1
|
Yazdanimoghaddam F, Rezazadeh H, Soltani N, Mehranfard N, Dastgerdi AH, Rad MG, Ghasemi M. Long-term GABA Supplementation Regulates Diabetic Gastroenteropathy through GABA Receptor/trypsin-1/PARs/Akt/COX-2 Axis. DOKL BIOCHEM BIOPHYS 2024; 518:452-462. [PMID: 39196532 DOI: 10.1134/s1607672924600386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 08/29/2024]
Abstract
AIM Molecular alterations of diabetic gastroenteropathy are poorly identified. This study investigates the effects of prolonged GABA supplementation on key protein expression levels of trypsin-1, PAR-1, PAR-2, PAR-3, PI3K, Akt, COX-2, GABAA, and GABAB receptors in the gastric tissue of type 2 diabetic rats (T2DM). METHOD To induce T2DM, a 3-month high-fat diet and 35 mg/kg of streptozotocin was used. Twenty-four male Wistar rats were divided into 4 groups: (1) control, (2) T2DM, (3) insulin-treated (2.5 U/kg), and (4) GABA-treated (1.5 g/kg GABA). Blood glucose was measured weekly. The protein expressions were assessed using western blotting. Histopathological changes were examined by H&E and Masson's staining. RESULTS Diabetic rats show reduced NOS1 and elevated COX-2 and trypsin-1 protein expression levels in gastric tissue. Insulin and GABA therapy restored the NOS1 and COX-2 levels to control values. Insulin treatment increased PI3K, Akt, and p-Akt and, decreased trypsin-1, PAR-1, PAR-2, and PAR-3 levels in the diabetic rats. Levels of GABAA and GABAB receptors normalized following insulin and GABA therapy. H&E staining indicated an increase in mucin secretion following GABA treatment. CONCLUSION These results suggest that GABA by acting on GABA receptors may regulate the trypsin-1/PARs/Akt/COX-2 pathway and thereby improve complications of diabetic gastroenteropathy.
Collapse
Affiliation(s)
- Farzaneh Yazdanimoghaddam
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, 4631-19395, Tehran, Iran
| | - Hossein Rezazadeh
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nepton Soltani
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Mehranfard
- Nanokadeh Darooee Samen, Private Joint Stock Company, 5715793731, Urmia, Iran
| | | | - Mahtab Ghanbari Rad
- Gerash Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
An Update of G-Protein-Coupled Receptor Signaling and Its Deregulation in Gastric Carcinogenesis. Cancers (Basel) 2023; 15:cancers15030736. [PMID: 36765694 PMCID: PMC9913146 DOI: 10.3390/cancers15030736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) belong to a cell surface receptor superfamily responding to a wide range of external signals. The binding of extracellular ligands to GPCRs activates a heterotrimeric G protein and triggers the production of numerous secondary messengers, which transduce the extracellular signals into cellular responses. GPCR signaling is crucial and imperative for maintaining normal tissue homeostasis. High-throughput sequencing analyses revealed the occurrence of the genetic aberrations of GPCRs and G proteins in multiple malignancies. The altered GPCRs/G proteins serve as valuable biomarkers for early diagnosis, prognostic prediction, and pharmacological targets. Furthermore, the dysregulation of GPCR signaling contributes to tumor initiation and development. In this review, we have summarized the research progress of GPCRs and highlighted their mechanisms in gastric cancer (GC). The aberrant activation of GPCRs promotes GC cell proliferation and metastasis, remodels the tumor microenvironment, and boosts immune escape. Through deep investigation, novel therapeutic strategies for targeting GPCR activation have been developed, and the final aim is to eliminate GPCR-driven gastric carcinogenesis.
Collapse
|
3
|
Song D, Zhang Q, Zhang H, Zhan L, Sun X. MiR-130b-3p promotes colorectal cancer progression by targeting CHD9. Cell Cycle 2022; 21:585-601. [PMID: 35100082 PMCID: PMC8942501 DOI: 10.1080/15384101.2022.2029240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Previous research revealed that microRNA 130b-3p (miR-130b-3p) significantly upregulated in CRC patients can be detected in feces from patients with such a neoplasm. In this study, the biological role and molecular mechanism of miR-130b-3p in CRC were explored. The miR-130b-3p level in CRC tissues, feces and cell lines was measured using RT-qPCR analysis. CCK-8, EdU, TUNEL, flow cytometry, Western blotting, and in vivo experiments were performed to explore the biological function of miR-130b-3p in CRC progression. For this purpose, 16 BALB/c nude mice were assigned to two groups. The experiment lasted for four months. Bioinformatics analysis and luciferase reporter assay were used to investigate the regulatory mechanism related to miR-130b-3p. In our research, miR-130b-3p was upregulated in CRC tissues and cells and it was detected in feces from CRC patients. Moreover, miR-130b-3p inhibition suppressed CRC cell proliferation and promoted cell apoptosis in vitro as well as repressed CRC tumor growth in vivo. Mechanistically, miR-130b-3p directly targeted the 3'untranslated region (UTR) of chromodomain helicase DNA binding protein 9 (CHD9) and negatively regulated CHD9 expression. Furthermore, CHD9 played an anti-oncogenic role in CRC. Inhibition of CHD9 expression was likely to be a key mechanism by which miR-130b-3p increased CRC cell growth, with a target protector experiment revealing miR-130b-3p influenced proliferation via direct inhibition of CHD9. MiR-130b-3p promotes the progression and tumorigenesis of CRC at least partially by targeting CHD9.Abbreviations: CRC: Colorectal cancer; miR-130b-3p: microRNA 130b-3p; CHD9: chromodomain helicase DNA binding protein 9; UTR: untranslated region; FIT: fecal immunochemical test; AAs: advanced adenomas.
