3 in human gastric cancer cell lines following transfection with a lentivirus-based shRNA plasmid. RESULTS IHC TFF3 expression showed significant associations with depth of invasion (p = 0.024), lymph node metastasis (p = 0.008), and RFS (log-rank p = 0.002). Serum TFF3 levels were correlated with IHC TFF3 expression (p = 0.013). RFS was significantly poorer in patients with high (n = 27) compared to low (n = 84) serum TFF3 levels (log-rank p = 0.003). Cox multivariate analysis indicated that serum TFF3 level was an independent prognostic factor for RFS (p = 0.024). In vitro assays, TFF3 downregulation significantly inhibited both proliferation and invasion of gastric cancer cells. CONCLUSIONS Serum TFF3 levels could be useful prognostic markers in patients with gastric cancer. TFF3 may play various biological roles in proliferation and invasion of gastric cancer cells.
Collapse
Affiliation(s)
- Yoshiki Taniguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2, Yamadaoka, Suita, Osaka, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2, Yamadaoka, Suita, Osaka, Japan.
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2, Yamadaoka, Suita, Osaka, Japan
| | - Jota Mikami
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2, Yamadaoka, Suita, Osaka, Japan
| | - Yasuhiro Miyazaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2, Yamadaoka, Suita, Osaka, Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2, Yamadaoka, Suita, Osaka, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2, Yamadaoka, Suita, Osaka, Japan
| | - Makoto Yamasaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2, Yamadaoka, Suita, Osaka, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2, Yamadaoka, Suita, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2, Yamadaoka, Suita, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2, Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
15
|
Hung LY, Sen D, Oniskey TK, Katzen J, Cohen NA, Vaughan AE, Nieves W, Urisman A, Beers MF, Krummel MF, Herbert DR. Macrophages promote epithelial proliferation following infectious and non-infectious lung injury through a Trefoil factor 2-dependent mechanism. Mucosal Immunol 2019; 12:64-76. [PMID: 30337651 PMCID: PMC6301101 DOI: 10.1038/s41385-018-0096-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 02/04/2023]
Abstract
Coordinated efforts between macrophages and epithelia are considered essential for wound healing, but the macrophage-derived molecules responsible for repair are poorly defined. This work demonstrates that lung macrophages rely upon Trefoil factor 2 to promote epithelial proliferation following damage caused by sterile wounding, Nippostrongylus brasiliensis or Bleomycin sulfate. Unexpectedly, the presence of T, B, or ILC populations was not essential for macrophage-driven repair. Instead, conditional deletion of TFF2 in myeloid-restricted CD11cCre TFF2 flox mice exacerbated lung pathology and reduced the proliferative expansion of CD45- EpCAM+ pro-SPC+ alveolar type 2 cells. TFF2 deficient macrophages had reduced expression of the Wnt genes Wnt4 and Wnt16 and reconstitution of hookworm-infected CD11cCre TFF2flox mice with rWnt4 and rWnt16 restored the proliferative defect in lung epithelia post-injury. These data reveal a previously unrecognized mechanism wherein lung myeloid phagocytes utilize a TFF2/Wnt axis as a mechanism that drives epithelial proliferation following lung injury.
Collapse
Affiliation(s)
- Li-Yin Hung
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Debasish Sen
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Taylor K. Oniskey
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Jeremey Katzen
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Noam A. Cohen
- Departments of Otorhinolaryngology—Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Monell Chemical Senses Center, and Philadelphia VA Medical Center Surgical Service
| | - Andrew E. Vaughan
- Department of Biological Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Wildaliz Nieves
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Anatoly Urisman
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael F. Beers
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania,PENN Center for Pulmonary Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Matthew F. Krummel
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - De’Broski R. Herbert
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| |
Collapse
|
16
|
Meesala D, Penmetsa GS, Dwarakanath CD, Manyam R. Effect of Initial Periodontal Therapy on Salivary Trefoil Factor (TFF3) in otherwise Healthy Patients with Gingivitis and Chronic Periodontitis. Contemp Clin Dent 2018; 9:S11-S16. [PMID: 29962757 PMCID: PMC6006892 DOI: 10.4103/ccd.ccd_665_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: The search for an ideal biomarker which can determine the current disease status that predicts the sites and individuals with increased susceptibility to periodontal disease has been going on since a long time. One such group of molecules which have been investigated recently are the trefoil factors, and the present study aims to determine the role of salivary trefoil factor 3 (TFF3) in periodontitis and gingivitis patients. Materials and Methods: A total of fifty participants, of which 25 were diagnosed with moderate-to-severe periodontitis and 25 with chronic gingivitis were included in the study. The routine periodontal parameters were recorded at baseline and at 6 weeks which included plaque index, gingival index, bleeding index, probing depth, and clinical attachment level. The saliva samples were collected from both the groups at baseline and 6 weeks after nonsurgical periodontal therapy and analyzed by enzyme-linked immunosorbent assay to estimate the concentration of trefoil factor 3. Results: All the periodontal parameters improved at 6-week reevaluation in both the groups. There was a significant change in the TFF3 levels in the periodontitis group from baseline to 6 weeks, and the concentrations were found to be higher following nonsurgical therapy, whereas the quantum of change in the gingivitis group was negligible. The levels of TFF3 remained unchanged in those periodontitis participants who required surgical intervention at the 6th-week reevaluation. Conclusion: The estimation of TFF3 levels may aid in decision-making in the treatment strategy of patients with moderate-to-severe periodontitis.