Collapse
Affiliation(s)
- Dan Song
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu, China,Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China,Dan Song Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu, China
| | - Qian Zhang
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu, China
| | - Hao Zhang
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu, China
| | - Liangliang Zhan
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu, China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China,CONTACT Xinchen Sun Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Wang YJ, Yu SJ, Tsai JJ, Yu CH, Liao EC. Antagonism of Protease Activated Receptor-2 by GB88 Reduces Inflammation Triggered by Protease Allergen Tyr-p3. Front Immunol 2021; 12:557433. [PMID: 34566947 PMCID: PMC8456102 DOI: 10.3389/fimmu.2021.557433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/24/2021] [Indexed: 11/29/2022] Open
Abstract
The occurrence of allergic diseases induced by aeroallergens has increased in the past decades. Among inhalant allergens, mites remain the important causal agent of allergic diseases. Storage mites- Tyrophagus putrescentiae are found in stored products or domestic environments. Major allergen Tyr-p3 plays a significant role in triggering IgE-mediated hypersensitivity. However, its effects on pulmonary inflammation, internalization, and activation in human epithelium remain elusive. Protease-activated receptors (PARs) are activated upon cleavage by proteases. A549 cells were used as an epithelial model to examine the PAR activation by Tyr-p3 and therapeutic potential of PAR-2 antagonist (GB88) in allergic responses. Enzymatic properties and allergen localization of Tyr-p3 were performed. The release of inflammatory mediators, phosphorylation of mitogen-activated protein kinase (MAPK), and cell junction disruptions were evaluated after Tyr-p3 challenge. Enzymatic properties determined by substrate digestion and protease inhibitors indicated that Tyr-p3 processes a trypsin-like serine protease activity. The PAR-2 mRNA levels were significantly increased by nTyr-p3 but inhibited by protease inhibitors or GB88. Protease allergen of nTyr-p3 significantly increased the levels of pro-inflammatory cytokines (IL-6 and TNF-α), chemokine (IL-8), and IL-1β in epithelial cells. nTyr-p3 markedly increased phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and MAP kinase. When cells were pretreated with GB88 then added nTyr-p3, the phosphorylated ERK1/2 did not inhibit by GB88. GB88 increased ERK1/2 phosphorylation in human epithelium cells. GB88 is able to block PAR-2-mediated calcium signaling which inhibits the nTyr-p3-induced Ca2+ release. Among the pharmacologic inhibitors, the most effective inhibitor of the nTyr-p3 in the induction of IL-8 or IL-1β levels was GB88 followed by SBTI, MAPK/ERK, ERK, and p38 inhibitors. Levels of inflammatory mediators, including GM-CSF, VEGF, COX-2, TSLP, and IL-33 were reduced by treatment of GB88 or SBTI. Further, GB88 treatment down-regulated the nTyr-p3-induced PAR-2 expression in allergic patients with asthma or rhinitis. Tight junction and adherens junction were disrupted in epithelial cells by nTyr-p3 exposure; however, this effect was avoided by GB88. Immunostaining with frozen sections of the mite body showed the presence of Tyr-p3 throughout the intestinal digestive system, especially in the hindgut around the excretion site. In conclusion, our findings suggest that Tyr-p3 from domestic mites leads to disruption of the airway epithelial barrier after inhalation. Proteolytic activity of Tyr-p3 causes the PAR-2 mRNA expression, thus leading to the release of numerous inflammatory mediators. Antagonism of PAR2 activity suggests GB88 as the therapeutic potential for anti-inflammation medicine, especially in allergy development triggered by protease allergens.
Collapse
Affiliation(s)
- Yun-Ju Wang
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Sheng-Jie Yu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jaw-Ji Tsai
- Division of Allergy, Immunology & Rheumatology, Department of Internal Medicine, Asia University Hospital, Taichung, Taiwan.,Division of Allergy, Immunology & Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ching-Hsiang Yu
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - En-Chih Liao
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
5
|
Wang H, Feng L, Cheng D, Zheng Y, Xie Y, Fu B. Circular RNA MAT2B promotes migration, invasion and epithelial-mesenchymal transition of non-small cell lung cancer cells by sponging miR-431. Cell Cycle 2021; 20:1617-1627. [PMID: 34288814 DOI: 10.1080/15384101.2021.1956106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Circular RNAs (circRNAs) have recently been described as key regulators in the progression of non-small cell lung cancer (NSCLC), and this study aimed to investigate the functional role of circMAT2B in NSCLC. CircMAT2B expression in NSCLC tissues and cell lines was investigated using RT-qPCR analysis. A series of functional experiments, including MTT assay, colony formation assay, wound healing assay and transwell assay, were carried out to investigate the effects of circMAT2B knockdown/overexpression on the malignant traits of NSCLC cells. Western blot analysis was performed to detect the expression of EMT-related proteins. Dual-luciferase reporter assay and RIP assay were further carried out to analyze the interaction between circMAT2B and miR-431 in NSCLC. We observed that circMAT2B was overexpressed in NSCLC tissues and cell lines, and high expression of circMAT2B was closely associated with large tumor size, advanced TNM stage and poor prognosis of NSCLC patients. Further functional experiments showed that circMAT2B knockdown markedly inhibited the proliferation, migration, invasion and EMT of NSCLC cells, whereas circMAT2B overexpression led to the opposing results. Mechanistically, circMAT2B could directly interact with miR-431, and subsequently decrease miR-431 expression in NSCLC. The effects of circMAT2B overexpression in NSCLC cells were abrogated by miR-431 restoration. Our findings revealed the novel oncogenic roles of circMAT2B in NSCLC by sponging miR-431.
Collapse
Affiliation(s)
- Hui Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Respiratory and Critical Care Medicine, Chengdu First People's Hospital, Chengdu, China
| | - Li Feng
- Department of Radiology, Chengdu First People's Hospital, Chengdu, China
| | - Deyun Cheng
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqiong Zheng
- Department of Respiratory and Critical Care Medicine, Chengdu First People's Hospital, Chengdu, China
| | - Yimin Xie
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bing Fu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Shi K, Qu L, Lin X, Xie Y, Tu J, Liu X, Zhou Z, Cao G, Li S, Liu Y. Deep-Fried Atractylodis Rhizoma Protects against Spleen Deficiency-Induced Diarrhea through Regulating Intestinal Inflammatory Response and Gut Microbiota. Int J Mol Sci 2019; 21:124. [PMID: 31878055 PMCID: PMC6981650 DOI: 10.3390/ijms21010124] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
According to the theories of traditional Chinese medicine, spleen deficiency often leads to diarrhea, and deep-fried Atractylodis Rhizoma (DAR) is commonly used for the treatment. However, the association between spleen deficiency and diarrhea remains unclear. The present study aimed to investigate the therapeutic effect of DAR for the treatment of diarrhea caused by spleen deficiency and analyze the related mechanisms. It was found that a high dose group of an ethanolic extract of deep-fried Atractylodis Rhizoma (EEDAR-H) significantly inhibited weight loss, diarrhea, and pathological changes in colon tissue induced by rhubarb. EEDAR-H was found to significantly reduce the level of intestinal inflammatory cytokines and increase the expression of gastrointestinal motility hormones. In addition, EEDAR-H significantly increased the expression of aquaporin 3 (AQP3) and aquaporin 8 (AQP8) and restored abnormal water metabolism; Shen-Ling-Bai-Zhu-San (SLBZS) induced the same effect as EEDAR-H. Additional tests on the mechanism found that EEDAR-H and SLBZS promoted the integrity of the intestinal barrier. Both significantly increased the expression of the tight junction protein ZO-1 and Occludin, inhibited the phosphorylation of p38MAPK and MLC, and significantly reduced the expression levels of PAR-2. Analysis of the gut microbiota indicated that overall changes in its structure were reversed after treatment with EEDAR-H or SLBZS, in addition to significant modulation of the abundance of different phyla. At the genus level, EEDAR-H or SLBZS significantly reduced the levels of potential pathogens and increased those of beneficial bacteria.
Collapse
Affiliation(s)
- Kun Shi
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (K.S.); (L.Q.); (X.L.); (Y.X.); (J.T.); (X.L.); (Z.Z.); (G.C.); (S.L.)
| | - Linghang Qu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (K.S.); (L.Q.); (X.L.); (Y.X.); (J.T.); (X.L.); (Z.Z.); (G.C.); (S.L.)
| | - Xiong Lin
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (K.S.); (L.Q.); (X.L.); (Y.X.); (J.T.); (X.L.); (Z.Z.); (G.C.); (S.L.)
| | - Ying Xie
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (K.S.); (L.Q.); (X.L.); (Y.X.); (J.T.); (X.L.); (Z.Z.); (G.C.); (S.L.)
| | - Jiyuan Tu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (K.S.); (L.Q.); (X.L.); (Y.X.); (J.T.); (X.L.); (Z.Z.); (G.C.); (S.L.)
- Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China
| | - Xianqiong Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (K.S.); (L.Q.); (X.L.); (Y.X.); (J.T.); (X.L.); (Z.Z.); (G.C.); (S.L.)
- Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China
| | - Zhongshi Zhou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (K.S.); (L.Q.); (X.L.); (Y.X.); (J.T.); (X.L.); (Z.Z.); (G.C.); (S.L.)
- Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China
| | - Guosheng Cao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (K.S.); (L.Q.); (X.L.); (Y.X.); (J.T.); (X.L.); (Z.Z.); (G.C.); (S.L.)
- Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China
| | - Shuiqing Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (K.S.); (L.Q.); (X.L.); (Y.X.); (J.T.); (X.L.); (Z.Z.); (G.C.); (S.L.)
- Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China
| | - Yanju Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (K.S.); (L.Q.); (X.L.); (Y.X.); (J.T.); (X.L.); (Z.Z.); (G.C.); (S.L.)
- Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China
| |
Collapse
|
7
|
Sammarco G, Gadaleta CD, Zuccalà V, Albayrak E, Patruno R, Milella P, Sacco R, Ammendola M, Ranieri G. Tumor-Associated Macrophages and Mast Cells Positive to Tryptase Are Correlated with Angiogenesis in Surgically-Treated Gastric Cancer Patients. Int J Mol Sci 2018; 19:1176. [PMID: 29649166 PMCID: PMC5979483 DOI: 10.3390/ijms19041176] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022] Open
Abstract
Mast cells and macrophages can play a role in tumor angiogenesis by stimulating microvascular density (MVD). The density of mast cells positive to tryptase (MCDPT), tumor-associated macrophages (TAMs), and MVD were evaluated in a series of 86 gastric cancer (GC) tissue samples from patients who had undergone potential curative surgery. MCDPT, TAMs, and MVD were assessed in tumor tissue (TT) and in adjacent normal tissue (ANT) by immunohistochemistry and image analysis. Each of the above parameters was correlated with the others and, in particular for TT, with important clinico-pathological features. In TT, a significant correlation between MCDPT, TAMs, and MVD was found by Pearson t-test analysis (p ranged from 0.01 to 0.02). No correlation to the clinico-pathological features was found. A significant difference in terms of mean MCDPT, TAMs, and MVD between TT and ANT was found (p ranged from 0.001 to 0.002). Obtained data suggest MCDPT, TAMs, and MVD increased from ANT to TT. Interestingly, MCDPT and TAMs are linked in the tumor microenvironment and they play a role in GC angiogenesis in a synergistic manner. The assessment of the combination of MCDPT and TAMs could represent a surrogate marker of angiogenesis and could be evaluated as a target of novel anti-angiogenic therapies in GC patients.