Collapse
Affiliation(s)
- Devika Meesala
- Department of Periodontics and Implantology, Vishnu Dental College, Bhimavaram, Andhra Pradesh, India
| | - Gautami S Penmetsa
- Department of Periodontics and Implantology, Vishnu Dental College, Bhimavaram, Andhra Pradesh, India
| | - C D Dwarakanath
- Department of Periodontics and Implantology, Vishnu Dental College, Bhimavaram, Andhra Pradesh, India
| | - Ravikanth Manyam
- Department of Oral Pathology, Vishnu Dental College, Bhimavaram, Andhra Pradesh, India
| |
Collapse
|
17
|
Pandey V, Zhang M, Chong QY, You M, Raquib AR, Pandey AK, Liu DX, Liu L, Ma L, Jha S, Wu ZS, Zhu T, Lobie PE. Hypomethylation associated enhanced transcription of trefoil factor-3 mediates tamoxifen-stimulated oncogenicity of ER+ endometrial carcinoma cells. Oncotarget 2017; 8:77268-77291. [PMID: 29100386 PMCID: PMC5652779 DOI: 10.18632/oncotarget.20461] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/16/2017] [Indexed: 12/20/2022] Open
Abstract
Tamoxifen (TAM) is widely used as an adjuvant therapy for women with breast cancer (BC). However, TAM possesses partial oestrogenic activity in the uterus and its use has been associated with an increased incidence of endometrial carcinoma (EC). The molecular mechanism for these observations is not well understood. Herein, we demonstrated that forced expression of Trefoil factor 3 (TFF3), in oestrogen receptor-positive (ER+) EC cells significantly increased cell cycle progression, cell survival, anchorage-independent growth, invasiveness and tumour growth in xenograft models. Clinically, elevated TFF3 protein expression was observed in EC compared with normal endometrial tissue, and its increased expression in EC was significantly associated with myometrial invasion. TAM exposure increased expression of TFF3 in ER+ EC cells and its elevated expression resulted in increased oncogenicity and invasiveness. TAM-stimulated expression of TFF3 in EC cells was associated with hypomethylation of the TFF3 promoter sequence and c-JUN/SP1-dependent transcriptional activation. In addition, small interfering (si) RNA-mediated depletion or polyclonal antibody inhibition of TFF3 significantly abrogated oncogenicity and invasiveness in EC cells consequent to TAM induction or forced expression of TFF3. Hence, TAM-stimulated upregulation of TFF3 in EC cells was critical in promoting EC progression associated with TAM treatment. Importantly, inhibition of TFF3 function might be an attractive molecular modality to abrogate the stimulatory effects of TAM on endometrial tissue and to limit the progression of EC.
Collapse
Affiliation(s)
- Vijay Pandey
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Min Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, P.R. China
| | - Qing-Yun Chong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Mingliang You
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Amit K. Pandey
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Dong-Xu Liu
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Liang Liu
- Department of Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, P.R China
- Department of Radiology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, P.R China
| | - Lan Ma
- Tsinghua Berkeley Shenzhen Institute, Division of Life Sciences & Health, Tsinghua University Graduate School, Shenzhen, P.R China
| | - Sudhakar Jha
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Zheng-Sheng Wu
- Department of Pathology, Anhui Medical University, Hefei, P.R China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, P.R. China
| | - Peter E. Lobie
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore
- Tsinghua Berkeley Shenzhen Institute, Division of Life Sciences & Health, Tsinghua University Graduate School, Shenzhen, P.R China
| |
Collapse
|
18
|
Chong QY, You ML, Pandey V, Banerjee A, Chen YJ, Poh HM, Zhang M, Ma L, Zhu T, Basappa S, Liu L, Lobie PE. Release of HER2 repression of trefoil factor 3 (TFF3) expression mediates trastuzumab resistance in HER2+/ER+ mammary carcinoma. Oncotarget 2017; 8:74188-74208. [PMID: 29088778 PMCID: PMC5650333 DOI: 10.18632/oncotarget.18431] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/10/2017] [Indexed: 12/15/2022] Open
Abstract
HER2+/ER+ breast cancer, a subset of the luminal B subtype, makes up approximately 10% of all breast cancers. The bidirectional crosstalk between HER2 and estrogen receptor (ER) in HER2+/ER+ breast cancer contributes to resistance towards both anti-estrogens and HER2-targeted therapies. TFF3 promotes breast cancer progression and has been implicated in anti-estrogen resistance in breast cancer. Herein, we investigated the cross-regulation between HER2 and estrogen-responsive TFF3, and the role of TFF3 in mediating trastuzumab resistance in HER2+/ER+ breast cancer. TFF3 expression was decreased by HER2 activation, and increased by inhibition of HER2 with trastuzumab in HER2+/ER+ breast cancer cells, partially in an ERα-independent manner. In contrast, the forced expression of TFF3 activated the entire HER family of receptor tyrosine kinases (HER1-4). Hence, HER2 negatively regulates its own signalling through the transcriptional repression of TFF3, while trastuzumab inhibition of HER2 results in increased TFF3 expression to compensate for the loss of HER2 signalling. In HER2+/ER+ breast cancer cells with acquired trastuzumab resistance, TFF3 expression was markedly upregulated and associated with a corresponding decrease in HER signalling. siRNA mediated depletion or small molecule inhibition of TFF3 decreased the survival and growth advantage of the trastuzumab resistant cells without re-sensitization to trastuzumab. Furthermore, TFF3 inhibition abrogated the enhanced cancer stem cell-like behaviour in trastuzumab resistant HER2+/ER+ breast cancer cells. Collectively, TFF3 may function as a potential biomarker and therapeutic target in trastuzumab resistant HER2+/ER+ breast cancer.