Collapse
Affiliation(s)
- Giuseppe Sammarco
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University "Magna Graecia" Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy.
| | - Cosmo Damiano Gadaleta
- Interventional Oncology Unit with Integrated Section of Translational Medical Oncology National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", viale Orazio Flacco 65, 70124 Bari, Italy.
| | - Valeria Zuccalà
- Pathology Unit, "Pugliese-Ciaccio" Hospital, Viale Pio X, 88100 Catanzaro, Italy.
| | - Emre Albayrak
- Department of Medical Biochemistry, Gulhane Medical Faculty, Health Science University, Ankara 06010, Turkey.
| | - Rosa Patruno
- Chair of Pathology, Veterinary Medical School, University "Aldo Moro" of Bari, Via Casamassima, 70010 Bari, Italy.
| | - Pietro Milella
- Statistic and Epidemiology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", viale Orazio Flacco 65, 70124 Bari, Italy.
| | - Rosario Sacco
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University "Magna Graecia" Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy.
| | - Michele Ammendola
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University "Magna Graecia" Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy.
- Surgery Unit, National Cancer Research Centre Istituto Tumori ''Giovanni Paolo II'', 70124 Bari, Italy.
| | - Girolamo Ranieri
- Interventional Oncology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", viale Orazio Flacco 65, 70124 Bari, Italy.
| |
Collapse
|
8
|
Chao HH, Chen PY, Hao WR, Chiang WP, Cheng TH, Loh SH, Leung YM, Liu JC, Chen JJ, Sung LC. Lipopolysaccharide pretreatment increases protease-activated receptor-2 expression and monocyte chemoattractant protein-1 secretion in vascular endothelial cells. J Biomed Sci 2017; 24:85. [PMID: 29141644 PMCID: PMC5688698 DOI: 10.1186/s12929-017-0393-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 11/07/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND This study investigated whether lipopolysaccharide (LPS) increase protease-activated receptor-2 (PAR-2) expression and enhance the association between PAR-2 expression and chemokine production in human vascular endothelial cells (ECs). METHODS The morphology of ECs was observed through microphotography in cultured human umbilical vein ECs (EA. hy926 cells) treated with various LPS concentrations (0, 0.25, 0.5, 1, and 2 μg/mL) for 24 h, and cell viability was assessed using the MTT assay. Intracellular calcium imaging was performed to assess agonist (trypsin)-induced PAR-2 activity. Western blotting was used to explore the LPS-mediated signal transduction pathway and the expression of PAR-2 and adhesion molecule monocyte chemoattractant protein-1 (MCP-1) in ECs. RESULTS Trypsin stimulation increased intracellular calcium release in ECs. The calcium influx was augmented in cells pretreated with a high LPS concentration (1 μg/mL). After 24 h treatment of LPS, no changes in ECs viability or morphology were observed. Western blotting revealed that LPS increased PAR-2 expression and enhanced trypsin-induced extracellular signal-regulated kinase (ERK)/p38 phosphorylation and MCP-1 secretion. However, pretreatment with selective ERK (PD98059), p38 mitogen-activated protein kinase (MAPK) (SB203580) inhibitors, and the selective PAR-2 antagonist (FSLLRY-NH2) blocked the effects of LPS-activated PAR-2 on MCP-1 secretion. CONCLUSIONS Our findings provide the first evidence that the bacterial endotoxin LPS potentiates calcium mobilization and ERK/p38 MAPK pathway activation and leads to the secretion of the pro-inflammatory chemokine MCP-1 by inducing PAR-2 expression and its associated activity in vascular ECs. Therefore, PAR-2 exerts vascular inflammatory effects and plays an important role in bacterial infection-induced pathological responses.