Collapse
Affiliation(s)
- Qing-Yun Chong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ming-Liang You
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vijay Pandey
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Arindam Banerjee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yi-Jun Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Han-Ming Poh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mengyi Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lan Ma
- Tsinghua Berkeley Shenzhen Institute, Tsinghua University Graduate School at Shenzhen, Shenzhen, China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Salundi Basappa
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Central College Campus, Bangalore, India
| | - Liang Liu
- Department of Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Radiology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Peter E. Lobie
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Tsinghua Berkeley Shenzhen Institute, Tsinghua University Graduate School at Shenzhen, Shenzhen, China
- National University Cancer Institute, Singapore
| |
Collapse
|
19
|
Ishibashi Y, Ohtsu H, Ikemura M, Kikuchi Y, Niwa T, Nishioka K, Uchida Y, Miura H, Aikou S, Gunji T, Matsuhashi N, Ohmoto Y, Sasaki T, Seto Y, Ogawa T, Tada K, Nomura S. Serum TFF1 and TFF3 but not TFF2 are higher in women with breast cancer than in women without breast cancer. Sci Rep 2017; 7:4846. [PMID: 28687783 PMCID: PMC5501858 DOI: 10.1038/s41598-017-05129-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/24/2017] [Indexed: 12/31/2022] Open
Abstract
Breast cancer remains a common malignancy in women, but the take-up for breast cancer screening programs in Japan is still low, possibly due to its perceived inconvenience. TFF1 and TFF3 are expressed in both breast cancer tissue and normal breast. Serum trefoil proteins were reported as cancer screening markers for gastric, prostate, lung, pancreatic cancer and cholangio carcinoma. The purpose of this study was to examine whether serum trefoil proteins could be screening biomarkers for breast cancer. Serum trefoil proteins in 94 breast cancer patients and 84 health check females were measured by ELISA. Serum TFF1 and TFF3 were significantly higher and serum TFF2 was significantly lower in breast cancer patients. Area under the curve of receiver operating characteristic of TFF1, TFF2, and TFF3 was 0.69, 0.83, and. 0.72, respectively. AUC of the combination of TFF1, TFF2, and TFF3 was 0.96. Immunohistochemically, TFF1 expression was positive in 56.5% and TFF3 was positive in 73.9% of breast cancers, while TFF2 was negative in all tumors. Serum TFF1 had positive correlation with expression of TFF1 in breast cancer tissue. Serum concentrations of TFF1 and TFF3 but not TFF2 are higher in women with breast cancer than in women without breast cancer.
Collapse
Affiliation(s)
- Yuko Ishibashi
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Ohtsu
- Center of Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masako Ikemura
- Department of Pathology, The University of Tokyo Hospital, Tokyo, Japan
| | - Yasuko Kikuchi
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takayoshi Niwa
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kotoe Nishioka
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Uchida
- Breast Center, International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Hirona Miura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Susumu Aikou
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | - Yasukazu Ohmoto
- Otsuka Pharmaceutical Tokusima Research Institute, Tokyo, Japan
| | - Takeshi Sasaki
- Department of Pathology, The University of Tokyo Hospital, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshihisa Ogawa
- Breast Center, Dokkyo Medical University Koshigaya Hospital, Tokyo, Japan
| | - Keiichiro Tada
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
20
|
Choi B, Lee HJ, Min J, Choe HN, Choi YS, Son YG, Ahn HS, Suh YS, Goldenring JR, Yang HK. Plasma expression of the intestinal metaplasia markers CDH17 and TFF3 in patients with gastric cancer. Cancer Biomark 2017; 19:231-239. [DOI: 10.3233/cbm-160147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Boram Choi
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Hyuk-Joon Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Surgery,
| | - Jimin Min
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hwi-Nyeong Choe
- Department of Nursing, Seoul National University Hospital, Seoul, Korea
| | | | | | | | | | - James R. Goldenring
- Department of Surgery, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, and the Nashville VA Medical Center, Nashville, TN, USA
| | - Han-Kwang Yang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Surgery,
| |
Collapse
|
21
|
Xie H, Guo JH, An WM, Tian ST, Yu HP, Yang XL, Wang HM, Guo Z. Diagnostic value evaluation of trefoil factors family 3 for the early detection of colorectal cancer. World J Gastroenterol 2017; 23:2159-2167. [PMID: 28405143 PMCID: PMC5374127 DOI: 10.3748/wjg.v23.i12.2159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/10/2017] [Accepted: 03/17/2017] [Indexed: 02/06/2023] Open
Abstract
AIM The purpose of this study was to evaluate the diagnostic value of trefoil factor family 3 (TFF3) for the early detection of colorectal cancer (CC). METHODS Serum TFF3 and carcino-embryonic antigen (CEA) were detected in 527 individuals, including 115 healthy control (HC), 198 colorectal adenoma (CA), and 214 CC individuals in the training group. RESULTS Serum TFF3 showed no significant correlation with age, gender, or tumor location but showed significant correlation with the tumor stage. Serum TFF3 in the CC group was significantly higher than in the HC or CA group. The AUC values of TFF3 for discriminating between HC and CC and between CA and CC were 0.930 (0.903, 0.958) and 0.834 (0.796, 0.873). A multivariate model combining TFF3 and CEA was built. Compared to TFF3 or CEA alone, the multivariate model showed significant improvement (P < 0.001). For discriminating between HC and CC, HC and early stage CC, HC and advanced stage CC, CA and CC, CA and early stage CC, and CA and advanced stage CC in the training group, the sensitivities were 92.99%, 91.46%, 93.18%, 73.83%, 76.83%, and 81.82%, and the specificities were 91.30%, 91.30%, 93.91%, 88.38%, 77.27%, and 88.38%, respectively. After validation, the sensitivities were 89.39%, 85.71%, 90.79%, 72.73%, 71.43%, and 78.95%, and the specificities were 87.85%, 87.85%, 2.52%, 87.85%, 80.77%, and 87.50%, respectively. CONCLUSION The multivariate diagnostic model that included TFF3 and CEA showed significant improvement over the conventional biomarker CEA and might provide a potential method for the early detection of CC.