Collapse
Affiliation(s)
- Hung-Hsing Chao
- Division of Cardiovascular Surgery, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, 111 Taiwan
- Department of Surgery, School of Medicine, Taipei Medical University, Taipei, 11031 Taiwan
| | - Po-Yuan Chen
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402 Taiwan
| | - Wen-Rui Hao
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Rd, Zhonghe District New Taipei City, 23561 Taiwan
| | - Wei-Ping Chiang
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Rd, Zhonghe District New Taipei City, 23561 Taiwan
| | - Tzu-Hurng Cheng
- Department of Biochemistry, School of Medicine, China Medical University, Taichung, 40402 Taiwan
- Department of Pharmacology & Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, 114 Taiwan
| | - Shih-Hurng Loh
- Department of Pharmacology & Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, 114 Taiwan
| | - Yuk-Man Leung
- Department of Physiology, School of Medicine, China Medical University, Taichung, 40402 Taiwan
| | - Ju-Chi Liu
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Rd, Zhonghe District New Taipei City, 23561 Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031 Taiwan
| | - Jin-Jer Chen
- Graduate Institute of Clinical Medicine, College of Medicine, China Medical University, Taichung, 40402 Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan
| | - Li-Chin Sung
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Rd, Zhonghe District New Taipei City, 23561 Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031 Taiwan
| |
Collapse
|
9
|
Ammendola M, Sacco R, Vescio G, Zuccalà V, Luposella M, Patruno R, Zizzo N, Gadaleta C, Marech I, Ruggieri R, Kocak IF, Ozgurtas T, Gadaleta CD, Sammarco G, Ranieri G. Tryptase mast cell density, protease-activated receptor-2 microvascular density, and classical microvascular density evaluation in gastric cancer patients undergoing surgery: possible translational relevance. Therap Adv Gastroenterol 2017; 10:353-360. [PMID: 28491140 PMCID: PMC5405880 DOI: 10.1177/1756283x16673981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mast cells (MCs) can stimulate angiogenesis, releasing several proangiogenic cytokines stored in their cytoplasm. In particular, MCs can release tryptase, a potent in vivo and in vitro proangiogenic factor via protease-activated receptor-2 (PAR-2) activation and mitogen-activated protein kinase (MAPK) phosphorylation. Nevertheless, no data are available concerning the relationship among tryptase MC density (TMCD), endothelial cells (ECs) positive to PAR-2 microvascular density (PAR-2-MVD) and classical MVD (C-MVD) in gastric cancer (GC) angiogenesis. METHODS In this study, we analyzed the correlation of TMCD, PAR-2-MVD, C-MVD with each other and with the main clinicopathological features in GC patients who underwent surgery. A series of 77 GC patients with stage T2-3N2-3M0 (classified by the American Joint Committee on Cancer for Gastric Cancer, 7th edition) were selected and then underwent surgery. RESULTS Tumour tissue samples were evaluated by mean of immunohistochemistry and image analysis methods in terms of numbers of TMCD, PAR-2-MVD and C-MVD. A significant correlation between the TMCD, PAR-2-MVD and C-MVD groups with each other was found by Pearson t-test analysis (r ranged from 0.64 to 0.76; p value ranged from 0.02 to 0.03). There was no other significant correlation between the above parameters and clinicopathological features. CONCLUSIONS Our in vivo preliminary data suggest that TMCD and PAR-2-MVD may play a role in GC angiogenesis and they could be further evaluated as a target of antiangiogenic therapy.
Collapse
Affiliation(s)
- Michele Ammendola
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University of Catanzaro ‘Magna Graecia’ Medical School, Viale Europa – Germaneto, 88100, Catanzaro, Italy
| | - Rosario Sacco
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University of Catanzaro ‘Magna Graecia’ Medical School, Catanzaro, Italy
| | - Giuseppina Vescio
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University of Catanzaro ‘Magna Graecia’ Medical School, Catanzaro, Italy
| | - Valeria Zuccalà
- Health Science Department, Pathology Unit, University of Catanzaro ‘Magna Graecia’ Medical School, Catanzaro, Italy
| | - Maria Luposella
- Cardiovascular Disease Unit, ‘San Giovanni di Dio’ Hospital, Crotone, Italy
| | - Rosa Patruno
- Chair of Pathology, University ‘Aldo Moro’ Veterinary Medical School, Bari, Italy
| | - Nicola Zizzo
- Chair of Pathology, University ‘Aldo Moro’ Veterinary Medical School, Bari, Italy
| | - Claudia Gadaleta
- Chair of Pathology, University ‘Aldo Moro’ Veterinary Medical School, Bari, Italy
| | - Ilaria Marech
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, ‘Giovanni Paolo II’, Bari, Italy
| | - Roberta Ruggieri
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, ‘Giovanni Paolo II’, Bari, Italy
| | - Ibrahim Furkan Kocak
- Department of Biochemistry, Gulhane Military Medical Academy Etlik, Ankara, Turkey
| | - Taner Ozgurtas
- Department of Biochemistry, Gulhane Military Medical Academy Etlik, Ankara, Turkey
| | - Cosmo Damiano Gadaleta
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, ‘Giovanni Paolo II’, Bari, Italy
| | - Giuseppe Sammarco
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University of Catanzaro ‘Magna Graecia’ Medical School, Catanzaro, Italy
| | - Girolamo Ranieri
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, ‘Giovanni Paolo II’, Bari, Italy
| |
Collapse
|
10
|
Chanakira A, Westmark PR, Ong IM, Sheehan JP. Tissue factor-factor VIIa complex triggers protease activated receptor 2-dependent growth factor release and migration in ovarian cancer. Gynecol Oncol 2017; 145:167-175. [PMID: 28148395 DOI: 10.1016/j.ygyno.2017.01.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/11/2017] [Accepted: 01/19/2017] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Enhanced tissue factor (TF) expression in epithelial ovarian cancer (EOC) is associated with aggressive disease. Our objective was to evaluate the role of the TF-factor VIIa-protease-activated receptor-2 (PAR-2) pathway in human EOC. METHODS TCGA RNAseq data from EOC databases were analyzed for PAR expression. Cell and microparticle (MP) associated TF protein expression (Western blot) and MP-associated coagulant activity were determined in human EOC (SKOV-3, OVCAR-3 and CaOV-3) and control cell lines. PAR-1 and PAR-2 protein expressions were similarly examined. The PAR dependence of VEGF-A release (ELISA) and chemotactic migration in response to FVIIa and cellular proliferation in response to thrombin was evaluated with small molecule antagonists. RESULTS Relative mRNA expression consistently demonstrated PAR-2>PAR-1≫PAR-3/4 in multiple EOC datasets. Human EOC cell line lysates confirmed expression of TF, PAR-1 and PAR-2 proteins. MPs isolated from EOC cell lines demonstrated markedly enhanced (4-10 fold) TF coagulant activity relative to control cell lines. FVIIa induced a dose-dependent increase in VEGF-A release (2.5-3 fold) from EOC cell lines that was abrogated by the PAR-2 antagonist ENMD-1068. FVIIa treatment of CaOV-3 and OVCAR-3 cells resulted in increased chemotactic migration that was abolished by ENMD-1068. Thrombin induced dose-dependent EOC cell line proliferation was completely reversed by the PAR-1 antagonist vorapaxar. Small molecule antagonists had no effect on these phenotypes without protease present. CONCLUSIONS Enhanced activity of the TF-FVIIa-PAR-2 axis may contribute to the EOC progression via PAR-2 dependent signaling that supports an angiogenic and invasive phenotype and local thrombin generation supporting PAR-1 dependent proliferation.
Collapse
Affiliation(s)
- Alice Chanakira
- Departments of Medicine/Hematology-Oncology and Pathology, University of Wisconsin-Madison, Madison, WI 53792, United States
| | - Pamela R Westmark
- Departments of Medicine/Hematology-Oncology and Pathology, University of Wisconsin-Madison, Madison, WI 53792, United States
| | - Irene M Ong
- Biostatistics and Medical Informatics, UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53792, United States
| | - John P Sheehan
- Departments of Medicine/Hematology-Oncology and Pathology, University of Wisconsin-Madison, Madison, WI 53792, United States.
| |
Collapse
|
11
|
Ammendola M, Sacco R, Zuccalà V, Luposella M, Patruno R, Gadaleta P, Zizzo N, Gadaleta CD, De Sarro G, Sammarco G, Oltean M, Ranieri G. Mast Cells Density Positive to Tryptase Correlate with Microvascular Density in both Primary Gastric Cancer Tissue and Loco-Regional Lymph Node Metastases from Patients That Have Undergone Radical Surgery. Int J Mol Sci 2016; 17:1905. [PMID: 27854307 PMCID: PMC5133903 DOI: 10.3390/ijms17111905] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/05/2016] [Accepted: 11/10/2016] [Indexed: 12/27/2022] Open
Abstract
Mast Cells (MCs) play a role in immune responses and more recently MCs have been involved in tumoral angiogenesis. In particular MCs can release tryptase, a potent in vivo and in vitro pro-angiogenic factor via proteinase-activated receptor-2 (PAR-2) activation and mitogen-activated protein kinase (MAPK) phosphorylation. MCs can release tryptase following c-Kit receptor activation. Nevertheless, no data are available concerning the relationship among MCs Density Positive to Tryptase (MCDPT) and Microvascular Density (MVD) in both primary gastric cancer tissue and loco-regional lymph node metastases. A series of 75 GC patients with stage T2-3N2-3M₀ (by AJCC for Gastric Cancer Seventh Edition) undergone to radical surgery were selected for the study. MCDPT and MVD were evaluated by immunohistochemistry and by image analysis system and results were correlated each to other in primary tumor tissue and in metastatic lymph nodes harvested. Furthermore, tissue parameters were correlated with important clinico-pathological features. A significant correlation between MCDPT and MVD was found in primary gastric cancer tissue and lymph node metastases. Pearson t-test analysis (r ranged from 0.74 to 0.79; p-value ranged from 0.001 to 0.003). These preliminary data suggest that MCDPT play a role in angiogenesis in both primary tumor and in lymph node metastases from GC. We suggest that MCs and tryptase could be further evaluated as novel targets for anti-angiogenic therapies.
Collapse
Affiliation(s)
- Michele Ammendola
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University "Magna Graecia" Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy.
- Surgery Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124 Bari, Italy.
| | - Rosario Sacco
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University "Magna Graecia" Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy.
| | - Valeria Zuccalà
- Pathology Unit, "Pugliese-Ciaccio" Hospital, Viale Pio X, 88100 Catanzaro, Italy.
| | - Maria Luposella
- Cardiovascular Disease Unit, "San Giovanni di Dio" Hospital, 88900 Crotone, Italy.
| | - Rosa Patruno
- Chair of Pathology, Veterinary Medical School, University "Aldo Moro" of Bari, Via Casamassima, 70010 Bari, Italy.
| | - Pietro Gadaleta
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", viale Orazio Flacco 65, 70124 Bari, Italy.
| | - Nicola Zizzo
- Chair of Pathology, Veterinary Medical School, University "Aldo Moro" of Bari, Via Casamassima, 70010 Bari, Italy.
| | - Cosmo Damiano Gadaleta
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", viale Orazio Flacco 65, 70124 Bari, Italy.
| | - Giovambattista De Sarro
- Department of Health Science, Clinical Pharmacology and Pharmacovigilance Unit and Pharmacovigilance's Centre Calabria Region, University of Catanzaro "Magna Graecia" Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy.
| | - Giuseppe Sammarco
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University "Magna Graecia" Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy.
| | - Mihai Oltean
- The Institute for Clinical Sciences, Department of Transplantation, University Hospital, Sahlgrenska Academy at the University of Gothenburg, 41345 Gothenburg, Sweden.
| | - Girolamo Ranieri
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", viale Orazio Flacco 65, 70124 Bari, Italy.