Collapse
|
22
|
Yusup A, Huji B, Fang C, Wang F, Dadihan T, Wang HJ, Upur H. Expression of trefoil factors and TWIST1 in colorectal cancer and their correlation with metastatic potential and prognosis. World J Gastroenterol 2017; 23:110-120. [PMID: 28104986 PMCID: PMC5221274 DOI: 10.3748/wjg.v23.i1.110] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/19/2016] [Accepted: 12/02/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To detect the expression of trefoil factors (TFFs) and TWIST1 in colorectal cancer (CRC) and analyze their correlation with metastasis and survival.
METHODS This study examined the expression of TFF1, TFF3 and TWIST1 in a total of 75 tumor samples, 47 matched normal samples (15 cm from the lesion margin), 30 metastatic lymph nodes, and 10 liver metastatic cancer samples from patients with CRC. The relationship was then analyzed between the protein expression and different clinical records. TFF1, TFF3, TWIST1,E-cadherin, vimentin and β-catenin mRNA and protein expression levels were measured in colon cancer cell lines with different metastatic potentials (HIEC, HT29, SW620, and LoVo cells), and the correlation of the expression levels with epithelial-mesenchymal transition (EMT) was discussed.
RESULTS It was found that 66.7% (50/75), 78.7% (59/75) and 54.7% (41/75) of tumor tissue samples exhibited positive staining for TFF1, TFF3 and TWIST1 and so did 27.3% (13/47), 100% (47/47) and 17% (8/47) of adjacent normal colorectal tissues. Compared with adjacent normal tissues, significant differences were found in the expression of all three proteins in different cancerous tissues (P < 0.05). Higher expression of TFF3 and TWIST1 was significantly correlated with lymph node metastasis (P = 0.034, P = 0.000), advanced stage (P = 0.031, P = 0.003), and poorer survival (P = 0.042 for the TFF3 group, P = 0.003 for the TWIST1 group). The expression of TFF3 and TWIST1 in cancer cell lines was higher than that in HIEC (a normal human intestinal epithelial cell line)(P < 0.05), and the expression intensity demonstrated a tendency to rise with increased metastatic potential both at the protein and mRNA levels. However, TFF1 expression demonstrated the opposite tendency. It was also observed that the expression of E-cadherin and β-catenin tended to decrease while that of vimentin, TWIST1 and Snail tended to rise with the increase in metastatic potential.
CONCLUSION The expression of TFF3 and TWIST1 might be associated with the survival of patients with CRC after curative resection and might be pivotal predictors of disease progression. TFF3 may be correlated to the invasiveness of CRC.
Collapse
|
23
|
Turcatel G, Millette K, Thornton M, Leguizamon S, Grubbs B, Shi W, Warburton D. Cartilage rings contribute to the proper embryonic tracheal epithelial differentiation, metabolism, and expression of inflammatory genes. Am J Physiol Lung Cell Mol Physiol 2016; 312:L196-L207. [PMID: 27941074 DOI: 10.1152/ajplung.00127.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 11/22/2022] Open
Abstract
The signaling cross talk between the tracheal mesenchyme and epithelium has not been researched extensively, leaving a substantial gap of knowledge in the mechanisms dictating embryonic development of the proximal airways by the adjacent mesenchyme. Recently, we reported that embryos lacking mesenchymal expression of Sox9 did not develop tracheal cartilage rings and showed aberrant differentiation of the tracheal epithelium. Here, we propose that tracheal cartilage provides local inductive signals responsible for the proper differentiation, metabolism, and inflammatory status regulation of the tracheal epithelium. The tracheal epithelium of mesenchyme-specific Sox9Δ/Δ mutant embryos showed altered mRNA expression of various epithelial markers such as Pb1fa1, surfactant protein B (Sftpb), secretoglobulin, family 1A, member 1 (Scgb1a1), and trefoil factor 1 (Tff1). In vitro tracheal epithelial cell cultures confirmed that tracheal chondrocytes secrete factors that inhibit club cell differentiation. Whole gene expression profiling and ingenuity pathway analysis showed that the tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), and transforming growth factor-β (TGF-β) signaling pathways were significantly altered in the Sox9 mutant trachea. TNF-α and IFN-γ interfered with the differentiation of tracheal epithelial progenitor cells into mature epithelial cell types in vitro. Mesenchymal knockout of Tgf-β1 in vivo resulted in altered differentiation of the tracheal epithelium. Finally, mitochondrial enzymes involved in fat and glycogen metabolism, cytochrome c oxidase subunit VIIIb (Cox8b) and cytochrome c oxidase subunit VIIa polypeptide 1 (Cox7a1), were strongly upregulated in the Sox9 mutant trachea, resulting in increases in the number and size of glycogen storage vacuoles. Our results support a role for tracheal cartilage in modulation of the differentiation and metabolism and the expression of inflammatory-related genes in the tracheal epithelium by feeding into the TNF-α, IFN-γ, and TGF-β signaling pathways.