| |
Collapse
|
12
|
Hayama T, Kamio N, Okabe T, Muromachi K, Matsushima K. Kallikrein Promotes Inflammation in Human Dental Pulp Cells Via Protease-Activated Receptor-1. J Cell Biochem 2016; 117:1522-8. [PMID: 26566265 DOI: 10.1002/jcb.25437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/10/2015] [Indexed: 12/29/2022]
Abstract
Plasma kallikrein (KLKB1), a serine protease, cleaves high-molecular weight kininogen to produce bradykinin, a potent vasodilator and pro-inflammatory peptide. In addition, KLKB1 activates plasminogen and other leukocyte and blood coagulation factors and processes pro-enkephalin, prorenin, and C3. KLKB1 has also been shown to cleave protease-activated receptors in vascular smooth muscle cells to regulate the expression of epidermal growth factor receptor. In this study, we investigated KLKB1-dependent inflammation and activation of protease-activated receptor-1 in human dental pulp cells. These cells responded to KLKB1 stimulation by increasing intracellular Ca(2+) , upregulating cyclooxygenase-2, and secreting prostaglandin E2 . Remarkably, SCH79797, an antagonist of protease-activated receptor-1, blocked these effects. Thus, these data indicate that KLKB1 induces inflammatory reactions in human dental tissues via protease-activated receptor 1. J. Cell. Biochem. 117: 1522-1528, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tomomi Hayama
- Department of Endodontics, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, 271-8587, Japan
| | - Naoto Kamio
- Department of Endodontics, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, 271-8587, Japan
| | - Tatsu Okabe
- Department of Endodontics, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, 271-8587, Japan
| | - Koichiro Muromachi
- Department of Pulp Biology and Endodontics, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Kanagawa, 238-8580, Japan
| | - Kiyoshi Matsushima
- Department of Endodontics, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, 271-8587, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, 271-8587, Japan
| |
Collapse
|
13
|
Sun Z, Cao B, Wu J. Protease-activated receptor 2 enhances renal cell carcinoma cell invasion and migration via PI3K/AKT signaling pathway. Exp Mol Pathol 2015; 98:382-9. [DOI: 10.1016/j.yexmp.2015.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 01/22/2023]
|
14
|
Kularathna PK, Pagel CN, Mackie EJ. Tumour progression and cancer-induced pain: a role for protease-activated receptor-2? Int J Biochem Cell Biol 2014; 57:149-56. [PMID: 25448411 DOI: 10.1016/j.biocel.2014.10.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/23/2014] [Indexed: 02/08/2023]
Abstract
The role of proteases in modifying the microenvironment of tumour cells has long been recognised. With the discovery of the protease-activated receptor family of G protein-coupled receptors a mechanism for cells to sense and respond directly to proteases in their microenvironment was revealed. Many early studies described the roles of protease-activated receptors in the cellular events that occur during blood coagulation and inflammation. More recently, studies have begun to focus on the roles of protease-activated receptors in the establishment, progression and metastasis of a variety of tumours. This review will focus on the expression of protease-activated receptor-2 and its activators by normal and neoplastic tissues, and describe current evidence that activation of protease-activated receptor-2 is an important event at multiple stages of tumour progression and in pain associated with cancer.
Collapse
Affiliation(s)
- Pamuditha K Kularathna
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Charles N Pagel
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Eleanor J Mackie
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
15
|
Sedda S, Marafini I, Caruso R, Pallone F, Monteleone G. Proteinase activated-receptors-associated signaling in the control of gastric cancer. World J Gastroenterol 2014; 20:11977-11984. [PMID: 25232234 PMCID: PMC4161785 DOI: 10.3748/wjg.v20.i34.11977] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/10/2014] [Accepted: 05/05/2014] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is the fourth most common cancer in the world and the second cause of cancer-related death. Gastric carcinogenesis is a multifactorial process, in which environmental and genetic factors interact to activate multiple intracellular signals thus leading to uncontrolled growth and survival of GC cells. One such a pathway is regulated by proteinase activated-receptors (PARs), seven transmembrane-spanning domain G protein-coupled receptors, which comprise four receptors (i.e., PAR-1, PAR-2, PAR-3, and PAR-4) activated by various proteases. Both PAR-1 and PAR-2 are over-expressed on GC cells and their activation triggers and/or amplifies intracellular pathways, which sustain gastric carcinogenesis. There is also evidence that expression of either PAR-1 or PAR-2 correlates with depth of wall invasion and metastatic dissemination and inversely with the overall survival of patients. Consistently, data emerging from experimental models of GC suggest that both these receptors can be important targets for therapeutic interventions in GC patients. In contrast, PAR-4 levels are down-regulated in GC and correlate inversely with the aggressiveness of GC, thus suggesting a negative role of this receptor in the control of GC. In this article we review the available data on the expression and role of PARs in GC and discuss whether manipulation of PAR-driven signals may be useful for interfering with GC cell behavior.
Collapse
|
16
|
Yan L, Ba N, Wu M, Zheng XK, Zhang J, Xing X, Zhang ZS. Effect of hyperthermic perfusion chemotherapy on vascular endothelial growth factor receptor 1 and matrix metalloproteinase-9 in patients with gastric cancer. Shijie Huaren Xiaohua Zazhi 2014; 22:3654-3659. [DOI: 10.11569/wcjd.v22.i24.3654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the effect of hyperthermic perfusion chemotherapy on vascular endothelial growth factor receptor 1 (VEGFR-1) and matrix metalloproteinase 9 (MMP-9) in patients with gastric cancer.
METHODS: Eighty-six gastric cancer patients treated at our hospital from March 2010 to April 2013 were randomly divided into either a treatment group or a control group, with 43 cases in each group. The control group was given conventional chemotherapy, and the treatment group was given hyperthermic perfusion chemotherapy. Carbohydrate antigen 72-4 (CA72-4), VEGFR-1 and MMP-9, changes in clinical symptoms and adverse reactions were compared between before and after treatment.