Collapse
Affiliation(s)
- Gianluca Turcatel
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California;
| | - Katelyn Millette
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Matthew Thornton
- Keck School of Medicine, University of Southern California, Department of Obstetrics and Gynecology, Maternal-Fetal Medicine Division, Los Angeles, California
| | | | - Brendan Grubbs
- Keck School of Medicine, University of Southern California, Department of Obstetrics and Gynecology, Maternal-Fetal Medicine Division, Los Angeles, California
| | - Wei Shi
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, and Keck School of Medicine, Ostrow School of Dentistry, University of Southern California, Los Angeles, California
| | - David Warburton
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, and Keck School of Medicine, Ostrow School of Dentistry, University of Southern California, Los Angeles, California
| |
Collapse
|
24
|
Xiao P, Ling H, Lan G, Liu J, Hu H, Yang R. Trefoil factors: Gastrointestinal-specific proteins associated with gastric cancer. Clin Chim Acta 2015; 450:127-34. [PMID: 26265233 DOI: 10.1016/j.cca.2015.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 12/11/2022]
Abstract
Trefoil factor family (TFF), composed of TFF1, TFF2, and TFF3, is a cluster of secreted peptides characterized by trefoil domain (s) and C-terminal dimerization domain. TFF1, a gastric tumor suppressor, is a single trefoil peptide originally detected in breast cancer cell lines but expressed mainly in the stomach; TFF2, a candidate of gastric cancer suppressor with two trefoil domains, is abundant in the stomach and duodenal Brunner's glands; and TFF3 is another single trefoil peptide expressed throughout the intestine which can promote the development of gastric carcinoma. According to multiple studies, TFFs play a regulatory function in the mammals' digestive system, namely in mucosal protection and epithelial cell reconstruction, tumor suppression or promotion, signal transduction and the regulation of proliferation and apoptosis. Action mechanisms of TFFs remain unresolved, but the recent demonstration of a GKN (gastrokine) 2-TFF1 heterodimer implicates structural and functional interplay with gastrokines. This review aims to encapsulate the structural and biological characteristics of TFF.
Collapse
Affiliation(s)
- Ping Xiao
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| | - Hui Ling
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China.
| | - Gang Lan
- Key Laboratory for Atherosclerology of Hunan Province, Cardiovascular Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Jiao Liu
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| | - Haobin Hu
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| | - Ruirui Yang
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| |
Collapse
|
25
|
Jin EH, Lee SI, Kim J, Seo EY, Lee SY, Hur GM, Shin S, Hong JH. Association between Promoter Polymorphisms of TFF1, TFF2, and TFF3 and the Risk of Gastric and Diffuse Gastric Cancers in a Korean Population. J Korean Med Sci 2015; 30:1035-41. [PMID: 26240479 PMCID: PMC4520932 DOI: 10.3346/jkms.2015.30.8.1035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/17/2015] [Indexed: 01/26/2023] Open
Abstract
Gastric cancer is one of the most common cancers in the world. The aims of this study were to evaluate the association between polymorphisms in TFF gene family, TFF1, TFF2, and TFF3 and the risk of gastric cancer (GC) and GC subgroups in a Korean population via a case-control study. The eight polymorphisms in TFF gene family were identified by sequencing and genotyped with 377 GC patients and 396 controls by using TaqMan genotyping assay. The rs184432 TT genotype of TFF1 was significantly associated with a reduced risk of GC (odds ratio, [OR) = 0.45; 95% confidence interval, [CI] = 0.25-0.82; P = 0.009), more protective against diffuse-type GC (OR = 0.20; 95% CI = 0.05-0.89; P = 0.035) than GC (OR = 0.34; 95% CI = 0.14-0.82; P = 0.017) in subjects aged < 60 yr, and correlated with lymph node metastasis negative GC and diffuse-type GC (OR = 0.44; 95% CI = 0.23-0.86; P = 0.016 and OR = 0.20; 95% CI = 0.05-0.87; P = 0.031, respectively). In addition, a decreased risk of lymph node metastasis negative GC and diffuse-type GC was observed for rs225359 TT genotype of TFF1 (OR = 0.46, 95% CI = 0.24-0.88; P = 0.020 and OR = 0.21, 95% CI = 0.05-0.88; P = 0.033, respectively). These findings suggest that the rs184432 and rs225359 polymorphisms in TFF1 have protective effects for GC and contribute to the development of GC in Korean individuals.
Collapse
Affiliation(s)
- Eun-Heui Jin
- Clinical Trials Center, Chungnam National University Hospital, Daejeon, Korea
| | - Sang-Il Lee
- Department of Surgery, Chungnam National University Hospital, Daejeon, Korea
| | - JaeWoo Kim
- Clinical Trials Center, Chungnam National University Hospital, Daejeon, Korea
| | - Eun Young Seo
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | - Su Yel Lee
- National Biobank of Korea, Chungnam National University Hospital, Daejeon, Korea
| | - Gang Min Hur
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Sanghee Shin
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jang Hee Hong
- Clinical Trials Center, Chungnam National University Hospital, Daejeon, Korea
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
26
|
Wang XN, Wang SJ, Pandey V, Chen P, Li Q, Wu ZS, Wu Q, Lobie PE. Trefoil factor 3 as a novel biomarker to distinguish between adenocarcinoma and squamous cell carcinoma. Medicine (Baltimore) 2015; 94:e860. [PMID: 25997063 PMCID: PMC4602872 DOI: 10.1097/md.0000000000000860] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In carcinoma, such as of the lung, the histological subtype is important to select an appropriate therapeutic strategy for patients. However, carcinomas with poor differentiation cannot always be distinguished on the basis of morphology alone nor on clinical findings. Hence, delineation of poorly differentiated adenocarcinoma and squamous cell carcinoma, the 2 most common epithelial-origin carcinomas, is pivotal for selection of optimum therapy. Herein, we explored the potential utility of trefoil factor 3 (TFF3) as a biomarker for primary lung adenocarcinoma and extrapulmonary adenocarcinomas derived from different organs. We observed that 90.9% of lung adenocarcinomas were TFF3-positive, whereas no expression of TFF3 was observed in squamous cell carcinomas. The subtype of lung carcinoma was confirmed by four established biomarkers, cytokeratin 7 and thyroid transcription factor 1 for adenocarcinoma and P63 and cytokeratin 5/6 for squamous cell carcinoma. Furthermore, expression of TFF3 mRNA was observed by quantitative PCR in all of 11 human lung adenocarcinoma cell lines and highly correlated with markers of the adenocarcinomatous lineage. In contrast, little or no expression of TFF3 was observed in 4 lung squamous cell carcinoma cell lines. By use of forced expression, or siRNA-mediated depletion of TFF3, we determined that TFF3 appeared to maintain rather than promote glandular differentiation of lung carcinoma cells. In addition, TFF3 expression was also determined in adenocarcinomas from colorectum, stomach, cervix, esophagus, and larynx. Among all these extrapulmonary carcinomas, 93.7% of adenocarcinomas exhibited TFF3 positivity, whereas only 2.9% of squamous cell carcinomas were TFF3-positive. Totally, 92.9% of both pulmonary and extrapulmonary adenocarcinomas exhibited TFF3 positivity, whereas only 1.5% of squamous cell carcinomas were TFF3-positive. In conclusion, TFF3 is preferentially expressed in adenocarcinoma and may function as an additional biomarker for distinguishing adenocarcinoma from squamous cell carcinoma.
Collapse
Affiliation(s)
- Xiao-Nan Wang
- From the Department of Pathology (X-NW, S-JW, PC, QL, Z-SW, QW); Laboratory of Pathogenic Microbiology and Immunology, Anhui Medical University, Hefei, Anhui, People's Republic of China (X-NW); Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore (VP, PEL); and National Cancer Institute of Singapore, National University Health System, Singapore (PEL). These authors contributed equally to this work
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Morito K, Nakamura J, Kitajima Y, Kai K, Tanaka T, Kubo H, Miyake S, Noshiro H. The value of trefoil factor 3 expression in predicting the long‑term outcome and early recurrence of colorectal cancer. Int J Oncol 2015; 46:563-568. [PMID: 25405728 DOI: 10.3892/ijo.2014.2755] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/16/2014] [Indexed: 02/05/2023] Open
Abstract
The trefoil factor (TFF) family comprises three thermo-stable and protease-resistant proteins (TFF1, TFF2 and TFF3) and plays an essential role in gastrointestinal mucosa protection and regeneration, and TFFs have recently been found to be involved in the development and progression of various types of cancer. However, the clinical significance of TFFs in colorectal cancer (CRC) patients remains unclear. The present study determined the relationship between TFF expression and clinicopathological findings, as well as long-term outcome in CRC patients. The mRNA expression levels of TFFs were examined in the excised CRC specimens obtained from 154 consecutive CRC patients who underwent surgical resection between 2005 and 2007 at our institution. TFF3 expression was significantly associated with the presence of distant metastasis (p=0.017), although neither TFF1 nor TFF2 expression was associated with the clinicopathological features. Survival rate of the patients with positive TFF3 was significantly worse compared to those with negative TFF3 (p=0.011). A multivariate analysis revealed that the expression of TFF3, lymph node metastasis, and vascular invasion were independent prognostic factors for disease-specific survival. Furthermore, among 134 patients with no clinical findings of metastasis at surgery, the patients with positive TFF3 experienced recurrence within one year more frequently than those with negative TFF3 (p=0.039). In conclusion, TFF3 is not only a useful biomarker for a long-term surgical result in CRC patient, but also may be a risk factor of early recurrence.
Collapse
Affiliation(s)
- Kiyoto Morito
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Jun Nakamura
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Yoshihiko Kitajima
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Keita Kai
- Department of Pathology and Microbiology, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Tomokazu Tanaka
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Hiroshi Kubo
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Shuusuke Miyake
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Hirokazu Noshiro
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| |
Collapse
|
28
|
Huang JX, Blaskovich MA, Cooper MA. Cell- and biomarker-based assays for predicting nephrotoxicity. Expert Opin Drug Metab Toxicol 2014; 10:1621-35. [DOI: 10.1517/17425255.2014.967681] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Sun Z, Liu H, Yang Z, Shao D, Zhang W, Ren Y, Sun B, Lin J, Xu M, Nie S. Intestinal trefoil factor activates the PI3K/Akt signaling pathway to protect gastric mucosal epithelium from damage. Int J Oncol 2014; 45:1123-32. [PMID: 24990304 DOI: 10.3892/ijo.2014.2527] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/16/2014] [Indexed: 01/22/2023] Open
Abstract
Intestinal trefoil factor (ITF, also named as trefoil factor 3, TFF3) is a member of the TFF-domain peptide family, which plays an essential role in the regulation of cell survival, cell migration and maintains mucosal epithelial integrity in the gastrointestinal tract. However, the underlying mechanisms and associated molecules remain unclear. The aim of this study was to explore the protective effects of ITF on gastric mucosal epithelium injury and its possible molecular mechanisms of action. In the present study, we show that ITF was able to promote the proliferation and migration of GES-1 cells via a mechanism that involves the PI3K/Akt signaling pathway. Western blot results indicated that ITF induced a dose- and time-dependent increase in the Akt signaling pathway. ITF also plays an essential role in the restitution of GES-1 cell damage induced by lipopolysaccharide (LPS). LPS induced the apoptosis of GES-1 cells, decreased cell viability significantly (P<0.01) and led to epithelial tight junction damage, which is attenuated via ITF treatment. The protective effect of ITF on the integrity of GES-1 was abrogated by inhibition of the PI3K/Akt pathway. Taken together, our results demonstrate that ITF promotes the proliferation and migration of gastric mucosal epithelial cells and preserves gastric mucosal epithelial integrity after damage is mediated by activation of the PI3K/Akt signaling pathway. This study suggested that the PI3K/Akt pathway could act as a key intracellular pathway in the gastric mucosal epithelium that may serve as a therapeutic target to preserve epithelial integrity during injury.