RESULTS: There were no significant differences in CA72-4 value, the percentages of VEGFR-1 or MMP-9 positive cases, or the number of cases with ascites between the two groups before treatment (P > 0.05). CA72-4 value, the percentages of VEGFR-1 and MMP-9 positive cases, and the number of cases with ascites were significantly lower in the treatment group than in the control group (5.43 kU/L ± 2.07 kU/L vs 7.08 kU/L ± 3.19 kU/L, 18.60% vs 41.86%, 23.26% vs 41.86%, 7 vs 15, P < 0.05). The recurrence rates at 6 mo and 1 yr were significantly lower in the treatment group than in the control group (2.33% vs 18.6%, 13.95% vs 32.56%, P < 0.05), while the survival rates at 6 mo and 1 yr were significantly higher in the treatment group (88.37% vs 69.77%, 44.19% vs 67.44%, P < 0.05). The numbers of cases with gastrointestinal bleeding, abdominal pain, leukopenia and diarrhea were significantly less in the treatment group than in the control group (2 vs 9, 5 vs 13, 1 vs 9, 2 vs 9, P < 0.05).
CONCLUSION: Hyperthermic perfusion chemotherapy can achieve better effects than conventional chemotherapy in patients with gastric cancer, and it can reduce the levels of VEGFR-1and MMP-9, relieve clinical symptoms and decrease the relapse rate.
Collapse
|
17
|
Zannoni A, Bombardi C, Dondi F, Morini M, Forni M, Chiocchetti R, Spadari A, Romagnoli N. Proteinase-activated receptor 2 expression in the intestinal tract of the horse. Res Vet Sci 2014; 96:464-71. [PMID: 24656343 DOI: 10.1016/j.rvsc.2014.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/20/2014] [Accepted: 03/01/2014] [Indexed: 11/18/2022]
Abstract
Proteinase-activated receptor 2 (PAR2) is a G-protein-coupled receptor for trypsin and mast cell tryptase; it is highly expressed at the intestinal level with multiple functions, such as epithelial permeability and intestinal motility. Many proteases activate PAR2 during tissue damage, suggesting a role of the inflammatory response receptors. The aim of the study was to evaluate the distribution and expression of PAR2 in the jejunum, the ileum and the pelvic flexure, using samples collected from healthy adult horses after slaughter. Proteinase-activated receptor 2 immunoreactivity (PAR2-IR) was observed in the enterocytes, intestinal glands, the smooth muscle of the muscularis mucosae, and the longitudinal and circular muscle layers; there were no differences in the distribution of PAR2-IR in the different sections of the intestinal tract. The protein expression level showed that the relative amount of the PAR2 content in the mucosa of the intestinal tract decreased from the small to the large intestine while the PAR2 mRNA analysed showed similar values. This study provides relevant findings concerning the distribution of the PAR2 in the intestines of healthy horses and represents the starting point for evaluating the role of the PAR2 during strangulative intestinal disease and consequent systemic intestinal reperfusion/injury complications in horses in order to identify and employ antagonist PAR2 molecules.
Collapse
Affiliation(s)
- Augusta Zannoni
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Cristiano Bombardi
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Francesco Dondi
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Maria Morini
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Alessandro Spadari
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Noemi Romagnoli
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy.
| |
Collapse
|
18
|
Wang Z, Chen D, Zhang Z, Zhang R, An S, Yu L. Protease-activated receptor 4 activation increases the expression of calcitonin gene-related peptide mRNA and protein in dorsal root ganglion neurons. J Neurosci Res 2013; 91:1551-62. [PMID: 24105611 DOI: 10.1002/jnr.23280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 12/12/2022]
Abstract
Accumulating evidence demonstrates that nociceptor activation evokes a rapid change in mRNA and protein levels of calcitonin gene-related peptide (CGRP) in dorsal root ganglion (DRG) neurons. Although the colocalization of CGRP and protease-activated receptor-4 (PAR4), a potent modulator of pain processing and inflammation, was detected in DRG neurons, the role of PAR4 activation in the expression of CGRP has not been investigated. In the present study, the expression of CGRP and activation (phosphorylation) of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in rat DRG neurons were measured by immunofluorescence, real-time PCR, and Western blotting after AYPGKF-NH2 (selective PAR4-activating peptide; PAR4-AP) intraplantar injection or treatment of cultured DRG neurons. The expression of CGRP in cultured DRG neurons was also assessed after treatment with AYPGKF-NH2 with preaddition of PD98059 (an inhibitor for ERK1/2 pathway). Results showed that PAR4-AP intraplantar injection or treatment of cultured DRG neurons evoked significant increases in DRG cells displaying CGRP immunoreactivity and cytoplasmic and nuclear staining for phospho-ERK1/2 (p-ERK1/2). Percentages of total DRG neurons expressing both CGRP and PAR4 or p-ERK1/2 also increased significantly at 2 hr after PAR4-AP treatment. Real-time PCR and Western blotting showed that PAR4-AP treatment significantly increased expression of CGRP mRNA and protein levels in DRG neurons. The PAR4 activation-evoked CGRP expression both at mRNA and at protein levels was significantly inhibited after p-ERK1/2 was inhibited by PD98059. These results provide evidence that activation of PAR4 upregulates the expression of CGRP mRNA and protein levels in DRG neurons via the p-ERK1/2 signal pathway.
Collapse
Affiliation(s)
- Zhaojin Wang
- Department of Anatomy, Taishan Medical University, Shandong Province, Taian, China
| | | | | | | | | | | |
Collapse
|