Collapse
Affiliation(s)
- Zhaorui Sun
- Department of Emergency, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P.R. China
| | - Hongmei Liu
- Department of Emergency, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P.R. China
| | - Zhizhou Yang
- Department of Emergency, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P.R. China
| | - Danbing Shao
- Department of Emergency, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P.R. China
| | - Wei Zhang
- Department of Emergency, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P.R. China
| | - Yi Ren
- Department of Emergency, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P.R. China
| | - Baodi Sun
- Department of Emergency, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P.R. China
| | - Jinfeng Lin
- Department of Emergency, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P.R. China
| | - Min Xu
- Department of Emergency, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P.R. China
| | - Shinan Nie
- Department of Emergency, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P.R. China
| |
Collapse
|
30
|
Xiao L, Liu YP, Xiao CX, Ren JL, Guleng B. Serum TFF3 may be a pharamcodynamic marker of responses to chemotherapy in gastrointestinal cancers. BMC Clin Pathol 2014; 14:26. [PMID: 25031551 PMCID: PMC4099389 DOI: 10.1186/1472-6890-14-26] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 06/10/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND As a secreted protein, serum trefoil factor 3 (TFF3) has been reported to be a biomarker of several malignancies. We further investigated whether TFF3 can be applied as a biomarker for and predictor of responses to chemotherapy in gastrointestinal cancer. METHODS Serum and urine samples were collected from 90 patients with gastric cancer, 128 patients with colorectal cancer and 91 healthy individuals. Serum and urine TFF3 levels were measured using an ELISA. RESULTS Serum and urine TFF3 levels were significantly higher in the patients with gastric and colorectal cancer compared with the healthy individuals (P < 0.05). Higher serum levels of TFF3 were significantly correlated with distant metastasis and an advanced stage in the two types of cancer (P < 0.05). Age and the number of lymph node metastases were significantly correlated with serum TFF3 levels in colorectal cancer, and decreased serum TFF3 levels were significantly correlated with responses to chemotherapy in both the gastric and the colorectal cancer partial response (PR) groups. A combination of serum and urine data did not significantly improve the detection of either cancer, although urine levels have shown a significant negative relationship with the glomerular filtration rate (GFR). CONCLUSIONS Our data indicate that TFF3 may be an effective biomarker of tumor stage and the presence of distant metastasis, and may be a pharmacodynamic marker of response to chemotherapy in gastrointestinal cancer.
Collapse
Affiliation(s)
- Li Xiao
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, 201 Hubin South Road, Xiamen 361004, Fujian Province, China
| | - Yun-Peng Liu
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, 201 Hubin South Road, Xiamen 361004, Fujian Province, China
| | - Chuan-Xing Xiao
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, 201 Hubin South Road, Xiamen 361004, Fujian Province, China
| | - Jian-Lin Ren
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, 201 Hubin South Road, Xiamen 361004, Fujian Province, China
| | - Bayasi Guleng
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, 201 Hubin South Road, Xiamen 361004, Fujian Province, China.,Faculty of Clinical Medicine, Medical College of Xiamen University, Xiangan South Road, Xiangan District, Xiamen 361102, Fujian Province, China
| |
Collapse
|
31
|
Huang Z, Zhang X, Lu H, Wu L, Wang D, Zhang Q, Ding H. Serum trefoil factor 3 is a promising non-invasive biomarker for gastric cancer screening: a monocentric cohort study in China. BMC Gastroenterol 2014; 14:74. [PMID: 24720760 PMCID: PMC4012276 DOI: 10.1186/1471-230x-14-74] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/24/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The search for better non-invasive biomarkers for gastric cancer remains ongoing. We investigated the predictive power of serum trefoil factor (TFF) levels as biomarkers for gastric cancer in comparison with the pepsinogen (PG) test. METHODS Patients with gastric cancer, chronic atrophic gastritis (CAG) or chronic non-atrophic gastritis (CNAG), and healthy people were recruited. Serum concentrations of TFFs, PG I, and PG II, as well as the presence of antibodies against Helicobacter pylori, were measured by enzyme-linked immunosorbent assays (ELISA). Receiver operating characteristics (ROC) were used to compare the predictive powers of the selected factors. RESULTS The serum concentrations of TFF1, TFF2, and TFF3 in the control groups were significantly lower than those in the gastric cancer group with the exception of TFF2 which was elevated in CAG. The area under the ROC curve for TFF3 was greater than that for the PG I/II ratio (0.81 vs 0.78). TFF3 also had a significantly higher predictive power for distinguishing gastric cancer than the PG test (odds ratio: 10.33 vs 2.57). Moreover, combining the serum TFF3 and PG tests for gastric cancer had better predictive power than either alone. CONCLUSIONS Serum TFF3 may be a better predictor of gastric cancer than the PG test, while the combined testing of serum PG and TFF3 could further improve the efficacy of gastric cancer screening.
Collapse
Affiliation(s)
- Zhigang Huang
- Department of Gastroenterology, Lihuili Hospital of Ningbo Medical Center, 57# Xingning Road, Ningbo 315000, China.
| | | | | | | | | | | | | |
Collapse
|
32
|
O'Seaghdha CM, Hwang SJ, Larson MG, Meigs JB, Vasan RS, Fox CS. Analysis of a urinary biomarker panel for incident kidney disease and clinical outcomes. J Am Soc Nephrol 2013; 24:1880-8. [PMID: 23990678 DOI: 10.1681/asn.2013010019] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Whether novel biomarkers improve the assessment of incident kidney disease and related adverse outcomes remains to be tested in longitudinal observational studies. We tested 14 urinary biomarkers for association with incident kidney, cardiovascular, and mortality outcomes in 2948 Framingham Heart Study participants. Baseline examinations were performed between 1995 and 1998; mean follow-up was 10.1 years for renal outcomes and 11.2 years for survival analyses. Primary outcomes were incident CKD, incident albuminuria, incident cardiovascular disease, and all-cause mortality. Secondary analyses assessed incident congestive heart failure (CHF) and mortality with coexistent kidney disease. Biomarkers were tested for association with renal end points using logistic regression and incident cardiovascular and mortality outcomes in proportional hazards models; α1-microglobulin, Kim-1, and TFF-3 predicted all-cause mortality (hazard ratio per SD increase in log-transformed biomarker [HR] range, 1.15 to 1.21; 95% confidence interval [CI] range, 1.04 to 1.34; P values=0.007 to <0.001), whereas α1-microglobulin, β2-microglobulin, KIM-1, and TFF-3 associated with death with coexistent kidney disease (HR range, 1.72-2.25; 95% CI, 1.17 to 3.24; P values<0.01). KIM-1 also associated with the risk of incident CHF (HR, 1.32; 95% CI, 1.07 to 1.63; P=0.008). CTGF associated nominally with CKD (HR, 0.83; 95% CI, 0.71 to 0.98; P=0.03), but no other biomarkers associated with incident CKD or albuminuria. Addition of α1-microglobulin and TFF-3 resulted in a nonsignificant net reclassification index (NRI) of 3% for all-cause mortality beyond clinical risk factors. In conclusion, components of a panel of 14 subclinical biomarkers of kidney injury were associated with important clinical outcomes and merit additional investigation.
Collapse
Affiliation(s)
- Conall M O'Seaghdha
- National Heart, Lung and Blood Institute's Framingham Heart Study, Framingham, Massachusetts
| | | | | | | | | | | |
Collapse
|
33
|
Zheng Q, Gao J, Li H, Guo W, Mao Q, Gao E, Zhu YQ. Trefoil factor 3 peptide regulates migration via a Twist-dependent pathway in gastric cell. Biochem Biophys Res Commun 2013; 438:6-12. [PMID: 23845905 DOI: 10.1016/j.bbrc.2013.06.115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 06/29/2013] [Indexed: 12/22/2022]
Abstract
Trefoil factor 3 (TFF3) is a member of the TFF-domain peptide family and essential in regulating cell migration and maintaining mucosal integrity in gastrointestinal tract. However, the role of TFF3 and its downstream regulating mechanisms in cancer cell migration remain unclear. We previously reported that TFF3 prolonged the up-regulation of Twist protein to modulate IL-8 secretion in intestinal epithelial cells. In this study, we investigated the role of Twist protein in TFF3-induced migration of SGC7901 cells. While Twist was activated by TFF3, siRNA-mediated knockdown of Twist abolished TFF3-induced cell migration. Furthermore, the migration related marker CK-8 as well as ZO-1 and MMP-9 was also regulated by TFF3 via a Twist-dependent mechanism. Our study suggests that Twist, as an important potential downstream effector, plays a key role in TFF3-modulated metastasis in gastric cancer and can be a promising therapeutic target against intestinal-type gastric cancer.
Collapse
Affiliation(s)
- Qianqian Zheng
- Division of Cell Pathobiology, Key Laboratory of Medical Cell Biology, Ministry of Education, Department of Cell Biology, College of Basic Medical Science, China Medical University, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Samson MH. Quantitative measurements of trefoil factor family peptides: possibilities and pitfalls. Scandinavian Journal of Clinical and Laboratory Investigation 2013; 73:193-202. [PMID: 23391285 DOI: 10.3109/00365513.2013.765962] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The trefoil factor family (TFF) peptides TFF1, TFF2, and TFF3 are produced and secreted by mucous membranes throughout the body. Their importance for the protection and repair of epithelial surfaces is well established, and the three peptides are present in various amounts in mucosal secretions as well as in the circulation. They have been linked to both inflammatory diseases and to various types of cancer, and serum concentrations of TFF3 show a more than 47-fold increase during pregnancy. Several both commercial and in-house immunoassays exist, but a number of methodological issues remain unresolved. This review describes methodological challenges in the measurement of the peptides in humans, and summarizes current knowledge concerning the occurrence and possible significance of the peptides in human health and disease.
Collapse
|
35
|
Im S, Yoo C, Jung JH, Choi HJ, Yoo J, Kang CS. Reduced expression of TFF1 and increased expression of TFF3 in gastric cancer: correlation with clinicopathological parameters and prognosis. Int J Med Sci 2013; 10:133-40. [PMID: 23329884 PMCID: PMC3547210 DOI: 10.7150/ijms.5500] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 12/26/2012] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES The trefoil factor family (TFF) is composed of three thermostable, and protease-resistant proteins, named TFF1, TFF2 and TFF3, and plays a role in gastrointestinal mucosal defence and repair. Recently, TFFs have been found to be related to the development of various types of cancer. This study assessed the relationship between the expression of TFF1 and TFF3 and the clinicopathological parameters in gastric carcinoma (GC). MATERIALS AND METHODS The expression of TFF1 and TFF3 was analyzed by immunohistochemistry in 292 GCs and 20 normal gastric tissues. RESULTS All normal gastric tissues expressed TFF1, but 53.8% of GCs showed reduced TFF1 expression. However, TFF3 was not detected in normal gastric tissues and 44.2% of GCs showed a high level of expression. Highly expressed TFF3 was significantly correlated with lymph node metastasis, lymphatic invasion, vein invasion, and advanced stage. The overall survival was shorter in patients with high expression of TFF3 than in those with low expression of TFF3 in 292 GCs and in 125 early GCs (EGCs). Moreover, in patients with EGCs, high expression of TFF3, associated with reduced expression of TFF1, was determined as an independent poor prognostic marker. CONCLUSIONS Reduced expression of TFF1 and increased expression of TFF3 may play a role in the carcinogenesis of gastric cancer. Furthermore, high expression of TFF3 with reduced expression of TFF1 may be a marker of poor prognosis for patients with EGC.
Collapse
Affiliation(s)
- Soyoung Im
- Department of Hospital Pathology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea
| | | | | | | | | | | |
Collapse
|